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Defects in Oscillatory Media: Toward a Classification∗

Björn Sandstede† and Arnd Scheel‡

Abstract. We investigate, in a systematic fashion, coherent structures, or defects, which serve as interfaces
between wave trains with possibly different wavenumbers in reaction-diffusion systems. We propose a
classification of defects into four different defect classes which have all been observed experimentally.
The characteristic distinguishing these classes is the sign of the group velocities of the wave trains
to either side of the defect, measured relative to the speed of the defect. Using a spatial-dynamics
description in which defects correspond to homoclinic and heteroclinic connections of an ill-posed
pseudoelliptic equation, we then relate robustness properties of defects to their spectral stability
properties. Last, we illustrate that all four types of defects occur in the one-dimensional cubic-
quintic Ginzburg–Landau equation as a perturbation of the phase-slip vortex.
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1. Introduction. In this paper, we investigate coherent structures in essentially one-
dimensional spatially extended systems. Specifically, we are interested in interfaces between
stable spatially periodic structures with possibly different spatial wavenumbers as illustrated
in Figure 1.1. These interfaces can also be thought of as defects at which the underlying
perfectly periodic structure is broken. In many cases, both the periodic structures and the
defect will depend on time. We focus on defects where the resulting pattern is time-periodic,
possibly after transforming into an appropriate moving frame of reference. Our goal is to
investigate the existence and stability properties of such defects. In particular, we are in-
terested in classifying defects according to their codimension and studying their robustness
under parameter variations. Throughout this paper, we will use the term wave trains to
denote spatially periodic travelling waves.

We begin by briefly reviewing some numerical simulations and experiments in which defects
have been observed and by introducing, on a heuristic level, the concepts needed for the
classification of defects. Afterward, we recall some facts we need about wave trains before
stating the definition of defects and our main results. Table 1.1 contains a summary of the
notation we shall use throughout this paper.
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Table 1.1
Notation.

u(x, t) solution to reaction-diffusion system

uwt(kx− ωt; k) wave train (2π-periodic in argument φ)
φ = kx− ωt travelling-wave coordinate (wave train)
k wavenumber
ω temporal frequency
ωnl(k) nonlinear dispersion relation
cp = ωnl(k)/k phase velocity
cg = dωnl(k)/dk group velocity

λ̌, λlin(ν) wave-train eigenvalue and linear dispersion relation
computed in frame moving with speed cp

λ temporal Floquet exponent
ρ = exp(2πλ/ωd) temporal Floquet multiplier
ν complex spatial Floquet exponent
γ spatial Floquet exponent

cd speed of defect
ωd temporal frequency of defect
ξ = x− cdt travelling-wave coordinate (defect)
τ = ωdt rescaled time (2π-periodic)
ud(ξ, τ) defect (2π-periodic in τ)

1 identity operator
N(L), Rg(L) null space and range of a closed linear operator L
i(L) = dim N(L) − codim Rg(L) index of a Fredholm operator L
Y = H1/2(S1,Rn) × L2(S1,Rn) spaces for spatial-dynamical systems

Y 1 = H1(S1,Rn) ×H1/2(S1,Rn)

cdc−p c+p

defect
wave train wave train

Figure 1.1. A defect travelling with speed cd through spatially periodic structures that themselves travel
with phase velocities c−p behind and c+p ahead of the defect.

1.1. Motivation.

Experiments and simulations. To set the scene, we describe numerical simulations of
defects and review various experiments in which they have been observed. Consider first
the left and center plot in Figure 1.2. Both are space-time contour plots of solutions to the
Brusselator (see Appendix B for the equations). Figure 1.2(i), which reproduces simulations
from [38], shows a standing defect that emits wave trains alternately to the left and right
so that the emitted wave trains travel away from the defect toward the domain boundary.
Defects of this type are often referred to as flip-flops or one-dimensional spirals. Note that
the defect is time-periodic since the space-time plot is periodic in the vertical time direction.
Figure 1.2(ii) shows a standing defect near the left domain boundary that emits wave trains
simultaneously to the left and right; such defects are often referred to as target patterns. In the
interior of the domain, a travelling defect is formed between the waves emitted by the target
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(i) Flip-flop [movie] (ii) Target and sink [movie] (iii) Line defect [movie]

Figure 1.2. The numerical simulations shown here were carried out using Barkley’s code ezspiral [3].
Figure (i) on the left shows a space-time plot (time is plotted upward and space horizontally) of a flip-flop
that emits wave trains alternately to the left and right: The emitted wave trains travel away from the defect
toward the domain boundary. Figure (ii) in the middle is a space-time plot (time is plotted upward and space
horizontally): Near the left boundary, we see a standing target pattern that emits waves simultaneously to the
left and right. In the interior of the domain, a travelling defect is formed between the waves emitted by the
target pattern and the spatially homogeneous oscillations that occupy the right half of the domain. Figure (iii)
is a snapshot of a two-dimensional spiral wave. A one-dimensional line defect emerges from the center of the
spiral and connects to the bottom of the domain. Along the line defect, the phase of the oscillations jumps by
half a period.

pattern and the spatially homogeneous oscillations that occupy the right half of the domain.
The travelling defect is time-periodic when viewed in a comoving frame. Indeed, shearing the
space-time plot appropriately in the horizontal direction renders the figure vertically periodic
with the defect being a vertical line.

Flip-flops of a slightly different nature have been observed in numerical simulations in
the excitable regime of the Oregonator [40], where a localized pulse destabilizes and releases
pulses in its wake—a mechanism often referred to as backfiring. The emerging pattern resem-
bles Figure 1.2(i) with pulses being released alternately to the left and right. The resulting
interfaces can also move with nonzero speed [40].

Chemical oscillations have been generated in various reactions, most of which are related
to the original Belousov–Zhabotinsky mechanism. In [38], defect patterns were observed in the
chlorite-iodite-malonic-acid (CIMA) reaction in the parameter regime where stable, station-
ary, spatially periodic Turing patterns and time-periodic spatially homogeneous oscillations
coexist. In one space dimension, [38, Figure 2] shows flip-flops of the type plotted in Fig-
ure 1.2(i). We emphasize that the waves emerging from the chemical flip-flop in [38] are not
generated by an inhomogeneity in the medium. Instead, the defect forms spontaneously. At
the defect, the phase of the wave trains jumps by half a period.

Defects with a different type of phase slip were observed in photo-sensitive monolayers on
thin Belousov–Zhabotinsky reaction solutions [58]. The two-dimensional spiral waves shown
in [58, Figures 2 and 5] exhibit stationary line defects along which the phase of the oscillations
jumps by half the period. The spiral waves are presumably generated by a period-doubling
bifurcation of spatially homogeneous oscillations that then leads to a Hopf bifurcation of the

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60019_01.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60019_02.mpg
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http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60019_02.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60019_03.mpg


4 BJÖRN SANDSTEDE AND ARND SCHEEL

cp
cg

Figure 1.3. The difference between the phase velocity cp and the group velocity cg of wave trains. The
latter describes the speed with which slowly varying modulations of the wavenumber propagate.

space

time

Figure 1.4. A sketch of the characteristic curves that enter or leave each defect depending on the speed of
the group velocities of the wave trains to the left and right of the defect compared with the speed of the defect.
From left to right: Sinks, contact defects, transmission defects, and sources.

two-dimensional spirals [52]. The line defects appear to orient themselves parallel to the
propagation direction of the wave trains. We refer to Figure 1.2(iii) for a snapshot of a two-
dimensional spiral wave that exhibits such a line defect. The pattern shown there was first
found in [18], to which we refer for details on the equation used to generate it.

Hydrothermal waves can also exhibit defects. The recent experiments in [1, 36, 37], in
which nonlinear waves and various kinds of defects were triggered by heated wires immersed
in thin layers of oil, were motivated by the desire to obtain a quantitative comparison with
coupled Ginzburg–Landau equations. Other experiments where defects have been observed
are the printer instability [19], laterally heated fluid layers [4], and thermal convection of
binary fluids [31].

Heuristic classification. We are interested in finding characteristic properties of coherent
structures of the kind shown in Figure 1.1. It turns out that the group velocities of the
asymptotic wave trains are the deciding characteristic. The group velocity cg associated with
a wave train can be thought of as the speed with which small perturbations are transported
along the wave train (we will make this more precise in section 1.3 below; see also Figure 1.3).
Alternatively, the group velocity can be computed as the derivative of the frequency of the
wave train with respect to its wavenumber (see section 1.2 below). We may then distinguish
defects according to whether perturbations to the left or right of the defect travel toward,
parallel to, or away from the interface. In fact, we propose the following classification:

sinks c−g > cd > c+g ,

contact defects c−g = cd = c+g ,

transmission defects either c±g > cd or c±g < cd,

sources c−g < cd < c+g ,

where cd is the speed of the defect, and c−g and c+g denote the group velocities of the wave trains
to the left and right, respectively, of the interface. We refer to Figure 1.4 for an illustration.
We emphasize that the slope of the level sets in the space-time plots of Figure 1.2 reflects the
phase velocity of the wave trains. In contrast, the characteristic curves sketched in Figure 1.4
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indicate the direction of the group velocity. In general, the signs of these two velocities are
not related. While phase and group velocity of the waves in Figure 1.2(i) and (ii) have the
same sign, the group velocity of the waves in Figure 1.2(iii) is directed toward the boundary,
while they travel toward the spiral center.

The intuition is that sources generate the wave trains to either side since their group veloc-
ity points away from the interface. Sinks are passively created by wave trains that transport
from the left and right toward the interface, thus forming it. Contact and transmission defects
typically connect identical wave trains; these defects account for phase differences between the
wave trains to their left and right.

We remark that there are defects that do not fit into the classification shown above (for
instance, those for which c−g = cd > c+g ). Nevertheless, we will argue in section 6.10 that the
only “relevant” defects are those captured by our classification.

Last, we briefly revisit the experiments and simulations mentioned above to demonstrate
that each of the defect classes indeed arises in physical systems. The flip-flop in Figure 1.2(i),
the target pattern in Figure 1.2(ii), and the chemical flip-flops observed by [38] in the CIMA
reaction appear to be sources. The interface between travelling and standing waves shown
in the center of Figure 1.2(ii) is a sink. We believe that the line defects that are illustrated
in Figure 1.2(iii) and that occur in the modified Belousov–Zhabotinsky experiment [58] are
contact defects. Transmission defects arise in the ferroin-catalyzed Belousov–Zhabotinsky
reaction [20] and in the heated-wire experiments [1, 36]. Sources and sinks have also been
observed in the printer instability [19] and in the heated-wire experiments [1, 36].

Defects in general reaction-diffusion systems. The idea to characterize coherent struc-
tures1 using the group velocity is, of course, not new. Interfaces between wave trains with
almost identical wavenumbers were, for instance, studied in great detail in [26]. Defects in
the cubic-quintic and in coupled complex Ginzburg–Landau equations were investigated by
van Saarloos and coworkers [41, 23, 22] and by Doelman [10].

Our goal is to investigate defects arising in reaction-diffusion equations. The difficulty
is that defects cannot be obtained as solutions to an ordinary differential equation (ODE).
Instead, they are solutions to the partial differential equation (PDE) that depend genuinely on
time. In fact, while the formation of periodic structures has been studied comprehensively in
one, two, and three space dimensions (see [8] and the references therein), defects within these
periodic structures are not as well understood, at least from a mathematical viewpoint. There
are two reasons for this. First, defects are modulated waves and therefore time-periodic in a
comoving frame. Thus, dynamical-systems methods with respect to the spatial variable, that
are so successful when dealing with travelling waves, are not immediately applicable. Second,
it appears difficult to use period maps to investigate defects as the linearization about a defect
has the essential spectrum up to the imaginary axis. This fact precludes the immediate use
of implicit function theorems. Note that the essential spectrum of each defect is generated by
the spectrum of the asymptotic wave trains that always touches the imaginary axis. When
studying spatially periodic patterns that respect a lattice symmetry group, this issue can be
resolved by restricting our attention to functions that respect the same lattice group. Defects,
however, inherently break the lattice symmetry.

1Throughout this paper, we shall use the terms defect and coherent structure interchangeably.
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We focus on essentially one-dimensional media such as the real line x ∈ R, cylindrical
domains R×Ω ⊂ R×R

m, or patterns with a radial symmetry x ∈ R
+. In these cases, we can

reverse the role of time and space and treat the unbounded spatial variable x as the evolution
variable, while time is restricted to the compact interval of periodicity. Dynamical-systems
techniques can then be adapted to investigate bifurcations of small-amplitude solutions [30,
27, 55]. It is also possible to study periodic [34] as well as homoclinic and heteroclinic solutions
[39, 49] of not necessarily small amplitude. Based on these ideas, we characterize in this paper
properties of typical defects of arbitrary amplitude by interpreting them as homoclinic and
heteroclinic trajectories that are constructed in a robust transverse fashion. To classify defects,
we count relative dimensions of the infinite-dimensional stable and unstable manifolds.

Last, we do not wish to give the impression that all interesting patterns observed in nature
are necessarily time-periodic. In fact, there are many fascinating patterns that do not fit at
all into the framework described above and that are therefore not captured by the analysis
presented here. However, as documented above, many patterns observed in physical systems
are time-periodic when viewed in an appropriate frame and therefore fit into our framework.

1.2. Main results.

Reaction-diffusion systems. As a prototype for equations that give far-from-equilibrium
dynamics, we focus on reaction-diffusion equations

ut = Duxx + f(u), x ∈ R,(1.1)

where u ∈ R
n. We assume that the diffusion matrix is diagonal with strictly positive entries

and that the nonlinearity f ∈ C∞(Rn,Rn) is smooth. We think of f as a generic nonlinearity
with no additional symmetries.

Wave trains. The common feature of the experiments mentioned above is the presence
of wave trains which are travelling waves of the form uwt(kx − ωt; k), where uwt(φ; k) is
2π-periodic in φ. Typically, the spatial wavenumber k and the temporal frequency ω are
related via the nonlinear dispersion relation ω = ωnl(k) so that the phase velocity is given by
cp = ωnl(k)/k. A second quantity related to the nonlinear dispersion relation is the group
velocity

cg =
dωnl

dk
(1.2)

of the wave train which will play a central role in our results. The group velocity cg gives
the speed of propagation of small localized wave-package perturbations of the wave train (see
Example II in section 1.3). Our primary interest is in wave trains that have a nonconstant
dispersion relation2 so that cg �≡ 0.

We shall assume that the wave trains are spectrally stable. If we linearize (1.1) about a
wave train in the frame φ = kx− ωnl(k)t, we obtain the linear operator3

Lwt = k2D∂φφ + ωnl(k)∂φ + f ′(uwt(φ; k)).(1.3)

2Reversible Turing patterns, for instance, have a degenerate dispersion relation ωnl(k) ≡ 0 so that the group
velocity vanishes for all k. In this case, our proposed classification into four defect types does not make sense.

3Some of our expressions below are only valid for k �= 0. The results, however, are also true when k = 0,
and we will comment on this in section 3.3.
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Spectral stability means that the spectrum of Lwt on L2(R,Cn) is contained strictly in the
left half-plane except for a unique curve

λlin(ν) = aν + dν2 + O(ν3), ν ∈ iR,(1.4)

that touches the origin with a quadratic tangency d > 0. In this case, we actually know that
a = cp − cg. We refer to section 3.1 for details.

Defects. Next, we consider coherent structures which are waves that are time-periodic
in an appropriate frame of reference and asymptotic in space to wave trains with possibly
different wavenumbers.

Definition 1.1. We say that a solution u(x, t) = ud(x− cdt, ωdt) of (1.1) is an elementary
defect with speed cd and frequency ωd if ωd �= 0 and if there are asymptotic wavenumbers k−
and k+ and smooth phase-correction functions θ±(ξ) with θ′±(ξ) → 0 as ξ → ±∞ such that

ud(ξ, τ) = ud(ξ, τ + 2π)(1.5)

and

ud(ξ, ωdt) − uwt(k±ξ + (k±cd − ωnl(k±))t− θ±(ξ); k±) −→ 0(1.6)

uniformly in t as ξ → ±∞ for the functions as well as their derivatives with respect to (ξ, t).
Last, we assume that ∂ξud(ξ, τ) and ∂τud(ξ, τ) are linearly independent functions.

Formulated in the steady frame, the periodicity (1.5) and convergence (1.6) conditions are

u(x, t) = u(x+ cdTd, t+ Td), Td =
2π

ωd
,

and

u(x, t) − uwt(k±x− ωnl(k±)t− θ±(x− cdt); k±) −→ 0

uniformly in 0 ≤ t ≤ Td as x→ ±∞.
We will see in Corollary 5.2 that the phase functions θ±(ξ) can be chosen to be constants

θ± for sinks, sources, and transmission defects, whereas contact defects have phase functions
θ±(ξ) ∝ log ξ + O(1/|ξ|) that diverge logarithmically.

Throughout this paper, we denote the phase and group velocities of the asymptotic wave
trains by

c±p =
ωnl(k±)

k±
, c±g =

dωnl

dk
(k±),

respectively. Note that (1.5)–(1.6) imply that

ωnl(k+) − k+cd = ωd = ωnl(k−) − k−cd.(1.7)

In particular, the assumption that defects are time-periodic implies the Rankine–Hugoniot
condition

cd =
ωnl(k+) − ωnl(k−)

k+ − k−
(1.8)
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for the defect speed whenever k+ �= k−. To justify our use of the term Rankine–Hugoniot, we
note that the group velocity, which measures transport, is the derivative of the frequency. In
conservation laws, transport is the derivative of the flux, so we may interpret the frequency ωnl

as the flux function of a fictitious conservation law. In that sense, (1.8) is the corresponding
Rankine–Hugoniot condition. Using these findings, we see that (1.6) is equivalent to

ud(ξ, τ) − uwt(k±ξ − τ − θ±(ξ); k±) −→ 0, ξ → ±∞.(1.9)

To illustrate (1.8), consider the sink in the center of Figure 1.2(ii). Since the wave trains
to the right of the defect are spatially homogeneous, we have k+ = 0. Inspecting the figure
further, we see that ωnl(k−) > ωnl(k+), and (1.8) implies that cd > 0, which is consistent with
the simulation.

Main result. We are now ready to describe the main result of this paper. We begin
by introducing four distinct classes of defects. Each type occurs in an open set of reaction-
diffusion systems, or, more precisely, for nonempty open subsets U of nonlinearities f in
C3(Rn,Rn) and of diffusion matrices D. We define the four different defect types as follows:

(i) Sinks are elementary defects with c−g > cd > c+g .
(ii) Contact defects are elementary defects with c−g = cd = c+g .
(iii) Transmission defects are elementary defects with either c±g > cd or c±g < cd.
(iv) Sources are elementary defects with c−g < cd < c+g .
All contact and transmission defects that we are aware of have k− = k+. In fact, contact

defects for which k− �= k+ and ω′′(k−) �= ω′′(k+) will not persist upon varying (k−, k+), and
we will therefore restrict our analysis to contact defects for which k− = k+. Note also that
we include neither sinks that have k− = k+ nor degenerate sinks for which c−g = cd > c+g or
c−g > cd = c+g , since we do not expect that such defects occur for open sets of wavenumbers
k− or k+, respectively. We refer to section 6.10 for more details.

Our main result will link robustness properties of defects to spectral properties of the
linearization of the period map of (1.1). To describe these properties, we therefore linearize
(1.1) in the comoving frame ξ = x− cdt with τ = ωdt about an elementary defect ud(ξ, τ) and
obtain the linear equation

ωduτ = Duξξ + cduξ + f ′(ud(ξ, τ))u.(1.10)

We denote the linear period map of this parabolic equation with time-periodic coefficients by

Φd : u(·, 0) 	−→ u(·, 2π).

For any pair of real numbers η = (η−, η+), we define L2
η(R,R

n) to be the space of all locally
square-integrable functions for which

‖u‖2
L2
η

=

∫
R−

∣∣∣u(ξ)eη−ξ
∣∣∣2 dξ +

∫
R+

∣∣∣u(ξ)eη+ξ
∣∣∣2 dξ

is finite.
Definition 1.2. Consider Φd on L2

η(R,R
n) with weights η± that are sufficiently close to zero

and satisfy

sign η± = sign
(
cd − c±g

)
.(1.11)
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We say that an elementary defect is transverse if it has minimal spectrum in the following
sense:

(i) For sinks, we assume that Φd − 1 has a bounded inverse on L2
η(R,R

n).
(ii) For contact defects, we assume that Φd − 1 has a bounded inverse L2

η(R,R
n) for all

weights η− = η+ �= 0 that are sufficiently close to zero.
(iii) For transmission defects, we assume that ρ = 1 has algebraic multiplicity one as an

eigenvalue of Φd on L2
η(R,R

n).
(iv) For sources, we assume that ρ = 1 has algebraic multiplicity two as an eigenvalue of

Φd on L2
η(R,R

n).
It turns out that, in each of the above four cases, Φd − 1 is Fredholm with index zero

on L2
η(R,R

n) with weights chosen according to Definition 1.2. The above requirements on
the spectra of Φd can also be formulated in terms of multiplicities of appropriate roots of
certain Evans functions (see section 5). We emphasize, however, that the minimal-spectrum
assumption for contact defects does not refer to the usual Evans function that we constructed
in [50] since the essential spectrum of contact defects always extends into the right half-plane
in the exponentially weighted spaces that we use (see section 6.1).

We recall the main hypothesis that we require for the wave trains.
Hypothesis 1.3. Each of the wave trains that we consider is part of a one-parameter family

given locally by solutions uwt(kx−ωnl(k)t; k) of (1.1), where uwt(φ; k) is 2π-periodic in φ. We
also assume that the dispersion relation ω = ωnl(k) is well defined and smooth, again locally
near each of the wave trains, and that ω′′

nl(k) �= 0. Last, we assume that each of these wave
trains is spectrally stable in the sense sketched in (1.4) and made precise in Hypotheses 3.1
and 3.2 below.

The following theorem distills the analysis of the present paper into a multiplicity and
robustness result.

Theorem 1.4. Assume that Hypothesis 1.3 is met. We then have the following:
(i) Transverse sinks occur in two-parameter families that are parametrized by the asymp-

totic wavenumbers k±.
(ii) Transverse contact defects appear as one-parameter families that are parametrized by

the asymptotic wavenumber k− = k+.
(iii) Transverse transmission defects appear as one-parameter families that are parame-

trized by the asymptotic wavenumber k+ if c±g < cd (and by k− if c±g > cd).
(iv) Transverse sources appear for a discrete set of wavenumbers (k−, k+).

We exclude the translation symmetries in time and space from the above multiplicity counting.
Each defect depends smoothly on parameters in the nonlinearity and the diffusion matrix (see
below).

Here, we say that a defect depends smoothly on wavenumbers and additional param-
eters µ if there exist smooth functions cd and ωd of (k−, k+, µ) and a family of defects
ud(x − cdt, ωdt; k−, k+, µ) such that ud depends smoothly on (k−, k+, µ) as a function into
BC1(R × R,Rn) after transforming the argument ξ = x− cdt according to

ξ 	−→ ξ + θ(ξ; k−, k+, µ)(1.12)

for an appropriate function θ for which θ′(ξ; k−, k+, µ) ∈ BC0(R) is smooth in (k−, k+, µ).
The coordinate change in ξ is necessary in order to obtain continuity of the family since the
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wave trains depend continuously on k in BC0 only after a rescaling ξ 	→ ξ/k that normalizes
the spatial period.

1.3. Examples. To illustrate the theorem, we review the complex Ginzburg–Landau equa-
tion, whose defect solutions have been studied extensively in the literature, and the Burgers
equation, which describes the dynamics of modulated wave trains.

Example I: The complex Ginzburg–Landau equation. The complex cubic Ginzburg–
Landau equation (CGL) is given by

At = (1 + iα)Axx +A− (1 + iβ)A|A|2,(1.13)

where the coefficients α, β ∈ R are real, and where x ∈ R, t ≥ 0, and A(x, t) ∈ C. The CGL
has a family of wave trains given by

A(x, t) = Awt(kx− ωt; k) =
√

1 − k2 ei(kx−ωt),(1.14)

where the spatial wavenumber k and the temporal frequency ω are related via

ω = ωnl(k) = β + (α− β)k2.

Note that these waves exist only for |k| < 1. Due to the gauge invariance A 	→ eiφA of the
CGL, defects can actually be constructed, in a frame moving with the defect speed cd, as
heteroclinic and homoclinic orbits of an ODE. Indeed, coherent defects of the CGL are of the
form

A(x, t) = Ad(x− cdt, ωdt) = a(x− cdt)e
iφ(x−cdt)e−iωdt(1.15)

so that

Ad(ξ, τ) = a(ξ)ei[φ(ξ)−τ ].

Substituting this ansatz into (1.13), it follows [22, Appendix B] that (a, z) satisfies the ODE

aξ = aRe z,(1.16)

zξ = −z2 − 1

1 + iα

[
1 + iωd − (1 + iβ)a2 + cdz

]
,

where z = aξ/a+ iφξ. Thus, defects of the CGL correspond to heteroclinic orbits of the ODE
(1.16), while the equilibria connected by these orbits correspond to wave trains of the CGL.
The observation made in [41] is that the dimensions of the unstable and stable manifolds
of these equilibria are related to the group velocities of the corresponding wave trains: In
a frame moving with the speed of the defect, the dimension of stable manifolds associated
with wave trains that transport to the left is larger than that of wave trains that transport
to the right. Equivalently, the dimension of unstable manifolds associated with wave trains
that transport to the right is larger than that of wave trains that transport to the left.
These dimensions, however, are directly related, via counting arguments, to the codimension
of connecting orbits between equilibria as these arise as intersections of stable and unstable
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manifolds. This argument therefore establishes a beautiful connection between the intuition
given by the group velocity and rigorous counts of the codimension of defects.

Equation (1.16) has been studied thoroughly in the literature (see, for instance, [41, 2,
10, 21, 22] for references). In particular, the CGL has been shown to admit sources (the
so-called Nozaki–Bekki holes), sinks, and transmission defects (commonly referred to as ho-
moclons [21]). We refer to [10] for existence results of these defects and to [28] for the stability
of sinks. We will show in section 7 that the cubic-quintic Ginzburg–Landau equation (CQGL)
admits contact defects.

Example II: The viscous Burgers equation. Arguably, the simplest possible defects are
those with “small amplitude” that serve as interfaces between two wave trains with almost
the same wavenumber. The term “small amplitude” therefore refers to the small difference
of the asymptotic wavenumbers and not to the actual amplitudes of wave trains and defects
which could be large.

One way of finding such defects is to derive an equation that describes slowly varying
wavenumber modulations (see Figure 1.3) of the wave trains uwt(kx− ωnl(k)t; k). Hence, we
fix a wavenumber k and seek solutions to the reaction-diffusion system (1.1) of the form

u(x, t) = uwt(kx− ωnl(k)t+ Φ(X,T ); k + ε∂XΦ(X,T )) + O(ε2),(1.17)

where 0 < ε� 1, and where the variables (X,T ) depend on (x, t) via

X = ε(x− cgt), T =
1

2
ε2t.(1.18)

Thus, the function q(X,T ) := ∂XΦ(X,T ) describes the slowly varying modulation of the
wavenumber. It can be shown [26, 11] that q(X,T ) satisfies the viscous Burgers equation

∂T q = λ′′lin(0) ∂2
Xq − ω′′

nl(k) ∂X(q2)(1.19)

over time scales of order O(1) in T and that any solution to (1.19) yields, in fact, a solution
to the reaction-diffusion system (1.1) via (1.17). Using (1.18), this validity result justifies the
interpretation of the group velocity as the speed of propagation of small localized wave-package
perturbations.

To analyze defects, suppose that the dispersion relation is convex near the wavenumber
k so that ω′′(k) > 0 (the only difference for concave dispersion relations is that some of the
signs below may change). Equation (1.19) admits stationary fronts of the form

qd(X) = −
√

ω̌

ω′′
nl(k)

tanh

(√
ω̌ω′′

nl(k)

λ′′lin(0)
X

)
(1.20)

that converge to the equilibria q± = ∓
√

2ω̌/ω′′
nl(k) as X → ±∞ for each ω̌ > 0. These fronts

of (1.19) correspond to defects of (1.1) that connect the wave train with wavenumber k+ εq−
to the wave train with wavenumber k + εq+. Since the dispersion relation is locally convex,
and since q− > 0 and q+ < 0, we see that the group velocity of k + εq− is larger than cg,
while the group velocity of k + εq+ is smaller than cg. Thus, the defects described by (1.20)
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are sinks whose characteristics on each side point toward the interface. This is, of course, in
agreement with the fact that (1.20) describes the viscous Lax shocks of the Burgers equation.

Another consequence of the above discussion is that sources do not exist in the small-
amplitude limit. Indeed, for ω′′(k) > 0, the only waves of the viscous Burgers equation that
connect q− to q+ for q− < q+ are rarefaction waves.4

We remark that it has been proved in [11] that the shocks given in (1.20) persist as
transverse defects of the reaction-diffusion equation (1.1); note that this requires a proof as
the Burgers equation is valid only over finite time intervals.

Example III: Absolute and essential instability of pulses and fronts. Bifurcations from
travelling waves provide another mechanism by which defects can be created. Imagine, for
instance, a pulse travelling with a nonzero speed through a stable spatially homogeneous back-
ground. Now, envision a scenario where the stable background becomes unstable through a
Turing or Hopf instability upon varying appropriate external parameters: At a supercritical
Turing bifurcation, stationary wave trains with small amplitude and nonzero wavenumber
will bifurcate from the homogeneous background state. We proved in [44] that, under cer-
tain generic assumptions, modulated pulses arise that travel through these wave trains with
nonzero speed. Since the wave trains will have zero group velocity, the modulated pulse is
an elementary transverse transmission defect. Linear and nonlinear stability of these defects
have been addressed in [45] and [17], respectively. Analogous bifurcations can also occur at
fronts when the rest state ahead of the front destabilizes [48]. Last, we proved in [51] that
both flip-flops and one-dimensional target patterns (see Figure 1.2(i) and (ii)) will bifurcate
from standing pulses whose background states undergo a Hopf instability. This appears to be
the mechanism that creates the chemical flip-flops observed in [38].

Plan of the paper. The paper is organized as follows. In section 2, we review robustness
and stability properties of localized pulses and fronts that connect spatially homogeneous
equilibria. The purpose of this review is to prepare the spatial-dynamics viewpoint that we
shall adopt when we investigate defects. Section 3 is devoted to wave trains and their stability
for both the temporal and the spatial-dynamical system. In section 4, we prepare the ground
for the proof of Theorem 1.4 by investigating the spectra of the period maps associated with
the linearization about defects. We then prove Theorem 1.4 in section 5 by linking robustness
properties of defects to geometric transversality conditions of the spatial-dynamical system.
We also show that the resulting geometric conditions are equivalent to the minimal-spectrum
assumption. In section 6, we address stability, interactions, and bifurcations of defects as well
as the influence of boundaries and inhomogeneities on their dynamics. Last, in section 7, we
prove that the CQGL has contact defects in appropriate parameter regimes.

2. Localized travelling waves. To illustrate the main ideas behind Theorem 1.4 and its
proof, we review travelling waves that approach stable spatially homogeneous rest states. We
describe both rigidly propagating travelling waves u = utw(x−ctwt) and oscillatory modulated

4Rarefaction waves appear as stationary fronts of (1.19) if the self-similarity scaling symmetry is exploited,
which is respected by (1.19) but, in general, not by (1.1).
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waves u = umtw(x− cmtwt, ωmtwt) of reaction-diffusion systems

ut = Duxx + f(u), x ∈ R,(2.1)

with u ∈ R
n.

2.1. Pulses and fronts. Suppose that utw(x − ct) is a front that satisfies (2.1) and that
connects two stable spatially homogeneous equilibria u± of (2.1) so that utw(ξ) → u± as
ξ → ±∞. Thus, we use the independent variables (ξ, t) = (x− ct, t) so that (2.1) becomes

ut = Duξξ + cuξ + f(u), ξ ∈ R,(2.2)

and utw(ξ) is an equilibrium. The linearization of (2.2) about the front utw(ξ) is given by

Ltwu = Duξξ + cuξ + f ′(utw(ξ))u,(2.3)

which defines a closed unbounded operator Ltw on L2(R,Rn) and on BC0(R,Rn). We shall
see below that u′tw(ξ) decays exponentially to zero as |ξ| → ∞. As a consequence, λ = 0
is always an eigenvalue of Ltw with eigenfunction u′tw(ξ). This eigenvalue occurs due to
the translation symmetry of (2.2) which implies that utw(· + ξ0) is a solution for each fixed
spatial shift ξ0 ∈ R. Since Ltw is Fredholm with index zero [24], we can apply Lyapunov–
Schmidt reduction to the steady-state equation associated with (2.2) near the family of fronts.
Exploiting the translation symmetry ξ 	→ ξ+ξ0, it is not difficult to see that fronts and pulses
are robust with respect to small perturbations of the nonlinearity provided λ = 0 has geometric
and algebraic multiplicity one as an eigenvalue of Ltw (see [48] and the references therein for
details).

An alternative approach to this problem is as follows. We seek travelling-wave solutions
utw(x− ct) of (2.1). Substituting this ansatz gives the travelling-wave equation

uξ = v,(2.4)

vξ = −D−1[cv + f(u)]

in the 2n-dimensional phase space, which we also write as

u′ = F(u; c),

where u = (u, v) ∈ R
2n. The front utw(ξ) which connects two stable spatially homogeneous

equilibria u± corresponds to a heteroclinic orbit utw(ξ) of (2.4) which connects the equilibria
u± = (u±, 0). The eigenvalue problem for the operator Ltw can now be written as the linear
ODE

uξ = v,(2.5)

vξ = −D−1[cv + f ′(utw(ξ))u− λu].

For λ close to zero, this equation is close to the ODE linearization of (2.4) about the travelling
wave utw. We can therefore expect that the spectral properties of Ltw for λ close to zero are
related to properties of the heteroclinic orbit of the travelling-wave ODE (2.4).
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Figure 2.1. A front with stable homogeneous background states corresponds to a heteroclinic orbit that
connects saddles whose unstable and stable manifolds have dimension n. The insets show the eigenvalues of
the linearization of (2.4) about the saddles.

First, consider the PDE linearization about a homogeneous equilibrium utw(ξ) ≡ u±.
Using Fourier transform, it is easy to see that λ belongs to the spectrum if and only if (2.5)
has a nontrivial bounded solution. For λ� 1, (2.5) is close to uξξ = λD−1u, which is a linear
hyperbolic equation with n stable and n unstable spatial eigenvalues ν = ±

√
λ/dj , where

D = diag(dj). If we therefore assume that the homogeneous equilibria u± are spectrally
stable, we can conclude that the corresponding two equilibria u± = (u±, 0) of the travelling-
wave ODE (2.4) are saddles whose stable and unstable manifolds have equal dimension n.
In particular, fronts and pulses with stable background states correspond to heteroclinic and
homoclinic orbits to saddles with unstable and stable dimension equal to n (see Figure 2.1).

Next, robustness of fronts corresponds to robustness of the heteroclinic connection utw =
(utw, u

′
tw) as a solution to the ODE (2.4). In fact, heteroclinic orbits are robust as solutions

in the phase space if and only if stable and unstable manifolds intersect transversely upon
varying the parameter c near the wave speed ctw of the front or pulse; if we add the equation
cξ = 0 for the parameter c to (2.4) and denote the center-stable and center-unstable manifolds
of the equilibria u± by W cu

ext(u−) and W cs
ext(u+), then robustness is equivalent to requiring

T(utw,ctw)W
cu
ext(u−) + T(utw,ctw)W

cs
ext(u+) = R

2n × R.

This, in turn, is equivalent to a minimal intersection in R
2n for fixed c = ctw,

TutwW
u(u−) ∩ TutwW

s(u+) = spanu′
tw,(2.6)

together with a Melnikov condition

M =

∫ ∞

−∞
〈ψ(ξ), ∂cF(utw(ξ); ctw)〉dξ �= 0.(2.7)

Here, ψ denotes the unique (up to scalar multiples) nontrivial bounded solution of the adjoint
variational equation

uξ = f ′(utw(ξ))∗D−1v,(2.8)

vξ = −u+ cD−1v.

Note that (2.6) holds precisely when λ = 0 has geometric multiplicity one as an eigenvalue of
Ltw, while (2.7) holds exactly when its algebraic multiplicity is one. The relation between the
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ODE and the functional-analytic robustness argument becomes clearer when we approach the
eigenvalue problem from an ODE viewpoint. Eigenfunctions correspond to bounded solutions
of (2.3), while generalized eigenfunctions are found as bounded solutions of the derivative of
the variational equation with respect to λ, evaluated in the eigenfunction.

To find bounded solutions of (2.3), we denote by Es
+(λ) the λ-dependent linear subspace of

initial conditions at ξ = 0 that lead to bounded solutions of (2.3) as x→ ∞ and by Eu−(λ) the
λ-dependent linear subspace that leads to bounded solutions as x→ −∞. Using exponential
dichotomies, we see that both subspaces are n-dimensional and are given as ranges of analytic
families of projections P s

+(λ) and P u−(λ). We may now choose analytic bases eu
j in Eu−(λ) and

es
j in Es

+(λ) and define the Evans function

E(λ) := det [es
1, . . . , e

s
n, e

u
1 , . . . , e

u
n] .

In particular, we have E(λ) = 0 if and only if λ is an eigenvalue of Ltw. Furthermore, we have
E(0) = 0, and, upon expanding the determinant, it is also not hard to see that E ′(0) �= 0 if
and only if both (2.6) and (2.7) are met.

A related way to solve the eigenvalue problem in a neighborhood of λ = 0 consists of
finding roots of the injection map

ι(λ) : Eu
−(λ) × Es

+(λ) −→ C
2n, (u−,u+) 	−→ u− − u+.(2.9)

Near λ = 0, this map can be pulled back to

ι0(λ) : Eu
−(0) × Es

+(0) −→ C
2n, (u−,u+) 	−→ P u

−(λ)u− − P s
+(λ)u+.(2.10)

Note that ι0(0) is Fredholm with index zero and null space Eu−(0) ∩ Es
+(0). If we denote the

dimension of this null space by �, which coincides with the geometric multiplicity of λ = 0,
then we can compute the roots of ι0 near λ = 0 via Lyapunov–Schmidt reduction, which
results in a linear system of � equations in � variables. The λ-dependent determinant of the
reduced equation is a reduced Evans function E0(λ) whose roots, counted with multiplicity,
coincide with those of E(λ) in a neighborhood of zero. In particular, these two functions differ
only by a nonzero analytic factor. In our case, the geometric multiplicity of λ = 0 is one so
that � = 1. Thus, the reduced Evans function E0(λ) is a scalar function, and we have E ′

0(0) �= 0
if and only if the algebraic multiplicity of λ = 0 is one.

This latter approach of the construction of a reduced Evans function for eigenvalue prob-
lems is the one that we shall adopt below.

2.2. Modulated waves. Hopf bifurcations from rigidly propagating travelling waves lead
to modulated waves umtw(x − ct, ωt) for some temporal frequency ω = ωmtw and an average
speed of propagation c = cmtw, where the profile umtw(ξ, τ) is 2π-periodic in its second ar-
gument. In particular, umtw(ξ, τ) is a periodic orbit with period 2π of the reaction-diffusion
system (2.1) in a comoving frame:

ωuτ = Duξξ + cuξ + f(u).(2.11)

As in the previous section, we assume that umtw(ξ, τ) converges to two asymptotically stable
spatially homogeneous equilibria u± of (2.1) as ξ → ±∞, uniformly in τ . In other words, we
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require umtw(ξ, ·) → u± as ξ → ±∞. We shall see later that this convergence is necessarily
exponential.

To analyze robustness and stability of modulated waves, we consider the linearized period
map Φmtw that maps initial data u(·, 0) to the solution u(·, 2π) at time τ = 2π of

ωuτ = Duξξ + cuξ + f ′(umtw(ξ, τ))u.(2.12)

The operator Φmtw−1 is Fredholm with index zero when posed on L2(R,Rn). Note that ρ = 1
is an eigenvalue of Φmtw with geometric multiplicity equal to at least two since both ∂ξumtw and
∂τumtw contribute one dimension each to the eigenspace. Using Lyapunov–Schmidt reduction
and eliminating the space and time translational symmetries, we see that modulated waves
are robust provided ρ = 1 has algebraic multiplicity two.

Alternatively, we may investigate modulated waves by casting (2.12) as the dynamical
system

uξ = v,(2.13)

vξ = D−1[ω∂τu− cv − f(u)]

in the ξ-variable. Modulated waves satisfy (2.13), which we can view as an abstract differential
equation

u′ = F(u; c, ω)(2.14)

on the phase space Y = H1/2(S1,Rn) × L2(S1,Rn) of 2π-periodic functions. Note that the
initial-value problem associated with (2.14) is ill-posed as can be readily seen by solving it
using Fourier series for f ≡ 0 and c = 0. Despite this, we proved in [49] that the stable and
unstable manifolds of the equilibria (u+, 0) and (u−, 0) can be constructed for (2.14) near
the modulated-wave solution umtw = (umtw, ∂ξumtw). In this framework, robustness is again
equivalent to the transverse crossing of the extended stable and unstable manifolds

T(umtw,cmtw,ωmtw)W
cu
ext(u−) + T(umtw,cmtw,ωmtw)W

cs
ext(u+) = Y × R

2

in the two-dimensional parameter (c, ω). As before, this is equivalent [49] to the statement
that

dim [TumtwW
u(u−) ∩ TumtwW

s(u+)] = 2,(2.15)

where the intersection is spanned by ∂ξumtw and ∂τumtw, together with the requirement that

det (Mij)i=1,2, j=c,ω(2.16)

= det

(∫ ∞

−∞
〈ψi(ξ), ∂jF(umtw(ξ); cmtw, ωmtw)〉Y dξ

)
i=1,2, j=c,ω

�= 0,

where ψi are the two linearly independent bounded solutions of the adjoint variational equa-
tion

uξ =
[
f ′(umtw(ξ, τ))∗ + ωmtw∂τ

]
D−1v,(2.17)

vξ = −u+ cmtwD
−1v.
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To elucidate the relation between the analytical and the geometric approaches outlined above,
consider the eigenvalue problem Φmtwu = ρu for the linear period map Φmtw which is equiva-
lent to the equation

uξ = v,(2.18)

vξ = D−1[ωmtw∂τu− cmtwv − f ′(umtw(ξ, τ))u+ λu]

on Y . Here, we have used the Floquet ansatz (u, v) 	→ eλt(u, v), where λ is the Floquet
exponent and ρ = exp(2πλ/ωmtw) the associated Floquet multiplier which corresponds to
an eigenvalue of Φmtw. We can now construct stable and unstable subspaces for (2.18) that
depend analytically on λ for λ close to zero [49]. Both subspaces are infinite-dimensional,
whence it is not obvious how to construct an Evans function using determinants as in the case
of travelling waves.

One way is to employ Galerkin approximations and to replace f ′(umtw) by Pmf
′(umtw),

where Pm is the orthogonal projection in L2 onto the first m temporal Fourier modes. Fol-
lowing [49], it is not difficult to see that roots of the approximate Evans functions that are
defined for the 2mn-dimensional Fourier approximation converge with multiplicity as m→ ∞.
In particular, for m � 1, winding-number calculations for the complex-analytic approximate
Evans function give the correct number of eigenvalues for the full problem (2.18) on open
bounded regions of the complex plane that do not intersect the absolute spectrum [47].

If we are only interested in computing roots locally, we can proceed as in the previous
section and use the injection maps ι(λ) and ι0(λ) that we defined in (2.9) and (2.10). The
results in [49] imply in particular that the injection maps are again Fredholm with index zero.
Using Lyapunov–Schmidt reduction, we see that eigenvalues can be computed locally as roots
of a reduced determinant E0(λ), which we may refer to as the reduced Evans function. For
modulated waves, we then have E0(0) = E ′

0(0) = 0 and E ′′
0 (0) �= 0 provided both (2.15) and

(2.16) are satisfied.

3. Wave trains, group velocities, and spatial dynamics. We are interested in defects that
are spatially asymptotic to wave trains instead of to homogeneous steady states. In contrast
to the exponentially stable homogeneous equilibria, wave trains always have a neutral mode,
associated with their phase, and a resulting group velocity.

When interpreted in terms of spatial-dynamical systems, defects correspond to heteroclinic
orbits of the modulated-wave equation (2.13) that connect two periodic orbits instead of two
hyperbolic equilibria. The asymptotic periodic orbits have again a neutral direction. We will
prove in this section that, after eliminating the neutral eigenvalue, the unstable dimension,
and therefore the Fredholm index of the injection maps ι and ι0 that we defined in the previous
section, depends only on whether the group velocity of the wave train is larger or smaller than
the speed of the defect. This result therefore allows us to relate group velocities of wave trains
and Morse indices of the spatial-dynamical system.

We refer to [53, 45, 11] for more details and references concerning the material in this
section.

3.1. Existence and stability of wave trains. We assume that, for some nonzero temporal
frequency ω0 and a certain spatial wavenumber k0, there exists a nonconstant wave-train solu-
tion u(x, t) = uwt(k0x−ω0t) of (1.1), where uwt(φ) is 2π-periodic in its argument. Throughout
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this section, we focus on the case k0 �= 0 and discuss the somewhat simpler case k0 = 0 in
section 3.3 below.

Substituting the ansatz for u(x, t) into (1.1), we see that uwt(φ) must be a 2π-periodic
solution of the ODE

k2
0D∂φφu+ ω0∂φu+ f(u) = 0.(3.1)

Linearizing this equation about uwt, we obtain the linear operator Lwt,

Lwt := k2
0D∂φφ + ω0∂φ + f ′(uwt(φ)),(3.2)

which defines a closed operator on L2(0, 2π) with domain H2
per(0, 2π).

Hypothesis 3.1. The origin λ = 0 is algebraically simple as an eigenvalue of Lwt on
L2(0, 2π) with eigenfunction ∂φuwt.

Spectral stability of the wave train uwt on R is determined as follows. A complex number λ̌
is in the spectrum of Lwt considered as a closed operator on L2(R,Cn) with domain H2(R,Cn)
if and only if there are a ν ∈ iR and a 2π-periodic function w(φ) such that Lwtu = λ̌u for
x ∈ R, where

u(φ) = eνφ/k0w(φ).(3.3)

Note that the resulting equation for w is

λ̌w = D [k0∂φ + ν]2w + cp [k0∂φ + ν]w + f ′(uwt(φ))w,(3.4)

where cp = ω0/k0 is the phase speed of the wave trains. Hypothesis 3.1 implies that there is
an analytic function λlin(ν) with λlin(0) = 0 such that λ̌ close to zero is in the spectrum if
and only if λ̌ = λlin(ν) for some ν ∈ iR close to zero.

Hypothesis 3.2. The linear dispersion relation is dissipative so that d‖ := λ′′lin(0) > 0.
Furthermore, the spectrum of Lwt on L2(R,Cn) lies in the open left half-plane except for the
spectrum near λ̌ = 0, which is captured by the linear dispersion relation λ̌ = λlin(ν) with
ν ∈ iR close to zero.

The coefficient d‖ measures the effective diffusion rate of perturbations in the direction
of propagation of the wave train (see (1.19)). Planar wave trains in x ∈ R

2 have an addi-
tional diffusion coefficient d⊥ that measures diffusive decay of perturbations transverse to the
direction of propagation.

Hypothesis 3.1 implies that there exists a family uwt(kx−ωt; k) of wave trains, defined for
k close to k0, which are stable and whose frequency is given by a smooth nonlinear dispersion
relation ω = ωnl(k) with ωnl(k0) = ω0.

Hypothesis 3.3. We assume that the nonlinear dispersion relation is genuinely nonlinear,
which means that ω′′

nl(k0) �= 0.
We denote the phase and group velocities by

cp =
ωnl(k)

k
, cg =

dωnl(k)

dk
.(3.5)

Using these definitions, it turns out [53, 11] that the Taylor series of the linear dispersion
relation λlin(ν) at ν = 0 is given by

λlin(ν) = [cp − cg] ν + d‖ν2 + O(ν3).(3.6)
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3.2. Spectra of wave trains in different frames. We discuss the dependence of the linear
dispersion relation on the frame in which it is computed. This issue will play a crucial role
below. Consider the reaction-diffusion equation (1.1) in a frame moving with an arbitrary,
but fixed, speed cd. In the variable ξ = x− cdt, we get

φ = k0x− ω0t = k0ξ − (ω0 − k0cd)t.

Thus, we set ωd = ω0 − k0cd and define τ = ωdt. In the (ξ, τ) coordinates, (1.1) becomes

ωduτ = Duξξ + cduξ + f(u),(3.7)

and the wave trains are time-periodic solutions u(ξ, τ) = uwt(k0ξ − τ) with period 2π in τ .
Following section 2.2, we linearize the period map of (3.7) about the wave train so that

Φwt : u(ξ, 0) 	−→ u(ξ, 2π)

is the solution map of the linear equation

ωduτ = Duξξ + cduξ + f ′(uwt(k0ξ − τ))u.

Note that the operator Φwt is not Fredholm on L2(R,Cn). Its spectrum can be computed as
follows [45]. A nonzero number ρ ∈ C is in the spectrum of Φwt if and only if the linearized
eigenvalue problem

λu = Duξξ + cduξ − ωduτ + f ′(uwt(k0ξ − τ))u(3.8)

has a bounded nonzero solution u(ξ, τ) that is 2π-periodic in τ , where the Floquet multiplier
ρ and the Floquet exponent λ are related via ρ = exp(2πλ/ωd). These solutions can be
calculated using the Floquet ansatz

u(ξ, τ) = eνξ w(k0ξ − τ),(3.9)

where w(φ) is 2π-periodic and ν ∈ iR. Upon substituting this ansatz into (3.8), we see after
some calculations that w needs to satisfy the equation

[λ+ (cp − cd)ν]w = D [k0∂φ + ν]2w + cp [k0∂φ + ν]w + f ′(uwt(φ))w,(3.10)

where cp = ω0/k0 is the phase speed of the wave trains.
Comparing (3.10) with (3.4), we see that λ̌ is in the spectrum of the wave trains, computed

in the frame moving with the phase speed cp, if and only if

λ = λ̌+ (cd − cp)ν(3.11)

is a Floquet exponent of Φwt, computed in a frame moving with speed cd, where ν ∈ iR is
the associated spatial Floquet exponent. We denote by Σwt the set of all Floquet exponents
λ of Φwt.

In particular, it follows from (3.6) that λ close to zero is in the Floquet spectrum of Φwt

on L2(R,Cn), computed in the frame moving with speed cd, if and only if

λ = λlin(ν) + (cd − cp)ν = [cd − cg] ν + d‖ν2 + O(ν3)(3.12)

for some ν ∈ iR close to zero. Note that cg − cd represents the relative group velocity, i.e., the
group velocity of the wave trains measured in the frame that moves with speed cd.
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3.3. Spatially homogeneous oscillations. In this section, we account for the differences
that occur when the wavenumber of the wave trains vanishes. In other words, we consider
spatially homogeneous oscillations u(x, t) = uwt(−ω0t), where ω0 �= 0 and u′wt(φ) is not the
zero function.

The spectrum of the period map Φwt associated with the spatially homogeneous oscilla-
tions can be computed easily. Indeed, Fourier transform in space reduces the time-periodic
linearized parabolic equation

ωduτ = Duξξ + cduξ + f ′(uwt(−τ))u(3.13)

to the collection

ωdûτ = ν2Dû+ cdνû+ f ′(uwt(−τ))û(3.14)

of ODEs for purely imaginary Fourier exponents ν = iγ with γ ∈ R. Note that ωd = ω0 since
k0 = 0. We denote by ρ = exp(2πλ/ωd) the complex temporal Floquet multipliers of the
parabolic equation (3.13).

First, we need to replace Hypothesis 3.1 by the assumption that ρ = 0 is an algebraically
simple multiplier for ν = 0 and cd = 0. This allows us to continue the Floquet multiplier ρ as
a smooth function ρ = ρ(ν) for any ν close to zero. The resulting dispersion relation for the
temporal Floquet exponents is denoted by λ(ν), where λ(0) = 0. When cd = 0, ν enters only
at quadratic order so that

λ = d‖ν2 + O(ν4).

Applying Fenichel’s singular perturbation theory [16] to (3.1), it is straightforward to see
that the spatially homogeneous oscillations are accompanied by a family of wave trains for
wavenumbers k close to zero,5 where wavenumber and frequency are related via a smooth
nonlinear dispersion relation ωnl(k).

Next, we replace Hypothesis 3.2 by the assumption that d‖ > 0 and that the curve λ(ν),
with ν close to the origin, captures all temporal Floquet exponents of the collection of ODEs
(3.14) in the closed right half-plane Reλ ≥ 0. Last, we assume that Hypothesis 3.3 is met
also when k0 = 0. Inspecting the boundary-value problem

λû = Dν2û+ cdνû+ f ′(uwt(−τ))û, û(0) = û(2π),(3.15)

for the temporal Floquet exponents λ, we see immediately that the dispersion relation for
cd �= 0 is related to the dispersion relation for cd = 0 via

λ = λlin(ν) + cdν = cdν + d‖ν2 + O(ν3),

which is the equivalent to (3.12) after formally setting cg = 0.

5In passing, we remark that we are not aware of a short direct proof of this fact that does not use Fenichel’s
theorem. Ginzburg–Landau approximations of the dynamics near homogeneous oscillations [56] capture waves
with long wavelength but are, unfortunately, only valid over finite time intervals.
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3.4. Spatial dynamics and relative Morse indices. We explore the implications of the
results reviewed in the previous sections for the spatial-dynamical system associated with
(3.7). Thus, we write (3.7) as

uξ = v,(3.16)

vξ = D−1[ωd∂τu− cdv − f(u)],

where u = (u, v) ∈ Y = H1/2(S1,Rn)×L2(S1,Rn). One of the key features of (3.16) that we
shall exploit over and over again is its equivariance with respect to the S1-symmetry

Γθ : Y −→ Y, (u, v)(τ) 	−→ (u, v)(τ − θ), θ ∈ S1,(3.17)

that is induced by the temporal time shift. Note that the wave trains uwt(kξ − τ ; k) of (1.1)
correspond to periodic orbits

uwt(ξ) = (uwt(kξ − ·; k), k∂φuwt(kξ − ·; k))

of (3.16) with period 2π/k which are, in fact, relative equilibria with respect to the temporal
time-shift symmetry. The eigenvalue problem (3.8) becomes

uξ = v,(3.18)

vξ = D−1[ωd∂τu− cdv − f ′(uwt(kξ − τ ; k))u+ λu].

For each fixed value of λ, we say that ν is a spatial Floquet exponent of (3.18) if there is a
2π-periodic function w(φ) with values in Y so that u(ξ) = eνξw(kξ) is a solution of (3.18).
In fact, w(kξ) will be of the form [w(kξ)](τ) = w̌(kξ − τ), where the first component of
w̌ satisfies (3.10). Note that the spatial Floquet exponents ν are not unique, so we should
restrict their imaginary parts to 0 ≤ Im ν < k.

Spatial Floquet theory [34, 49] implies the following facts. For each fixed λ, there are
projections P j

wt(ξ;λ) ∈ L(Y ), labeled by j = c, s,u, with the following properties. The
projections are 2π/k-periodic and strongly continuous in ξ, and their sum is the identity. The
ranges of the stable and unstable projections P s

wt(ξ0;λ) and P u
wt(ξ0;λ) are infinite-dimensional

and consist of all initial data at ξ = ξ0 of solutions to (3.18) that decay exponentially for ξ → ∞
and ξ → −∞, respectively. The range of the center projection P c

wt(ξ0;λ) is finite-dimensional,
and, for each initial value in Rg(P c

wt(ξ0;λ)), the corresponding solution to (3.18) exists for
ξ ∈ R and grows at most algebraically in ξ as ξ → ±∞. The ranges of the projections
P j

wt(ξ;λ) can be obtained by taking the closure of the eigenfunctions w(kξ) ∈ Y , together
with the associated generalized eigenfunctions if these exist, of all spatial Floquet exponents
ν with Re ν = 0 for j = c, Re ν > 0 for j = u, and Re ν < 0 for j = s.

The center projection P c
wt(ξ;λ) is nonzero if and only if λ is a temporal Floquet exponent

of Φwt. In particular, P c
wt(ξ;λ) = 0 for all λ with Reλ > 0 since |ρ| > 1 belongs to the resolvent

set of Φwt. In this case, the remaining projections P s
wt(ξ;λ) and P u

wt(ξ;λ) are analytic in λ. We
are interested in counting the dimension of Rg(P u

wt(ξ;λ)) by comparing it to Rg(P u
wt(0;λ∗)),

where λ∗ is fixed so that Reλ∗ � 1 is positive.
Definition 3.4. The relative Morse index iwt(λ) is defined to be the Fredholm index of

P u
wt(ξ;λ) : Rg(P u

wt(0;λ∗)) −→ Rg(P u
wt(ξ;λ)).(3.19)
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cg < cd cg = cd cg > cd

2

Figure 3.1. The spatial Floquet spectrum of wave trains at λ = 0.

We proved in [49] that the relative Morse index is well defined for all λ that are not
temporal Floquet exponents of Φwt. Furthermore, it does not depend on ξ and on the choice
of λ∗ (as long as Reλ∗ > 0).

Hence, the relative Morse index iwt(λ) is constant on each connected component of C\Σwt,
which corresponds to the resolvent set of Φwt. Note that we have iwt(λ) = 0 for all λ in the
connected component of C \ Σwt that contains the open right half-plane in C. To compute
Morse indices, we will use the following straightforward bordering lemma whose proof we shall
omit.

Lemma 3.5. Suppose that X and Y are Banach spaces and that A : X → Y is a Fredholm
operator with index i(A). The operator

S =

(
A B
C D

)
: X × R

p −→ Y × R
q

is then Fredholm with index i(S) = i(A) + p− q provided B, C, and D are bounded and linear.
The following lemma predicts how the relative Morse index iwt(λ) changes if we vary λ

near λ = 0 (see Figure 3.1 for an illustration).
Lemma 3.6. Assume that the hypotheses stated in section 3.1 are met. The spatial-dynam-

ical system (3.18) has a geometrically simple spatial Floquet exponent ν = 0 for λ = 0. The
Floquet exponent ν = 0 is simple if cd �= cg, while it has algebraic multiplicity two if cd = cg.
If cd �= cg, then (3.18) has a simple spatial Floquet exponent ν = ν(λ) for all λ close to zero
and

dν

dλ

∣∣∣
λ=0

=
1

cd − cg
.(3.20)

For λ < 0 close to zero, the relative Morse index iwt(λ) is therefore +1 if cg > cd and −1 if
cg < cd.

Proof. The statement follows immediately from (3.12), the Cauchy–Riemann equations,
and the bordering Lemma 3.5.

4. Spectral properties of defects. We now turn to elementary defects ud(ξ, τ) that satisfy

ωduτ = Duξξ + cduξ + f(u).(4.1)

We are interested in the spectrum of the linear period map

Φd : u(ξ, 0) 	−→ u(ξ, 2π)

associated with the linearization

ωduτ = Duξξ + cduξ + f ′(ud(ξ, τ))u
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of (4.1) about the defect ud(ξ, τ). We denote by λ the Floquet exponents of Φd and by
ρ = exp(2πλ/ωd) its Floquet multipliers, i.e., elements in its spectrum.

We adopt a dynamical-systems point-of-view and write (4.1) as the modulated-wave equa-
tion

uξ = v,(4.2)

vξ = D−1[ωd∂τu− cdv − f(u)].

We write u = (u, v) and consider (4.2) on the space Y = H1/2(S1,Rn)×L2(S1,Rn). We shall
also use the space Y 1 = H1(S1,Rn) ×H1/2(S1,Rn). We say that u(ξ) is a solution of (4.2)
on an interval J ⊂ R if u is contained in L2(J, Y 1) ∩H1(J, Y ) and it satisfies (4.2) in Y for
all ξ ∈ J . Definition 1.1 implies that

ud(ξ) = (ud(ξ, ·), ∂ξud(ξ, ·))

satisfies (4.2) and that ud(ξ, ·)−uwt(k±ξ+ θ±(ξ)−·; k±) converges to zero in Y 1 as ξ → ±∞.
Throughout this section, we denote by Σ±

wt the set of all temporal Floquet exponents
λ of the asymptotic wave trains with wavenumber k±, computed in the frame moving with
speed cd.

4.1. Exponential dichotomies. We begin by analyzing the linear system

uξ = v,(4.3)

vξ = D−1[ωd∂τu− cdv − f ′(ud(ξ, ·))u+ λu],

where the parameter λ represents potential temporal Floquet exponents of Φd.
Given one of the sets J = R

+, J = R
−, or J = R, we say that (4.3) has an expo-

nential dichotomy on J if there exist strongly continuous families {Φs(ξ, ζ)}ξ≥ζ, ξ,ζ∈J and
{Φu(ξ, ζ)}ξ≤ζ, ξ,ζ∈J of operators in L(Y ) as well as positive constants C and κ such that

(i) Φj(ξ, σ)Φj(σ, ζ) = Φj(ξ, ζ) for j = s,u and Φs(ξ, ξ) + Φu(ξ, ξ) = 1,
(ii) ‖Φs(ξ, ζ)‖ + ‖Φu(ζ, ξ)‖ ≤ Ce−κ|ξ−ζ|,
(iii) Φs(ξ, ζ)u0 and Φu(ξ, ζ)u0 satisfy (4.3) for ξ > ζ and ξ < ζ, respectively, for each

u0 ∈ Y provided ξ, ζ ∈ J .
Thus, if a dichotomy6 exists, then the operators P j(ξ) := Φj(ξ, ξ) with j = s,u are

complementary projections in Y . We denote their ranges at ξ = 0 by Es(λ) and Eu(λ), where
Es(λ) ⊕ Eu(λ) = Y .

Corollary A.2 in Appendix A.1 states that (4.3) has an exponential dichotomy on J = R
±

if and only if the asymptotic equation

uξ = v,(4.4)

vξ = D−1[ωd∂τu− cdv − f ′(uwt(k±ξ − ·; k±))u+ λu]

has an exponential dichotomy on R. Furthermore, the projections P j
wt,±(ξ) of the asymptotic

equation (4.4) and those of the linearization (4.3) about the defect differ only by a compact
operator.

6The dichotomies and projections will depend on λ. We will suppress this dependence in our notation.
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Thus, it remains to find out when the asymptotic equation has an exponential dichotomy
on R. The criterion in [34] for the existence of dichotomies to (4.4) is simply that it does
not have purely imaginary Floquet exponents ν ∈ iR, i.e., solutions of the form u(ξ) =
exp(νξ)w(kξ) for some 2π-periodic function w. Using the results reviewed in section 3, we
can therefore conclude that (4.4) has an exponential dichotomy on R precisely when λ /∈ Σ±

wt.
Last, we discuss what happens if the asymptotic equation does not have an exponential

dichotomy. Since the Floquet multipliers of the asymptotic equation form a discrete set and
accumulate at the origin [34], there are at most a finite number of them on the unit circle for
any given λ. The idea is then to seek solutions to (4.3) of the form

u(ξ) = eηξǔ(ξ)(4.5)

for a small nonzero weight η so that ǔ(ξ) satisfies the equation

ǔξ = −ηǔ+ v̌,(4.6)

v̌ξ = −ηv̌ +D−1[ωd∂τ ǔ− cdv̌ − f ′(ud(ξ, τ))ǔ+ λǔ].

Suppose now that at least one spatial Floquet exponent ν = iγ of (4.3) lies on the imaginary
axis. A small exponential weight η �= 0 will move this Floquet multiplier off the imaginary
axis. Exploiting the conjugacy (4.5) between solutions to (4.6) and (4.3), we can construct
center-stable dichotomies Φcs(ξ, ζ) and complementary strong-unstable dichotomies Φuu(ξ, ζ)
for (4.3) by using the stable and unstable dichotomies of (4.6) for sufficiently small but nonzero
weights η > 0. Analogously, upon using η < 0 close to zero, we find center-unstable and
strong-stable dichotomies, Φcu(ξ, ζ) and Φss(ξ, ζ), respectively, for (4.3). We can use these
dichotomies to define a center projection

Rg(Φc(ξ, ξ)) := Rg(Φcs(ξ, ξ)) ∩ Rg(Φcu(ξ, ξ)),

N(Φc(ξ, ξ)) := N(Φcs(ξ, ξ)) + N(Φcu(ξ, ξ))

and a corresponding center evolution Φc(ξ, ζ) for all ξ, η ∈ J . Since the unstable subspaces
for J = R

+ are arbitrary at ξ = 0 [39], we may also arrange that

Φcu(ξ, ζ) = Φc(ξ, ζ) + Φuu(ξ, ζ), Φcs(ξ, ζ) = Φc(ξ, ζ) + Φss(ξ, ζ).

We use subscripts ± to distinguish the exponential dichotomies on R
+ and on R

−.

4.2. Fredholm indices. Suppose that λ is not a temporal Floquet exponent of either one
of the asymptotic wave trains, i.e., λ /∈ Σ−

wt ∪ Σ+
wt. The discussion in the preceding section

shows that (4.3) has exponential dichotomies on both R
+ and R

−. We denote by Es
+(λ) the

stable subspace at ξ = 0 of the dichotomy on R
+ and by Eu−(λ) the unstable subspace at

ξ = 0 of the dichotomy on R
−. Thus, we conclude that there exists a bounded solution to the

linear equation (4.3) if and only if Eu−(λ) and Es
+(λ) intersect nontrivially.

For each λ /∈ Σ−
wt ∪ Σ+

wt, we therefore define the injection map

ι(λ) : Eu
−(λ) × Es

+(λ) −→ Y, (u−,u+) 	−→ u− − u+.



DEFECTS IN OSCILLATORY MEDIA 25

Since the evolutions Φj
± with j = s,u can be chosen to depend analytically on λ [49], the

injection map ι is analytic in λ. Whenever ι(λ∗) is Fredholm of index zero with a nontrivial
null space, we can use Lyapunov–Schmidt reduction to reduce the equation ι(λ) = 0 in a
neighborhood of λ∗ to an equation ιred(λ) = 0, where

ιred(λ) : N(ι(λ∗)) −→ Rg(ι(λ∗))⊥

for λ close to λ∗. Nontrivial intersections are then given by zeros of the reduced Evans function

E(λ) = det(ιred(λ)).

Recall that Floquet exponents λ and Floquet multipliers ρ of the linear period map Φd are
related via ρ = exp(2πλ/ωd). We also denote by i(A) the index of a Fredholm operator A.

Lemma 4.1. The linear operator Φd − ρ on L2(R,Cn) is Fredholm if and only if λ /∈
Σ−

wt ∪ Σ+
wt. Furthermore, if λ /∈ Σ−

wt ∪ Σ+
wt, then the Fredholm index of Φd − ρ on L2(R,Cn)

is given by

i(Φd − ρ) = i(ι(λ)) = i−wt(λ) − i+wt(λ),

where i±wt(λ) are the relative Morse indices of the asymptotic wave trains defined in section 3.4.
Last, if the Fredholm index is zero, then roots λ of the reduced Evans function E(λ) correspond
to isolated eigenvalues ρ of Φd, and the order of a root λ is equal to the algebraic multiplicity
of the corresponding Floquet multiplier ρ of Φd.

Proof. The relation between properties of the linearized period map Φd and the bundles
Es

+(λ) and Eu−(λ) was shown in [49, Remark 2.5 and Theorem 2.6]. The fact that the order of
roots of the reduced Evans function coincides with the algebraic multiplicity of the associated
Floquet multiplier is a straightforward adaptation of the corresponding facts for eigenvalue
problems of travelling waves.

Since we assumed that the wave trains are spectrally stable, we know that Reλ > 0 lies
in the resolvent set of Φd (in the Floquet-exponent space). This fact allows us to compute
the Fredholm indices of the map

ιd(λ) : Ecu
− (λ) × Ecs

+ (λ) −→ Y, (u−,u+) 	−→ u− − u+

for each of the four defect classes for λ close to zero, where we set Ecu− (λ) := Rg(Φcu− (0, 0))
and Ecs

+ (λ) := Rg(Φcs
+(0, 0)). Note that, by using small exponential weights as outlined in the

preceding section, we can choose the dichotomies Φcu− and Φcs
+ so that they depend analytically

on λ for λ close to zero [49]. We then have the following result.
Lemma 4.2. The Fredholm index i of ιd(0) is equal to

i = 2 for sinks and contact defects,

i = 1 for transmission defects,

i = 0 for sources.
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Proof. First, the Fredholm index of ιd(0) is given by the difference of the Morse indices
of the projections P cu

wt,−(0) and P cs
wt,+(0) associated with the asymptotic wave trains. Indeed,

we can apply Lemma 4.1 to the equation

ǔξ = −η̌(ξ)ǔ+ v̌,

v̌ξ = −η̌(ξ)v̌ +D−1[ωd∂τ ǔ− cdv̌ − f ′(ud(ξ, τ))ǔ+ λǔ],

where η̌(ξ) = −η sign ξ for some small η > 0. It therefore remains to compute the Morse
indices.

For contact defects, the center subspace is two-dimensional, and the two spatial Floquet
exponents ν1,2 are determined by (3.12) with cd = cg so that ν2

j = λ/d‖ + O(|λ|3/2), where
d‖ > 0 by Hypothesis 3.2. In particular, ν1 and ν2 have opposite real parts for λ > 0. At
λ = 0, the center-stable subspace Ecs

wt,+ and the center-unstable subspace Ecu
wt,− are therefore

both augmented by one-dimensional subspaces compared with the subspaces in the Fredholm
index zero regime. Invoking the bordering Lemma 3.5 shows that the index of ιd is two.

For the other defects, the center subspace is one-dimensional. To illustrate the idea, we
consider the center-stable subspace Ecs

wt,+ when c+g < cd, i.e., when transport occurs toward
the defect. Lemma 3.6 shows that the real part of the critical Floquet exponent ν is positive
for λ > 0, and the center subspace continues therefore as part of the center-stable subspace so
that Ecs

wt,+(λ) = Ec
wt,+(λ) ⊕ Es

wt,+(λ). The same argument proves that Ecs
wt,+(λ) = Es

wt,+(λ)
whenever c+g > cd so that transport occurs away from the defect. The analogous statements for
Ecu

wt,− show that the subspace Eu
wt,− is again augmented by a one-dimensional subspace when

the transport is toward the defect so that c−g > cd. Invoking the bordering Lemma 3.5, it is
now straightforward to compute the Fredholm indices of ιd for sources, sinks, and transmission
defects.

4.3. Spectral stability of defects. We conclude this exposition of the linear theory by
commenting on the effects of exponential weights on the spectra of defects. The discussion of
weights in section 4.1 together with Lemma 4.1 can be used to infer useful properties of the
spectra of the linearized period map in the exponentially weighted spaces

L2
η−,η+

=
{
u ∈ L2

loc; ‖u‖L2
η−,η+

<∞
}
,

‖u‖2
L2
η−,η+

=

∫
R−

|u(ξ)eη−ξ|2 dξ +

∫
R+

|u(ξ)eη+ξ|2 dξ.

Indeed, the linearized period map Φd−ρ is Fredholm on L2
η−,η+

precisely if there are no spatial
Floquet exponents ν± of the asymptotic wave trains uwt,± for which Re ν± = −η±. Invoking
(3.12),

λ =
[
cd − c±g

]
ν + d‖ν2 + O(ν3)

with d‖ > 0, we see that the critical dispersion curve λ(ν) moves into the left half-plane
provided the weights η± satisfy ±η± > 0 (thus enforcing localization of u(ξ)) when transport
occurs toward the defect, whereas the weights η± have to satisfy ±η± < 0 (thus allowing
exponential growth) when transport is away from the defect. In formulas, we need

sign[cd − c±g ] = sign Re ν �= sign[−η±]
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to ensure that the Floquet spectrum lies in Reλ < 0, which is equivalent to choosing η± such
that

sign η± = sign[cd − c±g ].

In summary, we have proved the following result.
Lemma 4.3. The essential Floquet spectrum of the period map, linearized about sinks,

sources, and transmission defects, is contained in the open left half-plane when considered
on L2

η−,η+
for any choice of weights η± close to zero so that

η− < 0 < η+ for sinks with c−g > cd > c+g ,

η−, η+ > 0 for transmission defects with c±g < cd,

η− > 0 > η+ for sources with c−g < cd < c+g .

The essential Floquet spectrum of contact defects intersects the right half-plane in any L2
η−,η+

space with exponential weights η− �= 0 or η+ �= 0.
The next lemma gives lower bounds for the multiplicity of λ = 0 as an isolated eigenvalue

of the linearization Φd about each defect when considered on L2
η−,η+

with η± chosen as in
Lemma 4.3. We also refer to Figure 6.1.

Lemma 4.4. Assume that there is a δ > 0 such that

∂τud(ξ, ·) = −u′
wt(k±ξ − ·) + O(e−δ|ξ|),(4.7)

∂ξud(ξ, ·) = k±u′
wt(k±ξ − ·) + O(e−δ|ξ|)

for |ξ| → ∞. The geometric multiplicity of λ = 0 as an eigenvalue in the point spectrum of
the linearized period map Φd posed on L2

η−,η+
with η± chosen as in Lemma 4.3 is then at least

equal to

0 for sinks,

1 for transmission defects,

2 for sources.

Proof. Any linear combination of ∂τud and ∂ξud satisfies the linearized equation and is
time-periodic with the correct period. We have to check which of these linear combinations
belongs to the space L2

η−,η+
with η± chosen as in Lemma 4.3. For sinks, there is nothing to

prove. For transmission defects with cd > c±g , eigenfunctions need to be exponentially localized
as ξ → ∞. By assumption, (k+∂τ + ∂ξ)ud(ξ, ·) generates a one-dimensional subspace of
solutions that decay exponentially with rate δ at ξ = ∞. For sources, the exponential weights
allow for exponential growth. Thus, any linear combination of ∂τud and ∂ξud contributes to
the null space of Φd.

The following result for contact defects has been proved in [50]. It will not be relevant for
the robustness results in Theorem 1.4, although it is crucial for various dynamical stability
considerations.

Theorem 4.5 (see [50]). Let Ω = {λ ∈ C; |λ| < δ}, where δ > 0 is sufficiently small. We
consider a contact defect and assume that the null space of the map ιd(0) is two-dimensional.
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There exists then an analytic Evans function E(λ), defined for λ ∈ Ω \ R
−, whose roots,

counted with their order, are in 1-1 correspondence with Floquet multipliers exp(2πλ/ωd),
counted with algebraic multiplicity, of the linearization Φd of the period map about a contact
defect. Moreover, E can be extended into λ = 0 as a C1-function of

√
λ, and we have E(0) = 0

and E ′(0) �= 0 so that λ = 0 is a Floquet exponent with algebraic multiplicity one.
Last, we state the following corollary which we shall exploit later. Note that the adjoint

equation associated with (1.10) is given by

ωduτ = Duξξ − cduξ + f ′(ud(ξ, τ))
∗u.(4.8)

We denote its period map by Φad
d .

Corollary 4.6. Assume that ud(ξ, τ) is a transverse source. The null space of the adjoint op-
erator Φad

d −1 on L2(R,Cn) is at least two-dimensional and contains two linearly independent
functions ψc

d(ξ, 0) and ψω
d (ξ, 0) that satisfy∫

R

(
〈ψc

d(ξ, 0), ∂ξud(ξ, 0)〉 〈ψc
d(ξ, 0), ∂τud(ξ, 0)〉

〈ψω
d (ξ, 0), ∂ξud(ξ, 0)〉 〈ψω

d (ξ, 0), ∂τud(ξ, 0)〉

)
dξ =

(
1 0
0 1

)
.

Furthermore, the corresponding solutions ψc
d(ξ, τ) and ψω

d (ξ, τ) of (4.8) decay exponentially
with a uniform rate as ξ → ±∞ for all τ .

Proof. The corollary is a consequence of [49, Lemma 5.1 and section 6] and Lemmas 4.3
and 4.4. Note that these results imply that Φad

d − 1 is bounded and Fredholm with index zero
on L2−η(R,C

n), where η = (η−, η+) is chosen as in Lemma 4.3.

5. Robustness of defects in oscillatory media.

5.1. Invariant manifolds. We begin by investigating the existence of stable and unstable
manifolds for the ill-posed equation (4.2)

uξ = v,

vξ = D−1[ωd∂τu− cdv − f(u)].

Throughout this section, we fix an integer 1 ≤ � < ∞ and use the term smooth to refer to
functions of class C�.

We define the stable manifold of the wave train uwt to be the set of initial conditions u0

for which there exist a solution u(ξ) of (4.2) with u(0) = u0 and a continuous phase function
θ(ξ) such that

‖u(ξ) − uwt(kξ + θ(ξ); k)‖Y → 0

as ξ → ∞. The unstable manifold is defined in the same way with the limit considered as
ξ → −∞. A center manifold Wc is a locally invariant manifold that contains all solutions
which stay in a sufficiently small neighborhood of the orbit uwt(kξ − ·) for all ξ ∈ R. Local
invariance means that, for each u0 ∈ Wc, there exist a constant δ > 0 and a solution u(ξ) ∈
Wc, defined for |ξ| < δ, with u(0) = u0. Similarly, center-stable and center-unstable manifolds
are locally invariant in the forward and backward ξ-directions, respectively, and contain all
solutions that stay in a sufficiently small neighborhood of the wave-train orbit for all ξ ∈ R

+
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and R
−, respectively. The strong-stable manifold of a point uwt(θ) consists of all u0 for which

there is a solution u(ξ) with ‖u(ξ) − uwt(kξ + θ − ·)‖Y → 0 as ξ → ∞. The strong-unstable
manifold is defined analogously using the limit ξ → −∞.

We say that the above manifolds are smooth if they are smooth as manifolds and if the
solutions u(ξ;u0) define smooth local semiflows for ξ ≥ 0 and/or ξ ≤ 0 for initial data
u0 in these manifolds. We say that the center-stable manifold is smoothly fibered over the
center manifold if it is the union of disjoint smooth fibers that intersect the center manifold
transversely, depend continuously on the base point in the center manifold, and are mapped
into each other by the local semiflow. We say that the above manifolds are local if they contain
all solutions with the prescribed behavior whose initial data are close to the defect ud(0) and
its τ -translates. The following result will be proved in Appendix A.1.

Theorem 5.1. Each wave train has smooth local strong-stable, center-stable, center-unstable,
and strong-unstable manifolds that depend smoothly on the parameters c and ω. If cd �= cg,
the center-stable and center-unstable manifolds are smoothly fibered by the union of the strong-
stable and strong-unstable manifolds. The latter manifolds are parametrized by the asymptotic
phase θ of the periodic wave train that the solutions approach. The center-stable (center-
unstable) manifolds can be chosen so large that the given orbit {ud(ξ); ξ ≥ 0} ({ud(ξ);
ξ ≤ 0}) and its τ -translates are contained in their interior. The tangent space of the in-
variant manifolds evaluated at the defect ud(0) coincide with the corresponding ranges Ej

±(0),
with j = ss, cs, s, c,u, cu,uu, of the exponential dichotomies for the linearized equation (4.3)
with λ = 0 that we constructed in section 4.1.

Corollary 5.2. Sinks, sources, and transmission defects have an asymptotic phase. More
precisely, there are constants δ > 0 and θ± ∈ R such that

ud(ξ) = uwt(k±ξ − · + θ±; k±) + O(e−δ|ξ|)

in Y as |ξ| → ∞. The same estimate is true for the derivatives with respect to ξ and τ . In
particular, hypothesis (4.7) in Lemma 4.4 is automatically satisfied for sinks, sources, and
transmission defects.

The following proposition is a reformulation of Lemma 4.2 using Theorem 5.1.
Proposition 5.3. Denote by Ecu− and Ecs

+ the tangent spaces of the center-unstable and the
center-stable manifold at ud(0). The injection map

ι : W cu
− ×W cs

+ −→ Y, (u−,u+) 	−→ u− − u+(5.1)

is Fredholm; i.e., it has continuous derivatives near u− = u+ = ud(0) which are Fredholm.
Furthermore, the Fredholm index of the derivative ι′ is given by

i = 2 if c−g ≥ cd ≥ c+g (sinks and contact defects),

i = 1 if c±g < cd or c±g > cd (transmission defects),

i = 0 if c−g < cd < c+g (sources).

Last, ∂τud(0) and ∂ξud(0) belong to Ecu− ∩ Ecs
+ , and the null space of ι′ is therefore at least

two-dimensional.
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Sinks

Contact
defects

Transmission defects Sources

2

Figure 5.1. Sinks, contact defects, transmission defects (with c±g < cd), and sources correspond to homo-
clinic and heteroclinic orbits of the spatial-dynamical system (4.2). The asymptotic equilibria symbolize periodic
orbits, which in turn correspond to wave trains, after factoring the time-shift symmetry (3.17). The insets show
the spatial spectra of the linearization of (4.2) about the wave trains.

The map ι can be constructed for all (ω, c) close to (ωd, cd). If we view W cs
+ (ω, c) as the

graph of a smooth function Gcs
+ that maps W cs

+ (ωd, cd) into Euu
+ and that depends smoothly

on (ω, c), and if we define in an analogous fashion a function Gcu− , then we can define a
parameter-dependent injection map ιp:

ιp : W cu
− (ωd, cd) ×W cs

+ (ωd, cd) × R × R −→ Y,

(u−,u+, ω, c) 	−→ u− +Gcu
− (u−, ω, c) − u+ −Gcs

+(u+, ω, c).

Our goal is to show the persistence of defects upon varying the asymptotic wavenumbers and,
possibly, external parameters. The geometric intuition that leads to our results is illustrated
in Figure 5.1.

5.2. Sinks, sources, and transmission defects. For sinks, we set

ιsi = ιp(·, ·, ωd, cd) : W cu
− ×W cs

+ −→ Y.(5.2)

For transmission defects with c±g < cd, we fix k+, which, on account of (1.7), implies ω =
ωnl(k+) − ck+. We then define

ιtr : W cu
− ×W cs

+ × R −→ Y, ιtr(u
−,u+, c) := ιp(u

−,u+, ωnl(k+) − ck+, c).(5.3)

Last, for sources, we set

ιso = ιp : W cu
− ×W cs

+ × R × R −→ Y.(5.4)



DEFECTS IN OSCILLATORY MEDIA 31

Lemma 5.4. The maps ιj with j = si, tr, so are Fredholm maps with index i(ι′j) = 2. If ι′j
is onto, then each defect is robust. In particular, sinks occur then as two-parameter families
(parametrized by (k−, k+)), transmission defects as one-parameter families (parametrized by
k+ if c±g < cd), and sources are isolated.

Proof. The index formula follows from the bordering Lemma 3.5. Thus, suppose that
ι′j is onto. For sources, there is then a locally unique root of ιso. For sinks, we can solve
the equation ιsi = 0 for (u−,u+), which lives in a complement of the two-dimensional null
space of ι′si, as a function of (ωd, cd) using the implicit function theorem. The result is a
two-parameter family of sinks parametrized by (ωd, cd). Note that (ωd, cd) depend on the
asymptotic wavenumbers (k−, k+) through (1.7) and (1.8):

(k+, k−) 	−→ (ωd, cd) =

(
ωnl(k−)k+ − ωnl(k+)k−

k+ − k−
,
ωnl(k+) − ωnl(k−)

k+ − k−

)
.

Since the determinant of the derivative of this map is given by

(c+g − cd)(c
−
g − cd)

k+ − k−
�= 0,

we can alternatively parametrize sinks by the asymptotic wavenumbers (k−, k+). Recall here
that we assumed that sinks have k− �= k+. Last, for transmission defects, the same ar-
guments show that they persist as one-parameter families which are parametrized by the
wavenumber k+.

Note that the smooth dependence of ud(0) on parameters implies the smooth dependence
of ud(ξ) on parameters on any finite interval ξ ∈ [−L,L]. For large values of ξ, the defects
select a strong-stable fiber that itself depends smoothly on parameters and on its base point
in a uniform topology, possibly after reparametrizing ξ. We refer to Appendix A.1 for the
existence of these fibers.

We remark that we may also include external parameters, for instance, parameters in the
nonlinearity f or the diffusion matrix D, in the definition of our maps ιj . As a result, the
defects considered in Lemma 5.4 depend smoothly on external parameters provided the maps
ι′j are onto.

The following proposition links spectral properties of transverse defects to the codimension
of the range of ι′j .

Proposition 5.5. For sinks, sources, and transmission defects, the linear operator ι′j with
j = si, tr, so is onto if and only if the defect is transverse, i.e., if and only if the spectrum of
the defect at the origin is minimal.

Proof. We have to show that, under the spectral assumptions for elementary transverse
defects, the map ιj is onto if and only if the critical spectrum is minimal. This then proves
the robustness theorem for sinks, transmission defects, and sources, invoking Lemma 5.4.

Sinks. Suppose that ι′si is onto. Proposition 5.3 and Lemma 5.4 imply that each bounded
solution to (4.3) with λ = 0,

uξ = v,(5.5)

vξ = D−1[ωd∂τu− cdv − f ′(ud(ξ, ·))u],
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is a linear combination of ∂τud and ∂ξud. We claim that Ess
+(0) and Euu− (0) intersect trivially.

Indeed, as a consequence of Corollary 5.2, the linear combinations (k+∂τ + ∂ξ)ud(ξ, ·) and
(k−∂τ + ∂ξ)ud(ξ, ·) are the unique linear combinations that result in exponentially decaying
functions as ξ → ∞ and ξ → −∞, respectively. Since k− �= k+, however, these combinations
do not match, and none of the linear combinations will therefore decay at both ξ = ∞ and
ξ = −∞. This shows that there are no solutions to (5.5) that decay exponentially as |ξ| → ∞,
and the sink is therefore transverse.

Conversely, assume that the dimension of the null space of ι′si is at least three; then there
exists a solution u∗ to (5.5) which is linearly independent of ∂ξud and ∂τud. Since the spatial
Floquet exponent ν = 0 of the equation for the asymptotic wave trains is simple, we may
write the solution u∗ as

u∗(ξ, ·) = a±u′
wt(k±ξ − ·; k±) + O(e−δ|ξ|)

for some δ > 0 as ξ → ±∞. Exploiting the expansion for ud and the fact that k− �= k+, we
find constants c1 and c2 so that

u∗ + c1∂τud + c2∂ξud

decays exponentially as |ξ| → ∞. This shows that the null space of the linearized period map,
considered in L2

η−,η+
with η− > 0 > η+ close to zero, is not trivial.

Sources. Assume that ι′so is onto. The first components of the two bounded, linearly
independent solutions ∂ξud and ∂τud of (5.5) form a two-dimensional subspace in the null
space of the linearized period map Φd considered in L2

η−,η+
with η− < 0 < η+. Since the

null space of ι′so contains all solutions with sufficiently mild exponential growth, the geometric
multiplicity of λ = 0 is equal to two. We need to exclude generalized eigenfunctions. Assume
therefore that ǔ∗ satisfies

ǔ∗(·, 2π) = Φdǔ∗(·, 0) = ǔ∗(·, 0) + (c1∂τ + c2∂ξ)ud(·, 2π).

If we set

u∗(ξ, τ) = ǔ∗(ξ, τ) −
τ

2π
[c1∂τ + c2∂ξ]ud(ξ, τ),

then u∗ = (u∗, ∂ξu∗) is in Y for all ξ and satisfies

uξ = v,(5.6)

vξ = D−1[ωd∂τu− cdv − f ′(ud(ξ, ·))u− (ωd/2π)(c1∂τud(ξ, ·) + c2vd(ξ, ·))],

where ud = (ud, vd). Equation (5.6) is exactly the variational equation in the extended phase
space, where ω and c are considered as additional variables. In particular, this equation in the
extended phase space has a bounded solution that is linearly independent of the derivatives
of the defect with respect to τ and ξ. As a consequence, the null space of ι′so is at least three-
dimensional, and ι′so cannot be onto. This proves that the algebraic multiplicity of λ = 0 is
equal to two.
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Conversely, assume that the algebraic multiplicity of the linearized period map Φd is
two but that ι′so is not onto. By Fredholm theory, either the null space of ∂(u−,u+)ιso has
dimension larger than two or else the ranges of ∂(ω,c)ιso and of ∂(u−,u+)ιso have a nontrivial
intersection. In the first case, we can easily construct additional eigenfunctions and, in the
second case, generalized eigenfunctions of the linearized period map Φd, contradicting our
starting assumption.

Transmission defects. We assume that ι′tr is onto. Arguing as for sources, we conclude
that the geometric multiplicity of λ = 0 is equal to one with the null space of Φd spanned by
(k+∂τ + ∂ξ)ud. We argue by contradiction and assume there is a generalized eigenvector. As
for sources, this assumption gives a solution of

uξ = v,(5.7)

vξ = D−1[ωd∂τu− cdv − f ′(ud(ξ, τ))u− vd(ξ, τ) − k+∂τud(ξ, τ)],

which is bounded as ξ → −∞ and decays exponentially as ξ → ∞. The construction of ιtr
in (5.3) shows that (5.7) is the variational equation associated with ∂cι. Therefore, ι′tr will
have a null space of dimension larger than two, contradicting our assumption. The converse
follows similarly.

5.3. Contact defects. Recall that Ec± is two-dimensional for contact defects. We shall
need the two injection maps

ι+ : W cu
− ×W ss

+ −→ Y, (u−,u+) 	−→ u− − u+,(5.8)

ι− : W uu
− ×W cs

+ −→ Y, (u−,u+) 	−→ u− − u+.

Both maps depend smoothly on additional parameters if any are present. Counting dimen-
sions, the bordering Lemma 3.5 shows that ι± are both Fredholm maps with index zero.

Lemma 5.6. Contact defects occur as robust one-parameter families in the asymptotic
wavenumber k = k± provided both ι′+ and ι′− are onto (and therefore invertible).

Proof. First note that, since ι+ is onto, so is the map ι from (5.1). In particular, via
Lyapunov–Schmidt reduction, the intersection of center-unstable and center-stable manifolds
persists. We claim that the defect lies neither in the strong-stable nor the strong-unstable
manifold. Indeed, if it did, ι+ or ι− would have a nontrivial kernel and could therefore not
be onto. The complement of the strong-stable manifold in the center-stable manifold of the
wave train is an open subset of the center-stable manifold (initially in a neighborhood of the
wave train, but then also in a neighborhood of ud(0) upon using continuity of the evolution
on the center-stable manifold). In particular, the perturbed intersection points in W cs

+ still
belong to the interior of the center-stable manifold. A similar description is true for the
center-unstable manifold which shows persistence for nearby wavenumbers and parameters
upon varying cd = ω′

nl(k) appropriately. Smooth dependence of contact defects on parameters
in a ξ-uniform topology is achieved after an appropriate reparametrization of the spatial time
variable ξ.

Proposition 5.7. The injection maps ι′± are both onto if and only if the minimal-spectrum
assumption holds, i.e., if and only if the contact defect is transverse.

Proof. The null spaces of ι′− and ι′+ consist exactly of eigenfunctions of the linearized period
map Φd in L2

η−,η+
with exponential weights η− = η+ < 0 and η− = η+ > 0, respectively.
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Lemma 5.6 and Proposition 5.7 implicitly show that higher-dimensional intersections of
center-stable and center-unstable manifolds would contribute to the null spaces of ι+ and
ι−. They would, however, typically not contribute an additional root of the extension into
λ = 0 of the Evans function E(λ) of Theorem 4.5. Indeed, we proved in [50] that roots of
the extended Evans function are generated by solutions of the linearized equation that decay
like 1/|ξ|. The additional solutions u∗ of the linearized equation, which correspond to the
additional direction in the intersection of center-stable and center-unstable manifolds, would
have asymptotics of the form u∗ ≈ a±u′

wt as ξ → ±∞. We expect a+ �= a−, and since ∂τud

and ∂ξud have the same asymptotics at ξ = ∞ and at ξ = −∞ (recall that k− = k+ for
contact defects), we cannot make a− = a+ = 0 by adding appropriate linear combinations of
∂τud and ∂ξud.

Similarly, the orbit-flip situation where the contact defect lies in the strong-stable or
the strong-unstable manifold cannot be excluded from considerations of the extended Evans
function that we constructed in [50]. We refer to section 6.4 for some puzzling consequences
of these facts.

5.4. Proof of Theorem 1.4. For transverse sinks, sources, and transmission defects,
Proposition 5.5 shows that we can apply Lemma 5.4 to find locally unique and robust fam-
ilies of defects. On the other hand, the maps ι′j , evaluated along this family, remain onto,
which, using the equivalence proved in Proposition 5.5, shows that the defects in the family
are transverse, i.e., that they satisfy the minimal-spectrum assumption. For contact defects,
the same conclusion is reached by combining Lemma 5.6 and Proposition 5.7.

6. Stability, bifurcations, pinning, and truncation. We collect various consequences of
our results and point out a number of open problems related to the proposed classification of
defects in one-dimensional media.

6.1. Stability. An important feature of transverse defects are the point and essential spec-
tra of the linearized period map. The following theorem summarizes our findings, illustrated
also in Figure 6.1, for the temporal Floquet exponents of Φd.

Theorem 6.1. The following is true for transverse sinks, contact defects, transmission de-
fects, and sources. Choose weights η = (η−, η+) close to zero such that

η− < 0 < η+ for sinks,

η− = η+ = 0 for contact defects,(6.1)

η−, η+ > 0 for transmission defects with c±g < cd,

η− > 0 > η+ for sources.

The Floquet spectra, in a sufficiently small neighborhood of λ = 0, of the period map Φd posed
on L2

η(R,C
n) are as shown in Figure 6.1.

Transverse sinks that have no additional isolated eigenvalues in the closed right half-plane
are nonlinearly asymptotically stable for (1.1) in that perturbations decay in L2

η for weights η

as in (6.1). For transverse sources, the two eigenfunctions of the adjoint operator Φad
d − 1 on

L2−η(R,C
n) are exponentially localized.

Proof. We proved in Lemma 4.3 that the essential Floquet spectrum of sinks, sources,
and transmission defects lies in the left half-plane for the weights chosen in (6.1). For contact
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Figure 6.1. Plotted are the Floquet spectra near λ = 0 of the maps Φd, posed on L2
η(R,C

n), for transverse
sinks, contact defects, transmission defects, and sources with weights η = (η−, η+) as in (6.1). Solid lines
denote the Floquet spectra of the asymptotic wave trains, while the shaded areas correspond to regions where
Φd−ρ is Fredholm with nonzero index i. The bullets label eigenvalues with the attached number indicating their
multiplicity (the algebraic and geometric multiplicities coincide).

L2(R,Cn) L2
η(R,C

n)

1

Figure 6.2. Plotted are the Floquet spectra of contact defects near λ = 0 of the maps Φd on L2(R,Cn) and
L2

η(R,C
n) for nonzero η− = η+ close to zero. The map Φd − ρ is Fredholm with index zero off the solid lines.

defects, there is an additional subtlety: The curve that corresponds to the linear dispersion
relation of the asymptotic wave train has a cusp at λ = 0. Indeed, the dispersion relation in
the frame moving with speed cd is given by (3.12)

λlin(ν) = [cd − cg]ν + d‖ν2 + d3ν
3 + O(ν4),

where the coefficients d‖ and d3 are real. Since we have cd = cg, we obtain

λ(iγ) = −d‖γ2 + id3γ
3 + O(γ4)(6.2)

so that Reλ = [d3 Imλ/d‖]2/3 has a cusp point at the origin as claimed provided d3 �= 0.
Lemmas 3.6 and 4.1 together show that the Fredholm index for sinks and sources jumps

by +1 and −1, respectively, when λ crosses Σ−
wt or Σ+

wt from right to left, while the Fredholm
index of contact and transmission defects is zero to the left of the Floquet spectra Σ−

wt ∪Σ+
wt.

The statements about the algebraic and geometric multiplicity of eigenvalues at λ = 0 follow
at once from Lemma 4.4 and the proof of Proposition 5.5. Theorem 4.5 shows that the Evans
function of transverse contact defects has a simple root at λ = 0.

Nonlinear stability of spectrally stable sinks in L2
η(R,C

n) follows easily since the period
map is a contraction, while the nonlinearity f is well defined and smooth on L2

η(R,C
n) provided

the weights are chosen as in (6.1). We refer to [11, 54] for details. Last, the statement
about the exponential localization of the two adjoint eigenfunctions for sources is simply
Corollary 4.6.

The spectrum of contact defects in L2
η is shown in Figure 6.2. In particular, it is an

immediate consequence of (6.2) that the essential spectrum is always unstable whenever the
rates η− = η+ of the exponential weights are not zero.
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The above theorem implies, in particular, that spectrally stable transverse sinks are non-
linearly asymptotically stable under small exponentially localized perturbations;7 these per-
turbations decay exponentially in time, and we recover the same sink with no shift in its
spatial or phase position since there is no point spectrum in the closed right half-plane.

The nonlinear stability of a specific transmission defect has been proved recently in a
context of small-amplitude background waves [17]. For contact defects, the only related results
we know of are in the context of conservation laws where Howard [25] recently investigated
degenerate shock waves. We are not aware of any nonlinear stability results for sources. We
expect, however, results along the following lines.

Perturbations of transmission defects should relax to a spatio-temporal translate of the
original defect that preserves the relative phase of the wave train whose group velocity is
directed toward the defect. Thus, if c+g < cd, say, then an initial condition u(x, 0) close to the
transmission defect ud(x, 0) evolves toward a shifted transmission defect

u(x, t) −→ ud(x̌− cdť, ť)

as t → ∞, where kx̌− ωť = kx− ωt. This is immediately clear on the linearized level, using
the exponential weights (6.1), and has been proved for the example considered in [17].

Sources, on the other hand, should have a unique position and a unique phase as evidenced
by the fact that the adjoint eigenfunctions are exponentially localized. This implies that
the spectral projection onto the two-dimensional eigenspace consisting of space and time
translations of the defect is well defined in L2

η with weights as in (6.1). Thus, the linear
analysis predicts that the shifts in space x̌− x and time ť− t are uncorrelated.

6.2. Phase matching. Phase matching at defects has recently been discussed quite ex-
tensively in the physics literature [23, 1, 36, 37]. To explain this issue, we fix a continuous
function ϑ(k) and define the phase of a wave train to be its argument

φ[uwt(φ; k)] := φ− ϑ(k)(6.3)

after subtracting the fixed phase shift ϑ(k). Note that it is natural to choose ϑ(k) subject to
ϑ(k) = −ϑ(−k) to account for the reflection symmetry of the reaction-diffusion system (1.1).

Elementary defects ǔd(x, t) with asymptotic phase, i.e., sinks, transmission defects, and
sources, satisfy

ǔd(x, t) − u±wt(k±x− ωnl(k±)t+ θ±; k±) −→ 0

as x → ±∞ for appropriate constant phase corrections θ±. If we wish to measure the phase
mismatch [φ] across the characteristic x− cdt = ξpm for some fixed ξpm ∈ R, we can do so by
defining the two phases

φ±(t) := φ[u±wt(k±x− ωnl(k±)t+ θ±; k±)] = φ[u±wt(k±ξpm − ωdt+ θ±; k±)]

= k±ξpm − ωdt+ θ± − ϑ(k±)

7Nonlinear stability results using weaker polynomial weights have been established in specific examples
[29, 15].
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and then take their difference to get

[φ] := φ+(t) − φ−(t) = [k]ξpm + [θ] − [ϑ],(6.4)

where we use the notation [F ] = F (k+)−F (k−) to denote jumps of functions across the defect.
We call [φ] the phase slip across the defect along the characteristic line x − cdt = ξpm. Note
that the position ξpm along which we measure the phase slip is somewhat arbitrary. We also
emphasize that the definition of the phase slip relies on the assumption that the frequencies of
the asymptotic wave trains coincide when computed in the frame that moves with the speed
cd of the defect.

The phase slip [φ] for transmission defects with k− = k+ is given by [φ] = [θ] = θ+ − θ−
and therefore is independent of the position ξ±. Instead, it depends only on the difference
between the asymptotic phase corrections θ±. For contact defects, we can also define a phase
slip. Contact defects satisfy [11, 50]

ǔd(x, t) − uwt(kx− ωnl(k)t+ θ± + θ̌ log(x− cdt); k) −→ 0

so that their phase slip is again given by [φ] = [θ] since the logarithmic terms cancel.
In summary, sinks and sources have a phase slip [φ] = [k]ξpm + [θ − ϑ] that is periodic

in ξpm with period 2π/[k]. In particular, we can always arrange to obtain the zero phase
slip [φ] = 0 by measuring at the “correct” characteristic line. For contact defects and for
transmission defects with [k] = 0, the phase slip [φ] = [θ] is an intrinsic property of the defect
that, in particular, does not depend on where we measure it.

We may use the phase slip to track the position x = ξpm + cdt of sinks and sources (even
though the phase slip defines the position only in S1 which is a minor complication when
we consider small perturbations of a given defect). A given phase slip [φ] therefore gives a
certain well-defined position x = ξpm + cdt of the defect. We may then compare the position
of an unperturbed defect with the position of the defect after adding a small perturbation.
For sinks, the asymptotic relaxation of perturbations to exactly the same sink guarantees that
the position of the perturbed defect is the same as the position of the unperturbed defect,
whereas we expect shifts of the position for sources.

6.3. Reflection symmetries. The reaction-diffusion system (1.1) respects the reflection
symmetry x 	→ −x in addition to the spatio-temporal translation symmetries. Thus, defects
with speed zero are somewhat distinguished. We therefore set c = 0 in this section so that x
is the spatial variable in the modulated-wave equation (4.2)

ux = v,(6.5)

vx = D−1[ωd∂τu− f(u)].

The reflection symmetry x 	→ −x for (1.1) manifests itself as a reversibility for (6.5). In fact,
exploiting also the time-shift symmetry of (6.5), both

R0 : (u, v)(τ) 	→ (u,−v)(τ) and Rπ : (u, v)(τ) 	→ (u,−v)(τ + π)(6.6)

are reversers that anticommute with the right-hand side of (6.5).
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ωd = ωnl(k∗) ωd > ωnl(k∗)

sink

Figure 6.3. The unfolding of a saddle-node wave train generates a “small-amplitude” sink that connects
two wave trains (the sketch assumes that ω′′

nl(k∗) > 0).

We may now seek symmetric defects to (1.1) which correspond to reversible homoclinic
and heteroclinic orbits of (6.5). Reversible connecting orbits can be found as intersections of
the center-unstable manifold of the asymptotic wave train at x = −∞ with the fixed-point
spaces Fix(R0) = {(u, v); v = 0} or Fix(Rπ) = {(u, v); v(τ) = −v(τ + π)} of the reversers R0

or Rπ, respectively. Note that the resulting defects have k+ = −k−, and therefore c+g = −c−g
since ωnl(−k) = −ωnl(k). In particular, transmission defects cannot be symmetric, since the
group velocities to the left and right can have the same sign only if they both vanish.

Using the map

ιj : W cu
− × Fix(Rj) −→ Y, (u−,u0) 	−→ u− − u0

for j = 0, π, we can again compute its Fredholm index and compare it with robustness
properties of symmetric defects. We obtain that symmetric sinks (with respect to either R0

or Rπ) arise as robust one-parameter families, while symmetric sources and contact defects
are robust and occur for isolated values of the parameter k− (note that c = 0 is required
for symmetric defects). We remark that both Rπ-symmetric sources [38] and Rπ-symmetric
contact defects [58] have been observed in experiments.

6.4. Bifurcations. We address instabilities of defects and transitions between different
defect types. From the spatial-dynamics perspective, this amounts to investigating homoclinic
and heteroclinic bifurcations.

Saddle-node bifurcations of wave trains. As outlined in Example II of section 1.3, stable
sinks with “small” amplitude are created at saddle-node bifurcations of wave trains [26, 11].
Indeed, if we consider the modulated-wave equation near a wave train in the frame that
moves with its group velocity cd = cg, then the wave train has an algebraically double spatial
Floquet exponent ν = 0 (see section 3.4 and Figure 3.1). If we keep the defect speed fixed at
cd = cg(k∗), then the saddle node can be unfolded by varying the frequency ωd near ωnl(k∗),
where k∗ is the wavenumber of the wave train we started with. The vector field on the resulting
two-dimensional center manifold is invariant under the temporal time-shift symmetry and is
given by

φξ = q + O(q2), λ′′lin(0)qξ = ω̌ − ω′′
nl(k)q

2 + O(|ω̌2| + |ω̌q| + |q|3),(6.7)

where (φ, q) correspond roughly to phase and wavenumber, and where ω = ω̌ + ωnl(k∗). To
leading order, we therefore recover the steady-state equation of the Burgers equation (1.19),
which, as discussed in section 1.3, admits stable sinks. We refer to Figure 6.3 for an illustration.
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contact defect transmission defect

sink

Figure 6.4. The saddle-node homoclinic bifurcation in the two-dimensional parameter space.

Large-amplitude sinks arise close to contact defects. If we vary frequency or speed so that
the saddle-node wave train splits into two wave trains, then the saddle-node homoclinic orbit
that corresponds to the contact defect becomes a heteroclinic orbit—in fact, a sink—that
connects the two wave trains (as illustrated in the lower left half of Figure 6.4). It is an
interesting problem to determine whether the resulting sink is stable or not. On account of
Theorem 4.5, the Evans function of the contact defect will have a simple zero at the origin,
while the sink does not have an eigenvalue at λ = 0. Thus, we expect that the sink will have
either a weakly stable or a weakly unstable eigenvalue near zero.8

We remark that the bottom of Figure 6.4 also illustrates that the same wave trains can
accommodate several distinct defects. Indeed, the two wave trains in the bottom plot of
Figure 6.4 are connected by “small-amplitude” and “large-amplitude” sinks.

Folds. Next, we discuss what happens when the minimal-spectrum assumption, which
is equivalent to the transversality condition for center-stable and center-unstable manifolds
in the proof of Theorem 1.4, is violated. In this case, sinks acquire a simple eigenvalue at
λ = 0 in the space L2

η with sign η± = ±1. This degeneracy corresponds to a tangency of
the center-unstable and center-stable manifolds of the wave trains in the modulated-wave
equation (4.2). Thus, if the tangency is quadratic as expected, it will persist along a curve in
(k−, k+)-parameter space. On one side of this curve, there exists a pair of sinks, while there
are no sinks on its other side. It is not hard to prove that the additional critical eigenvalue
near λ = 0 will stabilize one of the two sinks and destabilize the other one. The scenario for
transmission defects and sources is similar since the linearization acquires a Jordan block of
length two. For transmission defects, we then see two defects for k < k∗, say, and none for
k > k∗, while folds for sources occur only when an additional external parameter is present.

Contact defects behave differently. If the center-stable and center-unstable manifolds

8Note added in proof. We have recently shown that this eigenvalue is, in fact, always stable and therefore
lies in the open left half-plane.
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intersect tangentially, we expect again a standard saddle-node bifurcation of contact defects
in the modulated-wave equation that is unfolded by the wavenumber k. Since the asymptotic
wavenumbers are identical, the tangency will, however, not generate a localized eigenfunction
of the linearization. In particular, the Evans function near λ = 0 does not change at all. Thus,
none of the two contact defects will acquire any additional eigenvalues, and both of them will
be spectrally stable! Instead, an unstable root arises for the Evans functions associated with
the maps ι± from (5.8) which have the wrong Morse index. Of course, the two stable contact
defects are not close to each other in the supremum norm, which precludes viewing one of
them as a small perturbation of the other one.

Locking and unlocking via flip bifurcations. Contact defects are also destroyed at values
of k at which the center-unstable manifold intersects the center-stable manifold along the
strong-stable manifold of the asymptotic wave train. The associated homoclinic flip bifurca-
tion has been analyzed in [6] for ODEs, and the resulting bifurcation diagram is shown in
Figure 6.4. We remark that it is straightforward to obtain the same for (4.2) by using expo-
nential dichotomies and foliations of center-stable and center-unstable manifolds. Note that
the contact defect exists for wavenumbers below a critical wavenumber, say, and its speed is
therefore determined solely by the group velocity. Above the critical wavenumber, the defect
changes into a transmission defect whose speed is now determined by a Melnikov integral that
depends on the profile of the defect. Thus, we may refer to this bifurcation as an unlocking
bifurcation at which the speed of the defect unlocks from the group velocity of the underlying
wave trains. We remark that neither the transmission defect nor the contact defect acquires
any additional eigenvalues during this transition. Phenomenologically, the unlocking transi-
tion is preceded by an increasing localization of the defect structure. At the bifurcation point,
the convergence toward the wave trains changes from algebraic to exponential. The unlocked
transmission defect approaches the wave train ahead9 of it at a uniform exponential rate,
whereas the relaxation toward the wave train behind the defect occurs at a weak exponen-
tial rate. A similar phenomenon occurs when transmission defects bifurcate from pulses at
parameter values where the homogeneous background undergoes a Turing instability [44].

A more dramatic unlocking bifurcation occurs if we allow an additional external parameter
µ to vary. It can then happen that both the strong-stable and strong-unstable manifolds of a
saddle-node periodic orbit intersect, which can be interpreted as the simultaneous unlocking
of the contact defect at both end points. The analysis of this bifurcation is very similar to the
one for localized inhomogeneities of wave trains with zero group velocity that we will discuss
in section 6.5. According to the bifurcation diagram shown in Figure 6.5, we find contact
defects before the bifurcation and sources afterward. Note that the source coexists with the
small-amplitude sink that is created in the saddle-node bifurcation. Source and sink together
can now form a bound state that corresponds to a transmission defect.

Other bifurcations. Defects may also arise when additional harmonic frequencies are in-
troduced. Motivated by experiments [58] and numerical simulations [18], we have analyzed
which defects can be created near period-doubling bifurcations of wave trains. We showed

9If cg(k±) < cd, then we say, by definition, that the wave train at ξ = −∞ is behind the defect, while the
wave train at ξ = ∞ is ahead of the defect. If cg(k±) > cd, then we reverse these definitions.
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Figure 6.5. The double-flip homoclinic bifurcation in the three-dimensional parameter space.

in [52] that phase-slip defects can arise as interfaces between spatially homogeneous oscillations
with a relative phase shift of π.

Of course, there are many more bifurcations that we expect to encounter. Sinks, for
instance, persist even if we vary the two wavenumbers of the asymptotic wave trains indepen-
dently, and we should therefore expect to observe any heteroclinic bifurcation of codimension
two. In fact, even nontransverse homoclinic orbits may occur for large sets in parameter space.

The examples above notwithstanding, homoclinic and heteroclinic bifurcations can result
in very complicated solution structures, and a complete classification appears to be impossi-
ble. To give a few examples, homoclinic orbits with complex spatial Floquet exponents are
accompanied by a plethora of multiloop solutions. Sources and sinks that travel with the same
speed form a heteroclinic loop, and the resulting heteroclinic bifurcation may lead to various
different source-sink bound states (each being a transmission defect).

6.5. Pinning at inhomogeneities. Most of the counting arguments in sections 4 and 5
rely on the fact that ∂τud and ∂ξud provide bounded solutions of the linearization of (4.2)
about a defect, while ωd and cd provided the corresponding Lagrange multipliers. Spatial
inhomogeneities break the translation symmetry, which prevents us from using moving frames.
In particular, we will only be able to study defects with vanishing speed cd = 0. Thus, consider
the equation

ut = Duxx + f(u) + εg(x, u),(6.8)

where we assume that the inhomogeneity g is localized so that g(x, u) → 0 exponentially as
x → ±∞. The following result shows that standing sources persist at isolated positions for
ε �= 0 and are therefore pinned to the inhomogeneity. Similar results are true for contact
defects with zero speed.

Theorem 6.2. Suppose that ud(x, τ) is a transverse source of (1.1) with cd = 0. If we
define10

M(p) :=

∫ ∞

−∞

∫ 2π

0
〈ψc

d(x, τ), g(x− p, ud(x, τ))〉Rn dτ dx,

10The functions ψc
d(x, τ) and ψω

d (x, τ) have been defined in Corollary 4.6.
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then the source ud(x + p, τ) persists as a solution to (6.8) for ε close to zero provided p is a
simple root of the Melnikov function M(p). Furthermore, the temporal frequency ω∗

d(ε) of the
perturbed source is given by

ω∗
d(ε) = ωd + ε

∫ ∞

−∞

∫ 2π

0
〈ψω

d (x, τ), g(x− p, ud(x, τ))〉Rn dτ dx+ O(ε2).

Proof. The result follows from Lyapunov–Schmidt reduction applied to the spatial-
dynamical system (4.2). We omit the details and refer instead to [39, section 5] and [49,
section 8], where analogous analyses have been carried out.

Corollary 6.3. If the hypotheses of the preceding theorem are met, and both the source and
the inhomogeneity are symmetric (i.e., invariant under x 	→ −x), then the Melnikov function
M(p) is odd. The symmetric source located at x = 0 persists for ε �= 0 provided∫ ∞

−∞

∫ 2π

0
〈ψc

d(x, τ), gx(x, ud(x, τ))〉dτ dx �= 0.

Proof. The bounded solution of (2.17) that corresponds to ψc
d is of the form

ψ(ξ, τ) =

(
cdψ(ξ, τ) − ∂ξψ(ξ, τ)

Dψ(ξ, τ)

)
.

It is a consequence of [57] and the discussion in section 6.3 that ψ(0, ·) lies in the fixed-point
space Fix(R0) of the reverser R0. In particular, ψc

d(x, τ) is odd in x, and the corollary follows
then from Theorem 6.2.

In summary, large-amplitude sources with zero speed will be pinned to inhomogeneities,
and their temporal frequency will change according to Theorem 6.2. In general, we therefore
expect to see several pinned sources that have different temporal frequencies which depend
on the location of the defects. Thus, our analysis seems to corroborate the statements made
in [23, section 6.2.1], where inhomogeneities are mentioned as a possible explanation for the
occurrence of what appears to be a one-parameter family of sources in the experiments [1].
The experimental observations reported in [36] seem to indicate, however, that these sources
drift and are therefore not pinned. This issue therefore warrants further investigation.

For sinks with cd = 0, we do not expect pinning. Indeed, the intersection of center-
unstable and center-stable manifolds is transverse for sinks at ε = 0 and therefore persists as
a family of transverse intersections for all small ε independently of where we place the sink.

An alternative heuristic way of investigating the interaction of small-amplitude sinks with
even smaller localized slowly varying inhomogeneities is via the approximation by the Burgers
equation that we discussed in section 1.3. For ε = 0, the sinks or shocks in the Burgers
equation have an eigenvalue at zero which is induced by translation symmetry. The resulting
normally hyperbolic invariant manifold that consists of all translates of the sink persists for all
ε close to zero. The leading-order terms of the perturbed flow on the invariant manifold are
obtained by projecting the term in the Burgers equation that represents the inhomogeneous
term g(x, u) in (6.8) onto the manifold using the adjoint eigenfunction associated with the
translation eigenvalue. In conservation laws, the null space of the adjoint is spanned by the
constant function, so the perturbed flow is given by the mass of the term that represents the
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Figure 6.6. Inhomogeneities may create contact defects (ii) or sources (iii).

inhomogeneity g(x, u). Since the Burgers equation (1.19) is written in terms of the wave-
number, it turns out that the derivative gx(x, u) of the inhomogeneity arises in the Burgers
equation. Therefore, since the mass of gx(x, u) is zero, the reduced flow on the perturbed
manifold vanishes to leading order, and the family of sinks persists with positions that are in-
dependent of the inhomogeneity. The spatial-dynamics argument presented above shows that
the higher-order terms do not make a difference and that the situation remains unchanged for
large-amplitude sinks and, typically, for large inhomogeneities.

This analysis of the Burgers equation suggests also that sinks with cd �= 0 will simply
outrun the inhomogeneity without experiencing a noticeable change of velocity so that the
inhomogeneity will merely affect the asymptotic wave train. Thus, we shall now briefly discuss
the influence of inhomogeneities on wave trains. Note that wave trains with nonzero group
velocity are not affected by an inhomogeneity as they arise as transverse intersections of their
center-stable and center-unstable manifolds of (6.8) with ε = 0 which persist for all ε close to
zero. In this setting, we may interpret inhomogeneities as pinned transmission defects.

Wave trains with zero group velocity behave differently since small localized inhomo-
geneities create either contact defects or sources within such wave trains. To prove this, we
again interpret wave trains as transverse intersections of center-unstable and center-stable
manifolds. For wave trains with zero group velocity, this intersection, which consists precisely
of the center manifold, is two-dimensional, and the vector field on it is given by (6.7) [11].
Factoring out the S1-symmetry that is generated by the temporal time shift, we are left with
a small line segment parametrized by the wavenumber q. As illustrated in Figure 6.6(i), this
line segment, considered as a subset of W cu− , is separated at uuu− into two half-lines by the
strong-unstable manifold of the periodic orbit that corresponds to the wave train. Similarly,
the strong-stable manifold cuts the line segment, considered as a subset of W cs

+ , into two half-
lines at uss

+. Without an inhomogeneity, we have uss
+ = uuu− = uwt as shown in Figure 6.6(i).

The set of those initial data inW cu− whose solutions converge toward the wave train as ξ → −∞
(which we will refer to as the unstable set Su−) consists of points with line-segment coordinate
u < uuu− , i.e., of “half” of W cu− . Analogously, the stable set Ss

+ of those data whose solutions
converge to the wave train as ξ → ∞ consists of points whose line-segment coordinate satisfies
u > uss

+.
Upon introducing the inhomogeneity, the transverse intersection will persist, but the stable

and unstable sets may split. If uuu− > uss
+ as illustrated in Figure 6.6(ii), then an intersection

Ss
+ ∩ Su

− = {u ∈W cu
− ∩W cs

+ ; uuu
− > u > uss

+}



44 BJÖRN SANDSTEDE AND ARND SCHEEL

occurs which corresponds to a one-parameter family of contact defects with varying phase slip.
If the stable and unstable sets split in the opposite direction, so that uuu− < uss

+, then contact
defects cannot appear. In this case, we may, however, use the parameter ω = ωnl(k∗) + ω̌
to unfold the saddle-node wave trains at x = ±∞. While the intersection points on the
fibers move linearly with ω̌, the dynamics on the base points of the fibers changes with the
square root of ω̌. Thus, we denote the strong-stable manifold of the wave train u+

wt at x = ∞
with positive group velocity by W ss

+ (u+
wt) and, analogously, the strong-unstable manifold of

the wave train u−
wt at x = −∞ with negative group velocity by W uu− (u−

wt). Furthermore, we
denote their intersections with the one-dimensional manifold W c at x = 0 by vss

+ and vuu− ,
respectively. We then have vss

+(ω̌) = uss(ε) − a+

√
ω̌ and vuu− (ω̌) = uuu(ε) + a−

√
ω̌ for certain

positive coefficients a± > 0. In particular, we find a unique ω̌ such that uss
+(ω̌) = uuu− (ω̌),

which corresponds to a source as claimed.

6.6. Frequency locking through periodic forcing. Time-periodic forcing of the reaction-
diffusion system breaks the temporal translation invariance and therefore tends to lock the
frequency of defects to integer multiples of the forcing frequency ωf . As a consequence,
the frequency is effectively removed as a parameter, and the time-derivative ∂τud of defects
no longer contributes to the null space of Φd. Wave trains are still parametrized by their
wavenumber k and arise as time-periodic solutions in a frame that moves with speed c, where

ωnl(k) − kc = ωf .(6.9)

Note that the forcing frequency ωf and the nonlinear dispersion relation ωnl in the above
equation can be replaced by rational multiples, which leads to further complications. For
simplicity, we therefore focus on the simplest possible scenario. Thus, assume that the au-
tonomous system (4.2) admits a transverse defect so that (6.9) is met for both k = k− and
k = k+ with c = cd. We then add a forcing term εg(t, u) with temporal frequency ωf to
(1.1). A sink will persist regardless of its phase relative to the periodic forcing since the map
ιsi defined in (5.2) is onto (here, we add ε as a parameter and keep k± fixed). For sources,
we cannot vary the variable ωd that appears in the map ιso from (5.4). Instead, we use the
relative phase difference θ defined via ud(ξ, τ + θ). As in section 6.5, we can then prove that
sources persist for phase differences that correspond to simple roots of an appropriate Mel-
nikov function M(θ). There should be an even number of such roots, which correspond to
persisting sources that are alternately spectrally stable and unstable.

Alternatively, we may seek small-amplitude defects by studying the effect of temporal
forcing on wave trains. As outlined above, wave trains will simply adjust their speed to
ensure that (6.9) is met, and small-amplitude defects will therefore not occur. This works
except when the forcing is in resonance with the group velocity so that

ωnl(k∗) − k∗cg(k∗) = ωf .

The spatial dynamics near the forced wave train is then described by an autonomous saddle-
node bifurcation

θξ = k∗ + ǩ + O(ε), ǩξ = č(k∗ + ǩ) − ǩ2 + O(ε)
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of a periodic orbit whose temporal frequency is locked to ωf . The variables ǩ and č denote
the deviations from the wavenumber k∗ and the group velocity cg(k∗), respectively. Thus,
we find small heteroclinic orbits that correspond to small-amplitude sinks. If we wish to find
more complicated defects, we need to consider forcing frequencies that are in resonance with
spatially homogeneous oscillations for which k∗ = 0.

6.7. Locking of defect speed and phase velocity. Frequency locking can also occur when
ωd vanishes at a given defect. In this case, the defect does not depend on time when considered
in its comoving frame and therefore satisfies the travelling-wave ODE (2.4). We briefly discuss
for each defect type with what codimension this situation arises. Note that ωd = 0 if and only
if the phase velocities cp(k−) = cp(k+) are equal. Since we are mainly interested in waves
with a nonzero group velocity, we assume that the nonlinear dispersion relation ωnl(k) is not
constant on any open nonempty interval.

Transmission defects with k− = k+ occur as transverse homoclinic connections of a hyper-
bolic periodic orbit of (2.4). The periodic orbits as well as the homoclinic connection therefore
persist if we vary k− = k+, provided we choose c = cp = ωnl(k)/k. Thus, transmission de-
fects arise with the same codimension as travelling waves and as proper modulated waves. In
particular, defect speed and phase velocities can lock.

In contrast, phase velocity and defect speed of sinks, sources, and contact defects do not
lock, since these defects arise as travelling waves only with a larger codimension than as defects
with ωd �= 0. Indeed, sinks and sources have k− �= k+, so the condition cp(k−) = cp(k+) is a
genuine additional equation that raises the codimension by one. For contact defects, we need
cp(k) = cg(k) along the branch which holds only if ω′′

nl(k) = 0 as an explicit computation
shows.

6.8. Large bounded domains. So far, we have focused on defects on the unbounded real
line. Experiments, however, take place on bounded domains in a fixed laboratory frame.
Thus, defects with nonzero speed are transient phenomena that disappear by colliding either
with other defects or with the domain boundaries. Defects with speed close to zero, however,
should exist over much longer time intervals. In this section, we shall therefore discuss the
persistence of defects on large but bounded domains.

An additional motivation is provided by the need for computational tools that allow us to
compute defects in an efficient way. Stable defects can, of course, be computed using direct
simulations. If we are, however, interested in computing defects for many different parameter
values, in finding their bifurcation points, or in computing unstable defects, then a formulation
as a boundary-value problem that allows for a systematic continuation—using, for instance,
auto97 [9]—would be desirable. To obtain such a formulation, we consider (4.2) in the frame
of the defect, truncate the real line to a finite bounded interval, and impose appropriate phase
and boundary conditions. We currently implement this procedure in auto97.

Boundary layers. We begin by investigating how wave trains interact with boundaries.
Thus, consider the half line R

+ with a boundary at x = 0. We focus on c = 0 and seek defects
that are caused by the boundary conditions at x = 0. In the context of the modulated-wave
equation (4.2), the boundary conditions at x = 0 are represented by the infinite-dimensional
subspace B− of Y that consists of all elements of Y which satisfy the boundary conditions.
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We are interested in finding defects as orbits of (4.2) that lie in the intersection of B− and
the center-stable manifold W cs

+ (uwt) of a wave train uwt. Thus, in analogy to section 6.3, we
consider the map

ιbc : B− ×W cs
+ −→ Y, (u0,u+) 	−→ u0 − u+.

For boundary conditions such as Dirichlet, Neumann, and various mixed conditions for which
the reaction-diffusion system (1.1) is well-posed, the injection map ιbc is Fredholm, and its
index is zero if cg > 0 and one if cg ≤ 0.

Therefore, we expect one-parameter families of sinks for wave trains, with group velocity
cg < 0 toward the boundary, that connect to the boundary at x = 0. This family of sinks
is parametrized by the wavenumber k of the wave train at x = ∞. On the other hand,
boundary-layer sources, which connect to wave trains with group velocity cg > 0 away from
the boundary, occur only for isolated wavenumbers k. Similarly, there is typically only a finite
number of boundary-layer contact defects since cg = 0 is fixed, even though the Fredholm
index is one.

Examples of boundary-layer contact defects are homogeneous oscillations under Neumann
boundary conditions. For small wavenumbers, and group velocities directed toward the bound-
ary, we then find boundary-layer sinks which, for Neumann boundary conditions, can be
thought of as symmetric sinks since we can extend the equation to the entire real line by
reflecting across the boundary. Our discussion of inhomogeneities in section 6.5 can also be
used to show that, for any homogeneous oscillation, there exists an open set, in fact a half
space, of Robin boundary conditions that emit wave trains. The resulting defects are therefore
boundary-layer sources. The boundary conditions in the complementary half space produce
solutions that are asymptotically homogeneous oscillations, that is, boundary-layer contact
defects. We also refer to the discussion in [55, section 5.3] on the existence of two-dimensional
radially symmetric target patterns that are generated by boundary conditions imposed at a
small hole in the domain.

Truncation. We are now prepared to discuss whether defects on R can be approximated
by defects on large but bounded intervals (−L,L). The discussion in the preceding section
shows that the boundary conditions should be compatible in the sense that boundary-layer
defects exist which absorb or generate the wave trains in the far field of the sources, contact
defects, or sinks whose persistence we would like to prove.

Suppose, for instance, that there exist a source between wave trains with asymptotic
wavenumbers k± and boundary-layer sinks that absorb these wave trains at the boundaries
x = ±L. As in [33], it then follows that the source persists as a solution to the truncated
problem in a frame moving with speed c(L) provided the frequency is adjusted to ω(L). Here,
the corrections to speed and frequency satisfy (c(L), ω(L)) = (cd, ωd)+O(e−δL) for some δ > 0.
Furthermore, the solution is O(e−δL) close to the profile of the defect on R for |ξ| < L/2 and
to the boundary-layer sinks for |ξ| > L/2. For symmetric sources and symmetric boundary
conditions11 at ξ = ±L, we have c(L) ≡ 0.

11We say that the boundary conditions B− and B+ at ξ = −L and ξ = L are symmetric if R0(B−) = B+

with R0 as in (6.6).
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Similar results are true for sinks, although there is the severe restriction that both asymp-
totic wave trains need to be created by boundary-layer sources. For contact defects, we need
to assume the existence of boundary-layer contact defects that connect to the boundary. To
obtain persistence, we need to unfold the saddle-node wave trains in a fashion similar to the
discussion in section 6.5. We omit the details.

Stability. Stability properties of defects on bounded intervals (−L,L) with fixed boundary
conditions are remarkably different from their counterparts on R. First, the period map ΦL

d of a
defect on (−L,L) will have only point spectrum. We denote the union of all Floquet exponents
of ΦL

d by ΣL. If we take the limit as L→ ∞, then the set ΣL converges to a limiting set in the
symmetric Hausdorff distance where the convergence is uniform on bounded subsets of C [47].
The limiting set is the disjoint union of three sets, namely, the boundary spectrum Σbdy,
the extended point spectrum Σext, and the absolute spectrum Σabs. Before defining them in
detail, we remark that Σbdy and Σext are discrete, while Σabs is continuous in a sense that will
be made precise below. The convergence of ΣL toward both the boundary spectrum and the
extended spectrum is exponential in L and includes convergence of the algebraic multiplicity.
The convergence toward the absolute spectrum, however, is algebraic of order O(1/L), and
the number of elements in ΣL in any fixed neighborhood of an element of Σabs tends to infinity
as L→ ∞.

We now define the three sets whose union is the limiting spectral set, and we begin with
the absolute spectrum. We say that λ belongs to the complement of the absolute spectrum
in C if there exist exponential weights η± such that Φd − ρ is Fredholm with index zero on
L2
η−,η+

(R,Cn) and the relative Morse index of both asymptotic wave trains is zero relative

to the exponential weights.12 The absolute spectrum consists of a countable union of semi-
algebraic curves which end precisely in spatial double roots ν with Re ν = η± of the dispersion
relation of one of the asymptotic wave trains. We refer to [47, 46] for more details.

The extended point spectrum consists of all λ ∈ C for which there are exponential weights
η± with the same properties as above so that the null space of Φd − ρ on L2

η−,η+
(R,Cn) is

not trivial. Last, the boundary spectrum is defined as the extended point spectrum of the
boundary-layer defects that are involved in the construction of the defect on (−L,L).

Since we assumed that the wave trains are spectrally stable, we see that the absolute
spectrum of sinks, transmission defects, and sources lies in the open left half-plane since the
group velocities of the asymptotic wave trains are not zero. The absolute spectrum of contact
defects always touches the imaginary axis at λ = 0 and consists, in fact, of a line segment
λ < 0 inside a sufficiently small neighborhood of the origin. Indeed, the two roots ν± near
zero of the dispersion relation (6.2) λ = d‖ν2 +d3ν

3 +O(ν4) are complex conjugates for λ < 0.
The extended point spectrum of sinks, transmission defects, and sources contains λ = 0

with multiplicity

0 for sinks,
1 for transmission defects,
2 for sources.

(6.10)

12This means that the relative Morse indices are computed for (4.6) with η = η± and ud replaced by the
asymptotic wave train.
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Last, the boundary spectrum near the origin is given as follows:

0 for each boundary-layer sink,
1 for each boundary-layer source,

(6.11)

where the time-derivative of the boundary-layer source provides the eigenfunction.
Thus, in summary, if we consider the union of boundary and extended point spectrum near

the origin for truncated sinks and sources, then both of them have two eigenvalues near the
origin. For truncated sinks, these two eigenvalues arise due to the two boundary-layer sources
near the boundaries x = ±L, whereas the eigenvalues for truncated sources occur from the
source itself with the two boundary-layer sinks not contributing any eigenvalues. While one of
the two eigenvalues for truncated sinks or sources accounts for the time-derivative, i.e., for the
temporal translation symmetry that is still present, the other eigenvalue, which is associated
with the position of the defect relative to the boundary, is free to move and may stabilize or
destabilize the truncated defect.

6.9. Interactions of defects. Heuristically, the interaction of defects with each other or
with boundaries can be explained to a large extent by deriving formal solvability conditions.
These conditions arise when we try to match defects, and they can be calculated by projecting
certain matching terms onto the null space of Φd − 1, i.e., onto the eigenfunctions associated
with λ = 0, using the adjoint eigenfunctions [14, 13, 43].

First, we need to clarify what we mean when we refer to the eigenfunctions of Φd associated
with the Floquet exponent λ = 0, since the essential spectrum of Φd touches λ = 0. We believe
that the eigenfunctions and eigenvalues that we need to take into account are those that
arise in the weighted spaces given in Theorem 6.1. Indeed, the essential spectrum of defects
is generated by the asymptotic wave trains, and its effect is accounted for by the Burgers
equation (1.19). Given our spatial-dynamics interpretation of the group velocities, we believe
that the interaction of defects manifests itself in their spectra in the spaces L2

η(R,R
n) with η

chosen as in Theorem 6.1.
Transverse sinks do not have any eigenvalues at λ = 0 (see Theorem 6.1). Therefore,

they do not interact with the tails of adjacent sources but instead react passively by adjusting
their speed via (1.8) according to changes of the wavenumbers in the far field. Changing the
phase (6.3) of one of the asymptotic wave trains will cause the sink to correct its position and
temporal phase according to the algebraic phase jump condition (6.4).

Transverse sources have a double eigenvalue at λ = 0 that is induced by the derivatives
of the source with respect to time and space. Therefore, for each source, we obtain two
differential equations that define the time derivatives of its position and its phase as functions
of perturbations in the far field. Since the associated adjoint eigenfunctions at λ = 0 are
exponentially localized by Theorem 6.1, sources interact with adjacent defects or boundaries
only very weakly, namely through terms of the form e−δL for δ > 0 that are exponentially
small in the distance L between the source and other defects or boundaries.

Transmission defects have a simple eigenvalue at λ = 0, and the associated adjoint eigen-
function is localized behind the defect, where the group velocity points away from the interface,
and constant ahead of the defect. We therefore believe that transmission defects will adjust
their phase instantaneously whenever the phase of the wave train ahead of them is changed.
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The position and temporal phase of transmission defects are also affected by the presence of
boundaries or perturbations in their wake. These interactions are described by a single differ-
ential equation. Note that position and temporal phase are implicitly related through phase
matching with the wave trains ahead of the transmission defect (see sections 6.1 and 6.2).

To our knowledge, interactions that involve contact defects have not been studied previ-
ously (not even on a formal level). We believe that Theorem 4.5, which asserts that the Evans
function has a simple root at λ = 0, may play an important role, since this root may change
the temporal algebraic decay rate of localized perturbations [35].

6.10. Genericity. Our goal in this paper has been to present a list of transverse defects.
It is a challenging task to prove whether, and in what sense, this list is complete.

From a formal point of view, we included all possible combinations of group velocities c±g
relative to the defect velocity cd with the exception of one-sided contact defects for which one
of the group velocities is equal to the defect speed but the other one is not, i.e., for which
either c−g = cd �= c+g or c−g �= cd = c+g . The reason for omitting one-sided contact defects is that
they form part of the boundary of the region in (k−, k+) space where transverse sinks exist.
Put differently, in any given system, we expect that only a finite number of wavenumbers
occur that are generated by boundaries or by sources. In general, there is no reason why
one-sided defects should be selected as they occur only in one-parameter families. For the
same reasons, we do not take degenerate sinks, transmission defects, or contact defects into
account even though degeneracies, such as eigenvalues at the origin with higher multiplicity,
can typically be found by varying only the asymptotic wavenumbers. If we therefore wish to
exclude degenerate defects as well as one-sided contact defects, we may consider introducing
a notion of genericity that requires the persistence of generic defects when we truncate the
real line to a large but finite interval with generic boundary layers in the sense of section 6.8.

The reason for including sources as generic defects is that they actively select wavenumbers.
Similarly, we wish to regard contact and transmission defects as generic since they occur within
a background of wave trains with identical wavenumber. In other words, the reason for their
generic existence is that they accommodate phase slips within an oscillatory medium (see
section 6.2). Interpreted in a different way, contact and transmission defects occur in open
sets of wavenumbers once we impose the constraint that k− = k+.

From a purely mathematical viewpoint, and thinking solely in terms of the codimension
with which a certain heteroclinic orbit exists, there is no difference between, say, transmission
defects and one-sided contact defects. However, the goal would be to find a notion of genericity
that accurately reflects the physical intuition that we described above, i.e., that allows sources,
for instance, but rejects one-sided contact defects.

6.11. Higher space dimensions. The classification we have presented is valid for essen-
tially one-dimensional media. In particular, our approach, and therefore our results, apply
equally well to problems on cylindrical domains with a bounded higher-dimensional cross
section. Indeed, the key feature that we exploited are exponential dichotomies which exist
provided the operators encountered enjoy certain compactness properties that are satisfied for
the cross-sectional variables whenever the cross section is bounded [39, 49].

In fact, our results can also be adapted immediately to cover line defects in the plane that
are spatially periodic in the direction parallel to the line defect [52]. If we, for the sake of



50 BJÖRN SANDSTEDE AND ARND SCHEEL

clarity, choose coordinates so that the line defect corresponds to x = 0, so that y denotes the
variable parallel to the line defect, then the modulated-wave equation (4.2) would contain the
Laplace operator in the y variable, while the spatial evolution variable would be the x-variable
transverse to the defect. We would then pose (4.2) on the space of functions that are periodic
in time and in y. For instance, line defects between planar wave trains that propagate in a
direction parallel to the defect can be easily analyzed in this framework.

Certain two-dimensional point defects, such as spiral waves and target patterns in the
Belousov–Zhabotinsky reaction or stationary focus patterns in convection experiments, are
amenable to a similar description since we can measure group velocities in the radial variable
[53, 55]. A classification analogous to the one presented here has not yet been attempted in
higher space dimensions.

7. Example: The cubic-quintic Ginzburg–Landau equation. In this section, we illustrate
that all four elementary transverse defects arise in the complex cubic-quintic Ginzburg–Landau
equation (CQGL) for appropriate values of the coefficients. In fact, the existence of sources,
sinks, and transmission defects in the CQGL has been established in [10], and we therefore
focus here on the existence of contact defects. Thus, consider the CQGL

Ǎt = (1 + iα̌)Ǎxx + Ǎ− (1 + iγ̌)Ǎ|Ǎ|2 − (δ̌0 + iδ̌)Ǎ|Ǎ|4,(7.1)

where x ∈ R, Ǎ(x, t) ∈ C, and all coefficients are real. The CQGL arises as a special case
of the modulation equation that describes degenerate Hopf bifurcations in reaction-diffusion
systems [12] and, for α̌ = 0, coincides with the λ-ω system that has been investigated, for
instance, in [32]. The CQGL respects the gauge symmetry Ǎ 	→ eiφǍ so that we should seek
relative equilibria of the form

Ǎ(x, t) = A(x− čt)e−iω̌t.

Substituting this ansatz into (7.1) yields the ODE

A′′ = − 1

1 + iα̌

[
(1 + iω̌)A+ čA′ − (1 + iγ̌)A|A|2 − (δ̌0 + iδ̌)A|A|4

]
.(7.2)

We choose 1+ α̌γ̌ > 0, which allows us to rescale A and the parameters so that (7.2) becomes

A′′ = −(1 + iω)A− cA′ + (1 + iγ)A|A|2 + (δ0 + iδ)A|A|4.(7.3)

For the sake of clarity, we set δ0 = 0 from now on but remark that most of the subsequent
analysis remains valid, with appropriate modifications, when δ0 > 0. An essential assumption
is that we take the remaining parameters (γ, δ, ω, c) to be close to zero, so that we perturb
from the real CGL.

In summary, we consider the complex two-dimensional ODE

A′ = B,(7.4)

B′ = −(1 + iω)A− cB + (1 + iγ)A|A|2 + iδA|A|4

with small external parameters (γ, δ) and small internal parameters (ω, c). In passing, we
remark that (7.4) has the same structure as the modulated-wave equation (4.2). In fact,
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regardless of whether (7.4) is derived near a degenerate Hopf bifurcation or represents a λ-ω
system, (7.4) is the modulated-wave equation, restricted to either a center manifold or a finite-
dimensional Fourier subspace. In each case, the gauge invariance is induced by the time-shift
symmetry and is therefore a genuine symmetry rather than a normal-form symmetry. For
c = 0, (7.4) has two reversers given by

R0 : (A,B) 	−→ (A,−B), Rπ : (A,B) 	−→ (−A,B).

As already alluded to, we study (7.4) as a perturbation from the real Ginzburg–Landau
equation

A′ = B,(7.5)

B′ = −A+A|A|2.

Note that (7.5) is a Hamiltonian system where the Hamiltonian H and the symplectic matrix
J are given by

H = |A|2 + |B|2 − 1

2
|A|4, J(A,B, Ā, B̄) = (B̄,−Ā, B,−A).

The real Ginzburg–Landau equation (7.5) has a family

A(x; k) =
√

1 − k2eikx(7.6)

of wave trains for |k| < 1. In particular, the dispersion relation ω = ωnl(k) is degenerate as
all these wave trains have ω = 0. There also is an explicit defect given by

A(x) = tanh

(
x√
2

)
,(7.7)

which connects the wave trains with zero wavenumber with a phase slip of π (see section 6.2).
Once γ or δ are nonzero, the wave trains (7.6) are solutions to (7.4) if and only if

ω = ωnl(k; γ, δ, c) = (1 − k2)γ + (1 − k2)2δ − kc,(7.8)

which is the dispersion relation in the frame moving with speed c. The wave trains disappear
in saddle-node bifurcations precisely when

c = cg(k; γ, δ) = −2kγ + 4k(k2 − 1)δ.(7.9)

We are interested in the fate of the defect (7.7) for (γ, δ) small but nonzero.
It will be convenient to eliminate the gauge symmetry of (7.5). Often, this is achieved by

introducing the blow-up coordinates B/A (or A/B) and |A|2. In our example, however, this
would force us to use two blow-up charts since both A and B vanish somewhere along the
defect. Instead, we use the generators of the ring of invariant polynomials with respect to the
S1-gauge symmetry as new coordinates and define

R = AĀ, S = BB̄, N = AB̄,(7.10)
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with N = Nr + iNi. A result by Hilbert (see, for instance, [5]) shows that the invariants
smoothly parametrize the group orbits of the S1-symmetry. For later use, we remark that, if
we evaluate N on the wave trains (7.6), we obtain N = AĀ′ = −ik(1 − k2) so that

Ni = −k(1 − k2).(7.11)

In the new variables (7.10), equation (7.5) becomes

R′ = 2Nr,

S′ = 2(R− 1)Nr − 2cS + 2(ω − γR− δR2)Ni,(7.12)

N ′
r = S − cNr −R+R2,

N ′
i = −cNi + ωR− γR2 − δR3.

Note that we eliminated the phase invariance without reducing the dimension, at the expense
of introducing an algebraic relation

C(R,S,N) := RS −NN̄ = 0,(7.13)

which must be satisfied for solutions of (7.12) to correspond to solutions of (7.5). For c = 0,
(7.12) is reversible under N 	→ −N (which represents both R0 and Rπ).

For (γ, δ) = (ω, c) = 0, we find

R′ = 2Nr,

S′ = 2(R− 1)Nr,(7.14)

N ′
r = S −R+R2,

N ′
i = 0.

We note that both C and H are conserved along trajectories of (7.14). Exploiting that the
Hamiltonian is now given by

H = S +R− R2

2
,(7.15)

(7.14) can therefore be written as

R′′ = 2H − 4R+ 3R2, S = H −R+R2/2, N = R′/2.(7.16)

The equilibria of (7.14) are given by S = R − R2 and Nr = 0 for arbitrary R and Ni. Using
(7.11) and the algebraic relation (7.13), we obtain the parametrization

(R∞, S∞, N∞
r , N∞

i ) = (1 − k2)(1, k2, 0,−k), H∞ =
(1 − k2)(1 + 3k2)

2
(7.17)

for those equilibria of (7.12) that correspond to solutions of (7.5). The eigenvalues of the
linearization of (7.14) about the equilibria (7.17) are given by two zero eigenvalues, λ1 = λ2 =
0, which arise due to translation symmetry and the conserved quantity C, and two eigenvalues
λ3/4 = ±

√
2(1 − 3k2), which are hyperbolic if k2 < 1/3. Since the waves with k2 > 1/3 are
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known to be unstable with respect to long-wavelength perturbations, the well-known Eckhaus
instability, we focus exclusively on the case

|k| < 1√
3

(7.18)

so that we are away from the Eckhaus instability.
On the other hand, solving (7.16), we find the one-parameter family

Rd(x) = (1 − k2) − (1 − 3k2) sech2
(√

1 − 3k2x/
√

2
)
,

Sd(x) = H∞ −Rd(x) +
1

2
R2

d(x),(7.19)

Nd,r(x) = R′
d(x)/2,

Nd,i(x) = −k(1 − k2)

of homoclinic orbits that are parametrized by the asymptotic wavenumber k. Linearizing
(7.14) about these orbits gives the variational equation

R′ = 2Nr,

S′ = 2(Rd(x) − 1)Nr +R′
d(x)R,(7.20)

N ′
r = S −R+ 2Rd(x)R,

N ′
i = 0

and the corresponding adjoint variational equation

r′ = −R′
d(x)s− (2Rd(x) − 1)nr,

s′ = −nr,(7.21)

n′r = −2r − 2(Rd(x) − 1)s,

n′i = 0.

Solutions to the adjoint variational equation (7.21) can be computed explicitly in various
different ways. One approach is to observe and exploit that

[s′]′′ = (6Rd(x) − 4)[s′].

Alternatively, the gradients ∇C and ∇H of the conserved quantity (7.13) and the energy
(7.15) are automatically solutions to (7.21). Either way, we see that three bounded solutions
to (7.15) are given by

ψ0(x) =

(
1

2
R2

d(x) + (R∞ − 1)Rd(x) +R∞ − 3

2
(R∞)2, Rd(x) −R∞,−R′

d(x), 0

)
,

ψ1(x) = (0, 0, 0, 1),

ψ2(x) = ∇H(x) = (1 −Rd(x), 1, 0, 0) ,

while the fourth, linearly independent solution ψ3(x) is unbounded. Note that ψ0(x) de-
cays exponentially and points to the direction perpendicular to the sum of the center-stable
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k

Ni
ψ0(0)

ψ1(0)

Figure 7.1. The dynamics of (7.14) within the level set C = 0 is illustrated. The two lines of equilibria are
drawn separately even though they both correspond to the same family given in (7.22).

and center-unstable manifolds along the homoclinic orbit (7.19). The two vectors ψ0(x) and
ψ1(x) together are part of the orthogonal complement of the strong-unstable manifold, which
coincides with the strong-stable manifold. We refer to Figure 7.1 for an illustration.

Our goal is to understand the intersections of various stable and unstable manifolds as
well as their dependence on the wavenumber k of the wave trains. Their intersections will
be studied using the Melnikov integrals in the directions of ψ0 and ψ1 for the derivatives of
the right-hand side of (7.12) with respect to (γ, δ, ω, c). The resulting bifurcation scenario is,
in fact, similar to the double-flip bifurcation that we discussed in sections 6.4 and 6.5 in the
context of transitions from contact defects to sources and of inhomogeneities embedded in
media of wave trains with zero group velocity.

We begin with a local analysis of the slow manifold

(R∞, S∞, N∞
r , N∞

i ) =
(
1 − k2, k2(1 − k2), 0,−k(1 − k2)

)
(7.22)

that consists of all equilibria of (7.14) that satisfy (7.13). The tangent space to this family of
equilibria is spanned by

d

dk
(R∞, S∞, N∞

r , N∞
i ) =

(
−2k, 2k(1 − 2k2), 0, 3k2 − 1

)
,(7.23)

while the associated adjoint eigenvector is

ψ∞
1 = (0, 0, 0, 1).

The flow along the family of equilibria for (γ, δ, ω, c) �= 0 is obtained [16] by evaluating the
derivatives of the right-hand side of (7.12) with respect to (γ, δ, ω, c) at the equilibria and
projecting them with ψ∞

1 . If we parametrize the center manifold by the wavenumber k, the
reduced equation is

(3k2 − 1)k̇ = ck(1 − k2) + ω(1 − k2) − γ(1 − k2)2 − δ(1 − k2)3 + O(2),(7.24)

where O(2) denotes quadratic terms in (γ, δ, ω, c). A point k∗ is an equilibrium if and only if
ω is given by the nonlinear dispersion relation (7.8)

ω = ωnl(k∗; γ, δ, c) = γ(1 − k2
∗) + δ(1 − k2

∗)
2 − ck∗,(7.25)
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in which case (7.24) becomes

k̇ = − 1 − k2

1 − 3k2
[ωnl(k∗; γ, δ, c) − ωnl(k; γ, δ, c)] + O(2).

The linearization of (7.24) about an equilibrium k∗ is therefore not hyperbolic precisely when
c is given by the group velocity (7.9)

c = cg(k∗; γ, δ) = −2k∗γ − 4k∗(1 − k2
∗)δ,(7.26)

ω = ωnl(k∗; γ, δ, cg(k∗)) = (1 + k2
∗)γ + (1 − k2

∗)(1 + 3k2
∗)δ.

With these choices of ω and c, the slow reduced equation near k = k∗ is given by

κ̇ = − 1 − k2∗
1 − 3k2∗

[
γ + 2δ(1 − 3k2

∗)
]
κ2 + O(κ3)(7.27)

in the variable κ = k − k∗. In particular, to leading order in κ, the unstable manifold W u of
the equilibrium k = k∗ is contained in k < k∗ if γ + 2δ > 0 and in k > k∗ if γ + 2δ < 0.

We now compute the Melnikov integrals in the direction of ψ0(x) which are defined by

M j
0 =

∫
R

〈ψ0(x), ∂jF (Rd, Sd, Nd,r, Nd,i)(x)〉 dx,

where F denotes the right-hand side of (7.12) and j = γ, δ, ω, c. These integrals show how the
center-stable and center-unstable manifolds split along the homoclinic orbit given in (7.19)
upon varying (γ, δ, ω, c) near zero. A tedious calculation gives

Mγ
0 (k) = −4

3
k(1 − k2)(1 + 3k2)

√
2(1 − 3k2),

M δ
0 (k) = − 4

15
k(1 − k2)(3 + 2k2 + 27k4)

√
2(1 − 3k2),(7.28)

Mω
0 (k) = 4k(1 − k2)

√
2(1 − 3k2),

M c
0(k) =

4

3
(1 − k2)

√
2(1 − 3k2).

The distance of the center-unstable and center-stable manifolds is given by the expression

∆0(k; γ, δ, ω, c) = ωMω
0 (k) + cM c

0(k) + γMγ
0 (k) + δM δ

0 (k) + O(2).

If we seek contact defects, we should find intersections related to a saddle-node equilibrium k∗
of (7.26). Thus, we shall choose (ω, c) according to (7.26) and investigate roots of the splitting
distance

∆cd
0 (k, k∗; γ, δ) = ωnl(k∗)Mω

0 (k) + cg(k∗)M c
0(k) + γMγ

0 (k) + δM δ
0 (k) + O(2)

=
4

3
(1 − k2)(2 − 3kk∗ − 3k2)(k − k∗)

√
2(1 − 3k2) γ(7.29)

+
4

15
(1 − k2)

(
k[12 − 2k2 − 27k4] − k∗

[
20(1 − k2

∗) + 15kk∗(3k2
∗ − 2)

])
×
√

2(1 − 3k2) δ + O(2)
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of the center-unstable and center-stable manifolds of the equilibrium k∗ along the homoclinic
orbit at level k.

Next, we investigate the splitting of the strong-stable and strong-unstable manifolds in the
center direction which is given by Melnikov integrals in the direction of ψ1(x). We therefore
choose ω and c as in (7.26) so that a given point k = k∗ on the manifold of equilibria persists
as a saddle-node equilibrium for (γ, δ) �= 0. We define the Melnikov integrals

Mγ
1 (k∗) =

∫
R

〈
ψ1(x), [∂γ + (1 + k2

∗)∂ω − 2k∗∂c]F (Rd, Sd, Nd,r, Nd,i)(x)
〉

dx,

M δ
1 (k∗) =

∫
R

〈
ψ1(x), [∂δ + (1 − k2

∗)(1 + 3k2
∗)∂ω − 4k∗(1 − k2

∗)∂c]

× F (Rd, Sd, Nd,r, Nd,i)(x)
〉

dx,

where F denotes again the right-hand side of (7.12). A tedious but straightforward computa-
tion gives

Mγ
1 (k∗) =

2

3
(1 − 3k2

∗)
√

2(1 − 3k2∗) > 0, M δ
1 (k∗) =

16

15
(1 − 3k2

∗)
2
√

2(1 − 3k2∗) > 0.(7.30)

We are now ready to describe the bifurcation picture for small (γ, δ). Consider a two-
dimensional section transverse to the flow that lies in a small neighborhood of (Rd, Sd,
Nd,r, Nd,i)(0) in the three-dimensional manifold described by the algebraic relation (7.13). In
this two-dimensional section, the center-stable and center-unstable manifolds coincide when
(γ, δ, ω, c) = 0. Their intersection forms a line which is parametrized by the coordinate k of
the base point of the corresponding strong-stable fiber on the center manifold (which is, in
fact, the manifold of equilibria). Since the general bifurcation diagram is rather complicated,
we focus separately on the two cases δ = 0 (the CGL) and k∗ = 0.

First, we set δ = 0. Since we are interested in contact defects, we choose (ω, c) according
to (7.26) so that the fixed base point k∗ persists as a saddle-node equilibrium. To find contact
defects, we need to solve ∆cd

0 (k, k∗; γ, 0) = 0. Using its definition (7.29), we see that the
nontrivial roots of this equation are given by k = ±1/

√
3 and by k = k∗. The first case

is close to the Eckhaus instability, and we will not consider it here. Instead, we show that
the second case cannot lead to contact defects: We focus first on the region γ > 0, so that
the unstable manifold of the saddle-node equilibrium k∗ for (7.27) is the set k < k∗. Since
Mγ

1 (k∗) > 0, however, the strong-unstable manifold of the equilibrium k∗ will miss the stable
set of the equilibrium k∗ as illustrated in Figure 7.2(i). For γ < 0, both the sign of the splitting
distance and the flow on the slow manifold change sign, and we again conclude that there is
no homoclinic orbit to k∗ = 0. In particular, there are no contact defects for δ = 0. Varying
ω and c to unfold the saddle node at k = k∗, we see that sources are created. Indeed, we can
parametrize the equilibria in the unfolding of the saddle node using µ1 :=

√
|ω − ωnl(k∗)| or

µ2 :=
√

|c− cg(k∗)|. The Melnikov integrals with respect to µj vanish since the parameters
µj enter only at second order. The base points, however, change to leading order in µj ,
which allows us to find an intersection of the strong-stable and strong-unstable fibers. These
intersections, which correspond to sources, are known as the Nozaki–Bekki holes and can be
given explicitly in terms of elementary functions [2, 41].



DEFECTS IN OSCILLATORY MEDIA 57

(i) (ii)

k k

k∗

k∗

k∗

k∗
ψ1(0)

Fix(R)

Figure 7.2. The splitting of the strong-unstable and strong-stable manifolds of the equilibrium k∗ = 0 of
(7.12) is illustrated for γ+ 8

5
δ > 0 in (i) and for γ+ 8

5
δ < 0 in (ii). The sketch of the flow on the slow manifold

assumes γ + 2δ > 0.

Next, we set k∗ = 0. In particular, c = cg = 0 by (7.26), which makes (7.12) reversible
under R : N 	→ −N with fixed-point space {N = 0}. The unstable manifold of the equilibrium
k∗ = 0 of (7.27) is the set k < 0 when γ + 2δ > 0 and the set k > 0 for γ + 2δ < 0. The
splitting distance of the strong-unstable and the strong-stable manifold, on the other hand, is
given by

∆cd
1 (γ, δ) = 〈ψ1(0),W uu(0) −W ss(0)〉 = Mγ

1 (0)γ +M δ
1 (0)δ + O(2)

(7.30)
=

2
√

2

3

[
γ +

8

5
δ

]
+ O(2).

As shown in (7.23) and indicated in Figure 7.1, the vector ψ1(0) points to the positive Ni and
the negative k direction. Thus, the strong-unstable and stable manifolds of k∗ = 0 split as
shown in Figure 7.2. We therefore need

(γ + 2δ)

(
γ +

8

5
δ

)
+ O(3) < 0(7.31)

to get a reversible homoclinic connection of the saddle-node equilibrium k∗ = 0 as in Fig-
ure 7.2(ii). The inequality (7.31) defines, to leading order, a small nonempty cone in the (γ, δ)-
plane (see Figure 7.3). The reversible connection indeed exists as both the center-unstable
and the center-stable manifolds intersect the fixed-point space {N = 0} of the reverser trans-
versely, which follows from the expression for ψ1(0) and since N ′

d(0) = R′′
d(0)/2 �= 0. Last, we

show that the reversible contact defects persist if we vary the wavenumber k∗ near k∗ = 0.
To accomplish this, it suffices to prove that the center-unstable and center-stable manifolds
of the equilibrium k∗ = 0 intersect transversely along the contact defect. Thus, we evaluate
their splitting distance (7.29) at k∗ = 0, which yields

∆cd
0 (k, 0; γ, δ) =

4

3
k(1 − k2)(2 − 3k2)

√
2(1 − 3k2) γ

+
4

15
k(1 − k2)(12 − 2k2 − 27k4)

√
2(1 − 3k2) δ + O(2)

=
8
√

2

3
k

[
(1 + O(k))γ +

(
6

5
+ O(k)

)
δ + O(2)

]
,
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Figure 7.3. The plot in the upper right corner shows the parameter space (γ, δ). Contact defects exist in
the shaded region, while sources and transmission defects exist outside. Along the line γ + 8

5
δ = 0, contact

defects and sources collide in a double-flip configuration as outlined in section 6.4.

where we exploited the fact that the splitting distance vanishes at k = 0 due to reversibility
of (7.12). We infer from the above expression that the center-unstable and center-stable
manifolds intersect transversely at k = 0 provided γ+ 6

5δ+O(2) �= 0. This curve, along which
transversality fails, lies outside the existence cone (7.31) for contact defects, which proves that
the reversible contact defects are robust and persist under variations of k∗.

Theorem 7.1. Equation (7.31) defines a nonempty open cone in (γ, δ)-space with the prop-
erty that the complex CQGL (7.4) has, for each fixed (γ, δ) in that cone, a one-parameter
family of elementary transverse contact defects parametrized by the wavenumber k with k
close to zero.

We remark that, at the boundary γ + 8
5δ = 0 of (7.31), a double-flip transition between

sources and contact defects occurs, while at the other boundary γ + 2δ = 0, the nonlinear
dispersion relation of the asymptotic wave trains of the contact defects changes from convex
to concave.

Transmission defects can be found as bound states of the Nozaki–Bekki holes and the
small sinks that arise in the unfolding of the saddle node on the center manifold. We refer to
Figure 7.3 for an illustration.

8. Conclusion. We have presented a framework that allows us to systematically study
interfaces between nonlinear wave trains with possibly different wavenumber. We used this
approach to analyze sinks, contact defects, transmission defects, and sources which are specific
defects with distinguished characteristics that occur robustly in reaction-diffusion systems. In
addition, we discussed the stability and interaction properties of these defects and investigated
some of their bifurcations.

The major open problem is the completeness of the above classification. Other open
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issues are the nonlinear stability of contact defects, transmission defects, and sources. We
also emphasize that the list of bifurcations that we discussed is not exhaustive. Last, it would
be interesting to see how individual defects can be accounted for in a macroscopic description
of oscillatory media by coupling mean-field equations of Burgers type to ordinary differential
equations for the position and phases of defects.

Appendix A. Invariant manifolds. We prove the invariant-manifold Theorem 5.1 and
establish the existence of exponential dichotomies for the linearization of the spatial-dynamical
system about the defect.

A.1. Existence of center-stable manifolds. Our first goal is to prove the existence of a
center-stable manifold for the modulated-wave equation

uξ = v,(A.1)

vξ = D−1[ωd∂τu− cdv − f(u)]

near a given defect. We use the notation u = (u, v) and recall the spaces

Y = H1/2(S1) × L2(S1), Y 1 = H1(S1) ×H1/2(S1).

Throughout the appendix, we assume that ud(ξ, τ) is a defect solution of (A.1) so that
ud(ξ, ·) − uwt(kdξ + θd(ξ) − ·) converges to zero as ξ → ∞ for an appropriate differentiable
phase-correction function θd(ξ) with θ′d(ξ) → 0 as ξ → ∞. We will show later how changes of
(ω, c) can be accounted for.

We write (A.1) as the abstract differential equation

uξ = A0u + F(u),(A.2)

where

A0 =

(
0 1

ωdD
−1∂τ −cdD−1

)
, F(u) =

(
0

−D−1f(u)

)
.(A.3)

We use the ansatz

u(ξ, τ) = ud(ξ, θ(ξ) + τ) + w(ξ, τ)(A.4)

together with the pointwise normalization

〈w(ξ, ·), ∂τud(ξ, θ(ξ) + ·)〉Y = 0.(A.5)

We emphasize that we do not shift w relative to the group since this would change the type
of the equation we are considering. Equation (A.2) becomes

θ′∂τud(ξ, θ(ξ) + ·) + wξ = A0w + F(ud(ξ, θ(ξ) + ·) + w) −F(ud(ξ, θ(ξ) + ·)).(A.6)

For later use, we differentiate (A.5) and obtain the relation

〈∂ξw(ξ, ·), ∂τud(ξ, θ(ξ) + ·)〉 = −〈w(ξ, ·), [∂ξ + θ′(ξ)∂τ ]∂τud(ξ, θ(ξ) + ·)〉.(A.7)
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From now on, we shall use the notation uθ(ξ) := u(ξ, θ(ξ)+ ·). To derive differential equations
for θ and w, we take the scalar product of (A.6) with ∂τud(ξ, θ(ξ) + ·) and substitute (A.7),
which gives the equation

θξ =
1

|∂τud|2 − 〈w, ∂ττuθ
d〉

(〈
∂τξu

θ
d,w

〉
+
〈
∂τu

θ
d,A0w + F(uθ

d + w) −F(uθ
d)
〉)

(A.8)

= B0(θ)w + G0(θ,w)

for θ. The scalar products and norms that appear in (A.8) are in Y , and we introduced the
linear operator

B0(θ) :=

〈
∂τξu

θ
d + [A0 + Fu(uθ

d)]
∗∂τuθ

d, ·
〉

|∂τud|2
,(A.9)

where ∗ denotes the adjoint, with the nonlinear term G0(θ,w) making up the difference. For
w, we obtain

wξ = A0w + Fu(uθ
d)w +

[
F(uθ

d + w) −F(uθ
d) −Fu(uθ

d)w
]

(A.10)

− [B0(θ)w + G0(θ,w)] ∂τu
θ
d.

To prepare for the later use of the contraction-mapping principle, we modify the nonlinear
terms. We choose two cut-off functions χ0(r) and χ1(r) such that χ′

0(r) ≥ 0, χ′
1(r) ≤ 0, and

χ0(r) =

{
r for 0 ≤ r ≤ 1,
2 for r ≥ 2,

χ1(r) =

{
1 for 0 ≤ r ≤ 1,
0 for r ≥ 2.

Instead of (A.8) and (A.10), we then consider the equations

θξ = δχ0

(
B0(θ)w + G0(θ,w)

δ

)
,(A.11)

wξ = A(θ)w + G1(θ,w),(A.12)

where

A(θ) = A0 + Fu(uθ
d) −

[
∂τu

θ
d

]
B0(θ),(A.13)

G1(θ,w) = χ1

(
|w|Y
δ

)[
F(uθ

d + w) −F(uθ
d) −Fu(uθ

d)w − G0(θ,w)∂τu
θ
d

]
.

We emphasize that our cut-off preserves the S1-equivariance with respect to the symmetry
θ 	→ θ + θ̌ for θ̌ ∈ R. In addition, the cut-off is chosen so that solutions to the modified
equations (A.11)–(A.12) give solutions to the original equations (A.8)–(A.10) provided |w|Y
is less than δ for all ξ. In other words, there is no restriction on the norm of θ.

We remark that

|G0(θ,w)| = O(|w|2Y ), |∂(θ,w)G0(θ,w)|L(R×Y 1,R) = O(|w|Y ),

|G1(θ,w)|Y = O(|w|2Y 1), |∂(θ,w)G1(θ,w)|L(R×Y 1,Y ) = O(|w|Y 1)
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uniformly in θ, which allows us to replace w → δw for any small δ > 0. We obtain the new
equation

θξ = δχ0(|w|Y )

[
B0(θ)w +

1

δ
G0(θ, δw)

]
= δǦ0(θ,w),(A.14)

wξ = A(θ)w +
1

δ
G1(θ, δw) = A(θ)w + Ǧ1(θ,w).(A.15)

There is a constant C0 > 0 so that Ǧ0 and Ǧ1 are bounded by C0 with Lipschitz constants less
than C0δ uniformly in (θ,w).

Lemma A.1. There are positive numbers κ and C1 such that the equation

wξ = A(θ0)w(A.16)

has exponential dichotomies Φcs
θ0

(ξ, ζ) and Φuu
θ0

(ξ, ζ) with rate κ and constant C1 for each
θ0 ∈ R.

Proof. We will prove the lemma by beginning with an equation for which we know that
exponential dichotomies exist and then successively changing the equation until we arrive at
(A.16). We will make sure that the equations will have exponential dichotomies at each stage
by appealing to the roughness theorem for dichotomies [39] and to Theorem A.4 in section A.2.
To save notation, we consider the linear equation

wξ = Aw

and simply give the different operators A in our chain of equations.
We begin by recalling that the linearization A = A0 +Fu(uwt(kξ+ θ0)) about the asymp-

totic wave train has center-stable and strong-unstable exponential dichotomies uniformly in θ0
by [34, Chapter 2]. Since θ′d(ξ) → 0 as ξ → ∞, Theorem A.4 in section A.2 implies that there
is a ξ0 > 0 so that A0 +Fu(uwt(kξ+θd(ξ))) has center-stable and strong-unstable exponential
dichotomies for ξ ≥ ξ0. Invoking the roughness theorem [39, Theorem 1] finally shows that
A0 + Fu(ud(ξ)) has center-stable and strong-unstable dichotomies for ξ ≥ 0 with rate κ and
constant C1.

In summary, we showed that

wξ = [A0 + Fu(ud(ξ))]w(A.17)

has center-stable and strong-unstable dichotomies for ξ ≥ 0. It therefore remains to establish
the same result for

wξ = [A0 + Fu(ud(ξ)) − [∂τud]B0(0)]w,(A.18)

where θ ≡ 0. Note that, by construction, any solution w(ξ) of (A.18) for which 〈w(0), ∂τud(0)〉
= 0 satisfies

〈w(ξ), ∂τud(ξ)〉 = 0(A.19)

for all ξ. It is then not difficult to see that (A.18) restricted to solutions that satisfy (A.19) has
center-stable and strong-unstable dichotomies since (A.18) is merely part of the decomposition
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of solutions to (A.17) into w(ξ) and α(ξ)∂τud(ξ) for real-valued functions α. Since we wish
to consider (A.18) for all w, we have to calculate the solution to (A.18) with initial data
w(0) = ∂τud(0). Fortunately, it is easy to see that α(ξ)∂τud(ξ) is the desired solution to
(A.18), where α(ξ) satisfies

αξ = −α d

dξ

[
log |∂τud(ξ)|2Y

]
, α(0) = 1,

so that α(ξ) = |∂τud(0)|2Y /|∂τud(ξ)|2Y for all ξ. This shows that (A.18) with w ∈ Y has
center-stable and strong-unstable dichotomies for ξ ≥ 0. The remaining statements are once
more a consequence of Theorem A.4.

The following corollary summarizes the first part of the proof of the preceding lemma.
Corollary A.2. The linearization

wξ = [A0 + Fu(ud(ξ))]w

about the defect has exponential dichotomies in appropriate weighted spaces if and only if the
linearization about the asymptotic wave trains has dichotomies in these spaces.

For each η ∈ R, we define the spaces

Yη = L2
η(R

+, Y ), Y1
η = L2

η(R
+, Y 1) ∩H1

η (R+, Y ),(A.20)

where L2
η refers to the exponentially weighted L2-space with norm

|u|L2
η(R+) = |e−ηξu(ξ)|L2(R+).

We are interested in proving the existence of a center-stable manifold of class C�, say, for some
integer � > 0 that we fix from now on. We will then choose η0 and δ with 0 < δ < η0 < κ/�,
where κ appeared in Lemma A.1.

For every η > δ and each w ∈ Y1
η , (A.14)

θξ = δǦ0(θ,w(ξ)), θ(0) = 0,

can be solved uniquely for θ(ξ), and we have supξ≥0 |θ′(ξ)| ≤ C0δ. Furthermore, the function
w 	→ θ is Lipschitz as a map from Y1

η into itself with Lipschitz constant bounded by C0δ/(η−δ)
(see [42, Lemma 2.4(ii)]). We denote this map by θ = θ[w].

Thus, it remains to solve (A.15) for w, which reads

wξ = A(θ[w])w + Ǧ1(θ[w],w)(A.21)

after substituting θ = θ[w]. After decreasing δ > 0 if necessary, Lemma A.1 together with the
properties of the map w 	→ θ[w] imply that the linear part of (A.21) has center-stable and
strong-unstable dichotomies Φcs

θ[w](ξ, ζ) and Φuu
θ[w](ξ, ζ), respectively, which allows us to write

(A.21) as the integral equation

w(ξ) = Φcs
θ[w](ξ, 0)wcs

0 +

∫ ξ

0
Φcs
θ[w](ξ, ζ)Ǧ1(θ[w](ζ),w(ζ)) dζ(A.22)

+

∫ ξ

∞
Φuu
θ[w](ξ, ζ)Ǧ1(θ[w](ζ),w(ζ)) dζ.
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From this point on, we can proceed, with very minor modifications, as in the proof of Fenichel’s
theorem given in [42, section 2 and Appendix A] by setting up a contraction-mapping argument
on the space Y1

η0
. Since the proof in [42] is very detailed, we decided not to repeat it here. We

should, however, comment on an additional result that we need to make the proof in [42] work.
In order to apply the arguments on [42, page 73], we need the following optimal-regularity
result.

Lemma A.3. If we fix any function θ(ξ) with supξ≥0 |θ′(ξ)| ≤ C0δ and denote by Φcs
θ (ξ, ζ)

and Φuu
θ (ξ, ζ) the dichotomies of

wξ = A(θ(ξ))w,

then the operator S : Yη → Y1
η defined by

[Sg](ξ) =

∫ ξ

0
Φcs
θ (ξ, ζ)g(ζ) dζ +

∫ ξ

∞
Φuu
θ (ξ, ζ)g(ζ) dζ

is well defined and bounded as long as 0 < η < κ.
Proof. Define Eu

0 = Rg(Φuu
θ (0, 0)), and consider the operator

T : D(T ) −→ Yη, u 	−→ dw

dξ
−A(θ(·))w(A.23)

with domain

D(T ) = Y1
η ∩ {w ∈ Y1

η ; w(0) ∈ Eu
0}.(A.24)

It follows as in [49, section 5.2] that T is a closed unbounded operator on Yη with inverse
given by S, which proves the lemma.

The optimal-regularity result allows us also to prove smooth dependence of the fixed point
on the parameters (ω, c). Indeed, if we define

F̌(ǔ) =

(
v

−ω̌D−1∂τu− čD−1v −D−1f(u)

)
, ǔ = (u, v, ω̌, č),

we can replace u and F by ǔ and F̌ and proceed exactly as above.
Finally, we mention that the resulting center-stable manifold is constructed in the arti-

ficially augmented phase space w ∈ Y 1. The intersection of this manifold with the smooth
bundle defined by (A.5) is transverse, since the normal direction to the bundle is contained in
the center subspace. Therefore, the “true” center-stable manifold, defined as the intersection
of the center-stable manifold that we constructed above and the bundle given by (A.5), is the
desired smooth and flow-invariant center-stable manifold. The statements about fibers can be
proved as in [42].

A.2. Slowly varying coefficients. We consider the equation

wξ = A(θ)w(A.25)
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for a given function θ = θ(ξ), where A(θ) has been defined in (A.13). We assume that (A.25)
has an exponential dichotomy on R

+ for each constant function θ(ξ) ≡ θ0 ∈ R and that the
rate κ and the constant C of the dichotomies can be chosen independently of θ0 ∈ R.

The following theorem, proved in [7, 24] for ODEs and PDEs, respectively, shows that
(A.25) then has dichotomies for any slowly varying function θ(ξ).

Theorem A.4. There are positive constants ε0, κ̌, and Č such that (A.25) has an exponen-
tial dichotomy on R

+ with rate κ̌ and constant Č for each differentiable function θ(ξ) with
θ(0) = 0 and supξ≥0 |θ′(ξ)| ≤ ε0.

Proof. We denote by Φs
θ0

(ξ, ζ) and Φu
θ0

(ξ, ζ) the exponential dichotomies of the equation

wξ = A(θ0)w

for constant functions θ(ξ) ≡ θ0 ∈ R. Since the θ0-dependent terms of the operator A(θ0)
are bounded and depend smoothly on θ0 (see (A.13) and (A.9)), the robustness theorem for
exponential dichotomies [7, 24, 39] implies that these dichotomies can be chosen to depend
smoothly on θ0 ∈ R. In fact, there are positive constants C and κ such that∥∥∥∥dΦs

θ0

dθ
(ξ, ζ)

∥∥∥∥+

∥∥∥∥dΦu
θ0

dθ
(ζ, ξ)

∥∥∥∥ ≤ Ce−κ|ξ−ζ|(A.26)

uniformly in ξ ≥ ζ ≥ 0. We denote by Eu
0 the range of the unstable projection Φu

0(0, 0) for
θ0 = 0.

Next, pick a function θ(ξ) so that θ(0) = 0 and supξ≥0 |θ′(ξ)| ≤ ε0. Consider the operator

T (θ) : D(T (θ)) −→ L2(R+, Y ), u 	−→ du

dξ
−A(θ(·))u(A.27)

with domain

D(T (θ)) = L2(R+, Y 1) ∩ {u ∈ H1(R+, Y ); u(0) ∈ Eu
0},(A.28)

which is independent of θ. We may consider T as a closed unbounded operator on L2(R+, Y ).
If we can prove that T (θ) has a bounded inverse with bounds that are independent of θ, then
the theorem is proved as we may then proceed as in [49, section 5.3.1] to construct exponential
dichotomies of (A.25) with constants and rates that do not depend on θ.

Thus, we have to solve the equation

du

dξ
= A(θ(ξ))u + g(ξ)(A.29)

for a given g ∈ L2(R+, Y ). We define

u(ξ) =
[
Ľ(θ)g

]
(ξ) =

∫ ξ

0
Φs
θ(ξ)(ξ, ζ)g(ζ) dζ +

∫ ξ

∞
Φu
θ(ξ)(ξ, ζ)g(ζ) dζ(A.30)

and set Ľ(θ)g := u. It follows from [49] that u(ξ) lies in D(T (θ)) and that

du

dξ
= A(θ(ξ))u + g(ξ) + [S(θ)g] (ξ),(A.31)
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where

[S(θ)g] (ξ) =

[∫ ξ

0

dΦs
θ(ξ)

dθ
(ξ, ζ)g(ζ) dζ +

∫ ξ

∞

dΦu
θ(ξ)

dθ
(ξ, ζ)g(ζ) dζ

]
θ′(ξ).(A.32)

Using (A.26), we see that

S(θ) : L2(R+, Y ) −→ L2(R+, Y )

with ‖S(θ)‖ ≤ ε0C1 for some C1 > 0 that does not depend on θ. Therefore, 1 + S(θ) is
invertible on L2(R+, Y ) uniformly in θ provided ε0 > 0 is smaller than 2/C1. The desired
solution to (A.29) is then given by

u := L(θ)g = Ľ(θ)[1 + S(θ)]−1g,

where Ľ(θ) has been defined in (A.30). This proves that T (θ) has a bounded inverse on
L2(R+, Y ) and, together with the fact that T (θ) is closed, shows that the inverse is bounded
as an operator into the domain of T (θ). Since the bounds are clearly independent of θ, we
have proved our claim and therefore the theorem.

Appendix B. Parameter values for the numerical simulations. The numerical simulations
in Figure 1.2(i) and (ii) show the v-component of solutions to the Brusselator

ut = d1uxx + a+ (b+ 1)u+ u2v,(B.1)

vt = d2vxx + bu− u2v

on the interval [0, L] with Neumann boundary conditions. The parameters are as in [38] so
that

d1 = 4.11, d2 = 9.73, a = 2.5, b = 10.0.

The length L of the spatial interval is chosen between 250 and 650. Sources and sinks are
created from the initial condition

(u0, v0)(x) =

(
a+

1

2
tanh

(
x− L

2

)
,
b

a
+

1

10
cosx

)
,

which excites both Turing and Hopf modes. We solved the system (B.1) using a forward Euler
scheme in time and centered finite differences in space.
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G. Dangelmayr, B. Fiedler, K. Kirchgässner, and A. Mielke, eds., Pitman Res. Notes Math. Ser. 352,
Longman, Harlow, UK, 1996.

[35] M. Murata, Large time asymptotics for fundamental solutions of diffusion equations, Tohoku Math.
J. (2), 37 (1985), pp. 151–195.

[36] L. Pastur, M.-T. Westra, and W. van de Water, Sources and sinks in 1D traveling waves, Phys. D,
174 (2003), pp. 71–83.

[37] L. Pastur, M.-T. Westra, D. Snouck, W. van de Water, M. van Hecke, C. Storm, and W. van

Saarloos, Sources and holes in a one-dimensional traveling-wave convection experiment, Phys. Rev.
E (3), 67 (2003), 036305.

[38] J.-J. Perraud, A. De Wit, E. Dulos, P. De Kepper, G. Dewel, and P. Borckmans, One-
dimensional “spirals”: Novel asynchronous chemical wave sources, Phys. Rev. Lett., 71 (1993),
pp. 1272–1275.

[39] D. Peterhof, B. Sandstede, and A. Scheel, Exponential dichotomies for solitary-wave solutions of
semilinear elliptic equations on infinite cylinders, J. Differential Equations, 140 (1997), pp. 266–308.

[40] J. Rademacher, Tracefiring of Pulses, in preparation.
[41] W. van Saarloos and P. C. Hohenberg, Fronts, pulses, sources and sinks in generalized complex

Ginzburg–Landau equations, Phys. D, 56 (1992), pp. 303–367.
[42] K. Sakamoto, Invariant manifolds in singular perturbation problems for ordinary differential equations,

Proc. Roy. Soc. Edinburgh Sect. A, 116 (1990), pp. 45–78.
[43] B. Sandstede, Stability of travelling waves, in Handbook of Dynamical Systems II, B. Fiedler, ed.,

Elsevier, Amsterdam, 2002, pp. 983–1055.
[44] B. Sandstede and A. Scheel, Essential instability of pulses, and bifurcations to modulated travelling

waves, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), pp. 1263–1290.
[45] B. Sandstede and A. Scheel, Spectral stability of modulated travelling waves bifurcating near essential

instabilities, Proc. Roy. Soc. Edinburgh Sect. A, 130 (2000), pp. 419–448.
[46] B. Sandstede and A. Scheel, Absolute versus convective instability of spiral waves, Phys. Rev. E (3),

62 (2000), pp. 7708–7714.
[47] B. Sandstede and A. Scheel, Absolute and convective instabilities of waves on unbounded and large

bounded domains, Phys. D, 145 (2000), pp. 233–277.
[48] B. Sandstede and A. Scheel, Essential instabilities of fronts: Bifurcation, and bifurcation failure, Dyn.

Syst., 16 (2001), pp. 1–28.
[49] B. Sandstede and A. Scheel, On the structure of spectra of modulated travelling waves, Math. Nachr.,

232 (2001), pp. 39–93.
[50] B. Sandstede and A. Scheel, Evans function and blow-up methods in critical eigenvalue problems,

Discrete Contin. Dyn. Syst. Ser. B, to appear.
[51] B. Sandstede and A. Scheel, Absolute Instabilities of Pulses, preprint, The Ohio State University,

Columbus, OH, 2003.
[52] B. Sandstede and A. Scheel, Period-Doubling Bifurcations of Spiral Waves, in preparation.
[53] B. Sandstede and A. Scheel, Stability and Instability of Spiral Waves, in preparation.
[54] D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math., 22 (1976),

pp. 312–355.
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Subject to the Rigid-Lid Approximation∗
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Abstract. We develop a particle-mesh method for two-layer shallow-water equations subject to the rigid-lid
approximation. The method is based on the recently proposed Hamiltonian particle-mesh (HPM)
method and the interpretation of the rigid-lid approximation as a set of holonomic constraints.
The suggested spatial discretization leads to a constrained Hamiltonian system of ODEs which is
integrated in time using a variant of the symplectic SHAKE/RATTLE algorithm. It is demonstrated
that the elimination of external gravity waves by the rigid-lid approximation can be achieved in a
computationally stable and efficient way.
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1. Introduction. Theorists frequently regard the ocean as a two-layer fluid with the in-
terface between layers corresponding to the main thermocline. This idealization is perhaps
most appropriate in the northwestern subtropical North Atlantic. Consider, then, a rotating
fluid composed of two immiscible layers with different constant densities ρ1 < ρ2 over a flat
bottom topography at z = 0. See Figure 1.1 and the excellent exposition [21]. Under the
assumption that ρ1 ≈ ρ2, the associated two-layer shallow-water equations are

D

Dti
ui + fu⊥

i =

{
−g∇x(h1 + h2), i = 1,
−g∇x(h1 + h2) − g′∇xh2, i = 2,

(1.1)

where ui ≡ (ui, vi)
T is the horizontal velocity in the ith layer, f > 0 is the Coriolis parameter,

u⊥
i ≡ (−vi, ui)T ,

D

Dti
≡ ∂

∂t
+ ui · ∇x, and g′ ≡ ρ2 − ρ1

ρ2
g
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Figure 1.1. Two-layer shallow-water model with rigid lid.

is the reduced gravity.1 By assumption, g′ � g. Each layer-depth hi satisfies the continuity
equation

∂hi
∂t

+ ∇x · (hiui) = 0.(1.2)

It is also reasonable to assume that the combined flow in both layers is incompressible, which
leads to the rigid-lid constraint

h ≡ h1 + h2 = H = const.(1.3)

Equation (1.1) is replaced by

D

Dti
ui + fu⊥

i =

{
−∇xp, i = 1,
−∇xp− g′∇xh2, i = 2,

where p is the pressure field enforcing the rigid-lid constraint (1.3) which, after differentiation
in time, is equivalent to

∇x · (h1u1) + ∇x · (h2u2) = 0.

We also make the simplifying assumption that both layers have a (nondimensionalized) mean
layer-depth of Hi = 1, i.e., H = H1 + H2 = 2, and replace reduced gravity g′ with an
appropriate constant c0.

In a Lagrangian description of the model, we introduce a continuum of fluid particles
Xi(ai, t) ≡ (Xi(ai, t), Yi(ai, t))

T in each layer i = 1, 2, which are labeled/marked by their

1Equation (1.1) is a slight variation of the formulation given in [21, p. 85]. While (1.1) leads to a Hamiltonian
formulation, no obvious Hamiltonian interpretation of (12.3) in [21] could be found. However, both formulations
are identical under the rigid-lid approximation.
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initial positions ai = Xi(ai, 0). Hence the independent variables are time t and labels ai.
The material time derivative D/Dt becomes a partial derivative which, with a slight abuse of
notation, we denote by d/dt.

Let hoi (ai) denote the initial layer-depth at t = 0. Then the layer-depth is given at any
time t by

hi(x, t) =

∫
hoi (a) δ(x − Xi(ai, t)) d

2ai, i = 1, 2,(1.4)

where δ denotes the Dirac delta function. This formula and

d

dt
Xi = ui

replace the continuity equation (1.2) in a Lagrangian description of fluid dynamics. Hence we
finally obtain the constrained infinite-dimensional Newtonian equations of motion

d

dt
ui = −fu⊥

i −
{

∇X1p, i = 1,
∇X2p+ c0∇X2h2, i = 2,

d

dt
Xi = ui,

0 = h1(x, t) + h2(x, t) −H.

In the following section we describe a spatial discretization for this model.

2. The Hamiltonian particle-mesh (HPM) method with rigid-lid constraint. To simplify
the discussion, we assume a double periodic domain x ∈ R ≡ [−π,+π)2 and introduce a
regular grid xpq on R with equal grid spacing ∆x in the x- and y-direction. Let ψpq(x) denote
the tensor product cubic B-spline centered at xpq ≡ (xpq, ypq)T , i.e.,

ψpq(x) ≡ ψcs

(
xpq − x

∆x

)
· ψcs

(
ypq − y

∆x

)
,

where ψcs(r) is the cubic spline

ψcs(r) ≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2
3 − |r|2 + 1

2 |r|3, |r| ≤ 1,

1
6(2 − |r|)3, 1 < |r| ≤ 2,

0, |r| > 2.

These basis functions form a partition of unity, i.e.,∑
p,q

ψpq(x) = 1.

This implies ∑
p,q

∇xψ
pq(x) = 0,
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which is a desirable property when computing gradients. In each layer i = 1, 2, we introduce
N discrete particles Xk

i , k = 1, . . . , N , with masses mk
i such that2

hoi (x
pq) ≈

N∑
k=1

mk
i ψ

pq(Xk
i )

at time t = 0. More specifically, we approximate the layer-depth h2 on the grid by

hpq2 ≡
N∑
k=1

mk
2 ψ

pq(Xk
2)

and the total layer-depth by

hpq(X) ≡
N∑
k=1

(
mk

1 ψ
pq(Xk

1) +mk
2ψ

pq(Xk
2)
)
,

where, for later use, we introduced the notation hpq(X) to indicate that hpq depends on all
particle positions Xk

i collected in the vector X.
So far we have essentially followed the standard methodology for deriving particle-mesh

(PM) methods [10, 4]. The following steps are crucial to the HPM method as introduced
in [7] for geophysical fluid dynamics simulations. Even though the layer-depth in rotating
fluids often stays relatively smooth, the numerical approximations hpq1 and hpq will develop
some nonsmoothness in strongly mixing flows due to the finite number of particles used to
resolve the fluid motion; this tends to destabilize PM methods. We suggested in [7] to apply
a (discretized) smoothing operator3

S = (1 − α2∇2
x)−p(2.1)

to the layer-depth over the fixed Eulerian grid xpq with a smoothing length α = 2∆x and
an exponent p = 2. Let us denote the resulting smoothed approximations to hpq2 and hpq,
respectively, by ĥpq2 and ĥpq. While this smoothing approach has been shown to work very well
for compressible flows, it cannot be used to enforce a regularized incompressibility condition
(1.3). To see this, note that S is an invertible operator and, hence, for the (constant) layer-
depth approximation,

hpq(X) = ĥpq(X) = 0.

Instead, the following regularization strategy proved successful. We introduce a meta-
grid with grid-spacing ∆x̄ ≡ 2∆x and grid points denoted by x̄mn. Let φmn(x) denote the
associated tensor product B-spline centered at x̄mn ≡ (x̄mn, ȳmn)T , i.e.,

φmn(x) ≡ ψcs

(
x̄mn − x

∆x̄

)
· ψcs

(
ȳmn − y

∆x̄

)
.

2If the particles Xk
i are initially placed on a regular grid with equal spacing ∆a in the x- and y-direction,

then, following (1.4), one can use mk
i ≡ ho

i (X
k
i ) (∆a/∆x)2.

3In case that the direct numerical implementation of the smoothing operator S is too expensive, one could
replace S with, e.g., a Shapiro filter [23]. In the present paper, we used FFT to implement S.
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Then an averaged (coarse-grained) total layer-depth is defined by

h̄mn(X) ≡ 1

4

∑
pq

φmn(xpq)hpq(X).

The discrete pressure approximation p̄mn is also defined over the coarse grid x̄mn, and the
resulting total force acting on particle Xk

i (excluding the Coriolis contribution) is given by

Fk
i (X, p̄) ≡ −

∑
p,q

∇Xk
i
ψpq(Xk

i ) ×

⎧⎪⎪⎨
⎪⎪⎩

(∑
m,n φ

mn(xpq) p̄mn
)
, i = 1,

(
c0ĥ

pq
2 +

∑
m,n φ

mn(xpq) p̄mn
)
, i = 2,

where p̄ denotes the vector of pressure variables p̄mn. We observe numerically that this
coarse graining keeps the pressure gradient sufficiently smooth. This regularization of the
pressure field was found necessary for stable computations. Other coarse graining procedures
are certainly feasible and will be the subject of further research.

We would like to point out that Holm has revealed in [11] a close relation between velocity
smoothing, as fundamental to the α-Euler models [12], and a regularization of the pressure
gradient. A closer investigation of our pressure regularization procedure and its relation to
the results of [11] is left for future research.

Another important aspect of the HPM method is that the forces are derived from an exact
gradient. This implies a number of very desirable conservation properties, such as conservation
of circulation, potential vorticity (PV), total mass, and energy [8, 5]. We note that energy
conserving variants of PM methods have been considered, for example, in [16] and [14] in the
context of plasma physics simulations.

The discrete set of constrained Newtonian equations of motion is now

d

dt
uk
i = fki Juk

i + Fk
i (X, p̄), J ≡

[
0 1
−1 0

]
,(2.2)

d

dt
Xk

i = uk
i ,(2.3)

0 = h̄mn(X) −H.(2.4)

Here fki denotes the value of the Coriolis parameter at particle location Xk
i . In the following,

let us first assume that the Coriolis parameter f is constant, i.e., f = f0. Later we will consider
the more general case of variable f . Then (2.2)–(2.4) give a constrained Hamiltonian system
with the p̄mn variables acting as Lagrange multipliers to enforce the holonomic constraints
(2.4). The Hamiltonian is

H(X,v, p̄) ≡
2∑

i=1

N∑
k=1

1

2mk
i

vk
i · vk

i +
c0
2

∑
p,q

ĥpq2 (hpq2 −H2) +
∑
m,n

(h̄mn −H)p̄mn
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with conjugate momenta vk
i ≡ mk

i u
k
i . Equations (2.2)–(2.4) are equivalent to

d

dt
vk
i = f0J∇vk

i
H−∇Xk

i
H,

d

dt
Xk

i = ∇vk
i
H,

0 = ∇p̄mnH,

i = 1, 2, k = 1, . . . , N . The symplectic two-form [2] is given by

ω ≡
∑
i,k

[
dXk

i ∧ dvk
i +

f0

2
dXk

i ∧ J−1dXk
i

]
,(2.5)

which is preserved along solutions.

3. Symplectic time-stepping algorithm. Following [13] and [17], we develop a variant of
the popular SHAKE/RATTLE algorithm [1, 20, 15] for Hamiltonian systems with holonomic
constraints. In particular, the following two steps are performed during each time-step.

Step 1.

uk
i (tn+1/2) = uk

i (tn) +
∆t

2

{
f0Juk

i (tn+1/2) + Fk
i (X(tn), p̄(tn+1/2))

}
,(3.1)

Xk
i (tn+1) = Xk

i (tn) + ∆tuk
i (tn+1/2),(3.2)

0 = h̄mn(X(tn+1)) −H,(3.3)

which requires the solution of a nonlinear system in the pressure variable p̄(tn+1/2) to satisfy
the holonomic constraint (3.3).

Step 2.

uk
i (tn+1) = uk

i (tn+1/2) +
∆t

2

{
f0Juk

i (tn+1/2) + Fk
i (X(tn+1), p̄(tn+1/2))

}
.(3.4)

The scheme can be rewritten in terms of the canonical momenta vk
i (tn), and the method

conserves the symplectic structure (2.5) from time-step to time-step, i.e., the method is sym-
plectic [22]. Backward error analysis [3, 9, 18] implies excellent conservation of energy. It
is important that the method used to solve the holonomic constraints (3.3) is iterated to
convergence; otherwise, the symplectic property of the algorithm is lost.

If the Coriolis parameter f is not constant, then fki ≡ f(Xk
i (tn)) is used in (3.1) and

fki ≡ f(Xk
i (tn+1)) in (3.4) instead of f0.

The nonlinear system of equations in the pressure variable p̄(tn+1/2) can be solved by
the following quasi-Newton method. Let us denote the iteration index by l ≥ 0. Then,
given some approximation p̄[l], we can compute the associated approximation to the vector
of particle positions X[l](tn+1) using (3.1)–(3.2) with p̄(tn+1/2) = p̄[l]. The next pressure
approximation

p̄[l+1] ≡ p̄[l] + ∆p[l]
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is then found by solving

A∆p[l] = h̄mn(X[l](tn+1)) −H.

The matrix A has entries

amn
m′n′ ≡ ∆t2

2

∑
k,i,p,q,p′,q′

mk
i φ

mn(xpq)
(
∇ψpq(Xk

i ) · ∇ψp′q′(Xk
i )
)
φm

′n′
(xp′q′)

and is computed only once at the beginning of the simulation with Xk
i = Xk

i (0). It is found
that the matrix A changes little along the numerical solutions Xk

i = Xk
i (tn). The initial p̄[0]

is found at each time-step from the previous pressure approximation by linear extrapolation,
i.e.,

p̄[0] ≡ 2p̄(tn−1/2) − p̄(tn−3/2).

4. Semi-implicit methods. The step-size of the standard HPM method applied to the
two-layer shallow-water equations (1.1) is restricted by the highest frequency of the external
gravity waves, which is approximately

ωmax ≡
√
c0H

√
g

g′
kmax,

where kmax is the largest computational wave number. This severe step-size restriction mo-
tivated the introduction of the constrained HPM method of the previous section. However,
let us look back for a moment at the unconstrained shallow-water equations (1.1). The
semi-implicit method, as pioneered by Robert (see [6]), avoids the step-size restriction of any
standard explicit method while also being easy to implement (in particular when combined
with a pseudospectral (PS) discretization in space [6]). Let us then briefly review the basic
idea behind the semi-implicit method for a one-layer shallow-water model with all advection
terms ignored, i.e.,

ut = f0Ju − c∇xh, c ≡ c0
g

g′
,

ht = −H∇x · u.

The (external) Rossby deformation radius [21] is equal to

λext ≡
√
cH

f0
.

Upon only discretizing in time, the semi-implicit method results in

u(tn+1) − u(tn−1)

2∆t
= f0Ju(tn) − c∇x

h(tn+1) + h(tn−1)

2
,

h(tn+1) − h(tn−1)

2∆t
= −H∇x · u(tn+1) + u(tn−1)

2
.
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Let us define ĥ(tn) ≡ (h(tn+1) + h(tn−1))/2. Then, at each time-step, ĥ(tn) is determined by
the linear system

(
1 − cH∆t2∇2

x

)
ĥ(tn) = h(tn−1) − ∆tH∇x · u(tn−1) − ∆t2f0H∇x × u(tn).

This gives

(
1 − cH∆t2∇2

x

)
ĥ(tn) = h(tn) + O(∆t2),

which, upon ignoring terms of order O(∆t2), we will now use as a defining equation for ĥ(tn),
i.e.,

ĥ(tn) ≡ Ah(tn), A ≡
(
1 − cH∆t2∇2

x

)−1
.

With this new definition, the semi-implicit method becomes “explicit,” i.e.,

u(tn+1) − u(tn−1)

2∆t
= f0Ju(tn) − c∇xAh(tn),

h(tn+1) − h(tn−1)

2∆t
= −H∇x · u(tn+1) + u(tn−1)

2
.

This reformulation has the same stability properties as the original semi-implicit method and
easily generalizes to the fully nonlinear shallow-water equations.

The important point is that the operator A becomes equivalent to the smoothing operator
(2.1) used in the HPM method for p = 1 and α =

√
cH∆t. Continuing along this line of

thought, we conclude that the HPM method can be made unconditionally stable if used with
a smoothing operator

S =
(
1 − cH∆t2∇2

x

)−1
(4.1)

applied to the total layer-depth h = h1 + h2 in (1.1). However, for ∆t severely violating the
standard CFL condition [6], we will have

√
cH∆t 
 ∆x, and the time-stepping will lead to

excessive smoothing of the total layer-depth. The same argument applies, of course, to the
semi-implicit method.

5. Barotropic and baroclinic motion. Let us introduce the continuous Eulerian velocity
approximation

u1(x, t) ≡
∑N

k=1 uk
1(t)ψ

pq(Xk
1(t))∑N

k=1 ψ
pq(Xk

1(t))

for the first layer, and

u2(x, t) ≡
∑N

k=1 uk
2(t)ψ

pq(Xk
2(t))∑N

k=1 ψ
pq(Xk

2(t))
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for the second layer, respectively. Assuming again that H1 = H2 = 1, the barotropic velocity
contribution to the flow is defined by

u(x, t) ≡ 1

2
{u1(x, t) + u2(x, t)} ,

which represents synchronized motion in both layers, and the baroclinic mode is defined by

∆u(x, t) ≡ 1

2
{u1(x, t) − u2(x, t)} ,

which represents fluid motions pointing in opposite directions (the thermal wind).
If initially ∆u = 0 and h2 = H2 = 1, then the available potential energy (APE)

Eap ≡ c0
2

∑
p,q

ĥpq2 (hpq2 −H2)

is zero and the motion can be reduced to a purely barotropic single layer shallow-water model
with a rigid-lid approximation (corresponding to an infinite Rossby deformation radius). On
the contrary, h2 �= H2 leads to baroclinic motion which is strongly dependent upon its length
scale λ relative to the internal Rossby deformation radius

λint ≡
√
c0
f0

√
H1H2

H1 +H2
=

√
c0

2f2
0

.

For length-scales λ
 λint, most of the energy is stored in the layer-depth variation h2 (i.e., in
the APE contribution to H). This energy is eventually transformed into kinetic (barotropic)
energy in a process called baroclinic instability. In this process the baroclinic modes are
reduced to those of length-scale λ ∼ λint unless external forcing leads to the activation of
large-scale variations in h2 (such as tropical heating and polar cooling).

Another important concept is that of geostrophic balance. By this we mean that the
velocities ui in each layer stay close to their geostrophic wind approximations

ugw,1 ≡ f−1
0 ∇⊥

x p, ugw,2 ≡ f−1
0 ∇⊥

x (p+ c0h2)

if initialized appropriately. These two definitions imply in particular the balanced thermal
wind relation

∆uthw ≡ − c0
2f0

∇⊥
x h2.(5.1)

The associated baroclinic stream function τ ≡ −c0/(2f0)h2 represents the vertically averaged
temperature anomaly of the fluid.

The geostrophic approximation is valid for small Rossby number flows, i.e.,

Ro ≡ U

λf0
� 1,

where U and λ are the typical velocity- and length-scales, respectively, for the flow under
consideration. For a precise scaling analysis see [21].
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To model baroclinic instabilities within the framework of double periodic boundary con-
ditions x = (x, y)T ∈ R ≡ [−π,+π)2, we defined a variable Coriolis parameter f by

f(y) ≡ f0 + β sin y.

Hence, near y = 0, we approximately reproduce a β-plane approximation f ≈ f0 + βy. See
[21] for a detailed explanation of the baroclinic instability.

6. Numerical experiments. We compute the solution starting from a purely baroclinic
initial state defined by

u2 ≡ −u1 ≡ c0
2f

∇⊥
x (Sho2),

where c0 ≡ 1, f ≡
√

2(1 + 0.2 sin y),

ho2(x) ≡ 1

1 + 0.08 exp(−0.85‖x‖2)
+ δ,

with the constant δ chosen such that hpq2 has a mean value equal to one. The initial state
moves slowly to the left along the x-axis and breaks up into smaller (barotropic and baroclinic)
vortices. The internal deformation radius is λint = 0.5.

The spatial grid resolution for the rigid-lid HPM method is ∆x = 2π/128 ≈ 0.0491
with N = 262144 particles per layer, i.e., ∆a = ∆x/4. The smoothing length in (2.1) is
α = 2∆x ≈ 0.0982 and the operator S is implemented using an FFT. We also implemented
a PS method for the standard Eulerian formulation of the compressible two-layer shallow-
water equations with ∆x = 2π/256 ≈ 0.0245 and a semi-implicit discretization in time (see
[6]). We stress that no hyperdiffusion was applied. The external deformation radius for the
unconstrained shallow-water model is λext = 20, i.e., g′ = g/400 and c = 400.

Both methods were implemented using MATLAB, and mex-files were used for the PM
computations within the HPM method. Note that

√
g′/g = 20 implies that a standard HPM

discretization of the unfiltered equation (1.1) would require a step-size about 30 times smaller
than the rigid-lid HPM method. This severe step-size restriction does not apply to the semi-
implicit PS method. However, it was found that the largest possible step-size for the rigid-lid
HPM method is ∆t = 0.5, while the semi-implicit PS method requires ∆t ≤ 0.07 to be stable
for the given initial data and t ∈ [0, 150].

Figure 6.1 shows the time evolution of the baroclinic and barotropic vorticity fields over a
time interval [0, 150] using a step-size of ∆t = 0.1. The corresponding results from the semi-
implicit PS method with step-size ∆t = 0.01 and initial ho1 ≡ 2−ho2 can be found in Figure 6.2.
Note that this step-size leads to a computational smoothing length of α ≈ 0.2828 
 ∆x ≈
0.0245 in (4.1). We recorded the CPU-time for both simulations and obtained about 36000
time-units for the HPM method and 48000 time-units for the semi-implicit PS method. For
output purposes, the smoothing operator (2.1) was applied to the gridded vorticity fields
to average out fine-scale vorticity filaments. The vorticity fields are identical up to some
small-scale differences over the whole time interval [0, 150].

We also prepared a few videos using the GIF format. One can access these by clicking one
of the following four options:



HAMILTONIAN PARTICLE-MESH METHOD FOR SHALLOW-WATER EQUATIONS 79

−2 0 2
−3

−2

−1

0

1

2

3
baroclinic vorticity at t=0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
barotropic vorticity at t=0

−2 0 2
−3

−2

−1

0

1

2

3
barotropic vorticity at t=50

−2 0 2
−3

−2

−1

0

1

2

3
baroclinic vorticity at t=50

−2 0 2
−3

−2

−1

0

1

2

3
baroclinic vorticity at t=100

−2 0 2
−3

−2

−1

0

1

2

3
barotropic vorticity at t=100

−2 0 2
−3

−2

−1

0

1

2

3
barotropic vorticity at t=150

−2 0 2
−3

−2

−1

0

1

2

3
baroclinic vorticity at t=150

Figure 6.1. HPM simulation for shallow-water model with rigid lid. Top to bottom: time evolution of
vorticity. Left: baroclinic vorticity. Right: barotropic vorticity.

(i) particle motion in top layer,
(ii) particle motion in bottom layer,
(iii) baroclinic vorticity field,
(iv) barotropic vorticity field.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60007_01.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60007_02.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60007_03.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60007_04.gif
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Figure 6.2. PS simulation for shallow-water model without rigid-lid. Top to bottom: time evolution of
vorticity; left: baroclinic vorticity; right: barotropic vorticity.
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Figure 6.3. Diagnostic results.

A few diagnostic results for the rigid-lid and unconstrained simulations can be found in
Figure 6.3. More specifically, let E(tn) denote the total energy of the PM model,

Ekin(tn) ≡
2∑

i=1

N∑
k=1

1

2mk
i

vk
i (tn) · vk

i (tn)

its kinetic energy (KE), and

Eap(tn) ≡ c0
2

∑
p,q

ĥpq2 (tn)[hpq2 (tn) −H2]

its APE. For the incompressible rigid-lid model, we have E(tn) = Ekin(tn) +Eap(tn). Up to a
small potential energy contribution from the total layer-depth, this is essentially also true for
the compressible two-layer model. We plot in Figure 6.3 the scaled quantities E(tn)/E(t0),
Ekin(tn)/E(t0), and Eap(tn)/E(t0) with t0 = 0. Furthermore, we also monitor the norm of
the unbalanced baroclinic velocity contributions

Wunbal(tn) ≡ 1

2
‖∆u(tn) − ∆uthw(tn)‖2

2,

with ∆uthw defined by (5.1). Here all velocities are first approximated over the grid xpq, and
then ‖.‖2 is to be understood as the discrete l2-norm. The scaled variable Wunbal(tn)/E(t0)
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and the numerically induced errors in total energy can be found in Figure 6.3. The quasi-
conservation of balanced motion for both methods, as manifested by the very small ratio
Wunbal(tn)/E(t0), is particularly striking. The Rossby number for the simulation was Ro ≈
0.1 − 0.2. We also observe that the particle method conserves total energy much better than
the semi-implicit PS method.

We would like to point out that the given initial purely baroclinic state is persistent in
the absence of the β-plane effect. Hence the break-up of the initial state into baroclinic and
barotropic motions is triggered by β �= 0.

7. Conclusions. Three dominant themes within geophysical fluid dynamics are (i) con-
servation, (ii) model reduction, and (iii) multiscales. A simple model system that combines all
three of these aspects is provided by the two-layer shallow-water equations. These equations
are Hamiltonian, satisfy conservation laws of PV and circulation, and can be simplified by
filtering out surface gravity waves via the rigid-lid approximation. Geostrophic balance is
of utmost importance for the long-time solution behavior in a small Rossby number regime.
In the present paper, we have demonstrated how these ideas and concepts can be filtered
through to the level of numerical methods. The proposed discrete PM method is Hamiltonian
and conserves circulation/PV along the lines of [8, 5]. Furthermore, symplectic time-stepping
guarantees maintenance of geostrophic balance as an adiabatic invariant [19]. Finally, the
rigid-lid approximation is implemented as a holonomic constraint which allows significant in-
creases in the attainable time-steps. A coarse graining procedure has been implemented to
keep the numerical pressure gradient sufficiently smooth. This technique appears to be related
to regularization techniques discussed in [11].

We hope that the presented PM method can serve as a role model for further developments
on more realistic model systems such as the primitive equations (see [21]).
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Abstract. In this paper we develop numerical methods for integrating general evolution equations ut = F (u),
u(0) = u0, where F is defined on a dense subspace of some Banach space (generally infinite-
dimensional) and is equivariant with respect to the action of a finite-dimensional (not necessarily
compact) Lie group. Such equations typically arise from autonomous PDEs on unbounded domains
that are invariant under the action of the Euclidean group or one of its subgroups. In our approach
we write the solution u(t) as a composition of the action of a time-dependent group element with
a “frozen solution” in the given Banach space. We keep the frozen solution as constant as possible
by introducing a set of algebraic constraints (phase conditions), the number of which is given by
the dimension of the Lie group. The resulting PDAE (partial differential algebraic equation) is then
solved by combining classical numerical methods, such as restriction to a bounded domain with
asymptotic boundary conditions, half-explicit Euler methods in time, and finite differences in space.
We provide applications to reaction-diffusion systems that have traveling wave or spiral solutions in
one and two space dimensions.
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1. Introduction. We consider the numerical solution of general evolution equations

ut = F (u), u(0) = u0,(1.1)

that are equivariant with respect to the action of a finite-dimensional, not necessarily compact
Lie group. Equation (1.1) is considered on a Banach space X, where the mapping F has a
dense domain. Equivariance means that we have a finite-dimensional Lie group G, which
acts on X via a representation a : G �→ GL(X) such that F is equivariant in the sense
F (a(γ)v) = a(γ)F (v) for all γ ∈ G and for all v in the domain of F .

The main applications we have in mind are reaction-diffusion systems on unbounded do-
mains Ω ⊂ R

d such as the semilinear system

ut = ∆u+ f(u), x ∈ Ω, u(0) = u0,(1.2)

where u(x, t) ∈ R
m, and f : R

m �→ R
m is sufficiently smooth. If the domain Ω is invariant

with respect to the action of a Lie group G ⊂ GL(Rd), then this induces an equivariance
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of (1.2) via the action

[a(γ)v](x) = v(γx), x ∈ Ω,

where v is in some suitable function space. In the case of Ω = R
d, equivariance holds with

respect to the Euclidean group G = SE(d). Further symmetries may be induced by special
equivariance properties of the linear and nonlinear parts in (1.2).

Up to now there is a well-developed bifurcation theory for equivariant dynamical sys-
tems that covers the infinite-dimensional case of PDEs and certain aspects of noncompact Lie
groups; see the monographs [12], [6]. In particular, we refer to [13], [23], and the remarkable
series of papers [10], [28], [29], [11]. One of the underlying ideas in the latter papers is to
transform the flow of (1.1) into a so-called skew product form. One part is orthogonal to the
group orbit (of the initial value) and the other part acts within the group orbit and depends
upon the position in the orthogonal direction; compare [10]. Combining this decomposition
with center manifold reductions (see [28], [29]) leads to a powerful tool for studying equiv-
ariant bifurcations in PDEs. In this way, various bifurcations of spiral waves, observed and
interpreted in [1], [3], could be put into a mathematically rigorous framework.

In this paper we propose a numerical method for solving the initial value problem that
makes use of the equivariance by extending the system (1.1) rather than reducing it as in
bifurcation analysis. More precisely, we write the solution u(t) of (1.1) as

u(t) = a(γ(t))v(t),(1.3)

where γ(t) ∈ G and v(t) ∈ X are to be determined. The extra degrees of freedom γ(t) are
compensated for by phase conditions

ψ(v, γ) = 0,(1.4)

the number of which is given by the dimension of the Lie group. The resulting system for
(v(t), γ(t)) (see (2.18)) is an abstract differential algebraic equation, which will be set up and
analyzed in some detail in section 2. The choice of phase condition is crucial for our approach
since it determines the parametrization of the v-orbits.

In section 2.3 we discuss several choices for the function ψ in (1.4) that are based on
minimization or orthogonality principles. In particular, near relative equilibria of (1.1) (i.e.,
solutions of the form u(t) = a(γ(t))v) the phase condition should force the v-part of the
solution to become stationary. For this reason we will sometimes call v(t) the frozen solution
and the transformed system the frozen system.

Applications to parabolic systems (1.2) in one and two space dimensions will be discussed
in sections 2 and 3. The frozen system in this case turns out to be a PDAE (partial differential
algebraic equation), which will be solved in a straightforward manner by a half-explicit Euler
method. For numerical computations one has to restrict the infinite to a finite domain and use
appropriate boundary conditions. After this truncation the original and the frozen systems
are no longer equivalent. For example, when a traveling wave (or a drifting spiral) reaches a
finite boundary in the given system, it will usually die out, while in the frozen system it is
expected to become stationary.
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In section 3 we will discuss several two-dimensional systems from the literature (e.g., Bark-
ley’s spiral system [1], [3], the (λ−ω)-system [18], and the quintic Ginzburg–Landau equation
[7], [8]) that show rigidly rotating spiral waves. Freezing such waves can be delicate because
it depends on the precise choice of phase condition (with or without weighted L2-norms), the
type of numerical discretization (rectangular or polar grid), and on the right choice of the
underlying group. Note that a related approach to ours was developed in [5] with the inten-
tion of using the side constraint in order to fix the tip of a spiral wave. Also in [2] Barkley
mentions the use of a pinning condition or phase condition in order to compute the spiral
wave from a time-independent boundary value problem.

While there have been quite a few numerical bifurcation methods that employ equivariance
with respect to compact and mostly discrete groups (see [14, Ch. 8] for a recent survey) it
seems that equivariance with respect to general Lie groups has not been systematically used
for solving equivariant systems numerically. We expect that, apart from the evolution system
(1.1), our general approach will also be useful for the numerical bifurcation analysis of relative
equilibria and relative periodic orbits.

After preparation of this manuscript we learned of the related work of Rowley et al. [24],
which builds on previous work by Rowley and Marsden [25]. In [25] the idea of splitting the
solutions in the form (2.16) and adding a minimization condition like (2.26) appears in the
context of Karhunen–Loève expansion for systems with symmetry. Equation (2.18) is then
called the reconstruction equation. In [24] the authors generalize this approach to dynamical
systems with self-similar symmetries, which, in addition to the equivariance used in this paper,
allow rescalings of the time variable. Applications to traveling waves in one space dimension
(Kuramoto–Shivashinsky, Burgers) are presented in [25], [24].

2. The general approach.

2.1. Equivariant evolution equations. In this section we set up the technique of decom-
posing the solutions of the evolution equation (1.1) in an abstract setting. Simultaneously, we
treat two important examples (parabolic systems on the line and in the plane) in a formal way
with the details of a proper functional analytic setting given in the subsequent sections. We
assume that (X, || · ||) is a Banach space and Y is a dense subspace on which the operator F
from (1.1) is defined, i.e.,

F :
Y ⊂ X → X,

u �→ F (u),
Y = X.(2.1)

Example 2.1. Consider the parabolic system

ut = Auxx + f(u, ux) =: F (u), −∞ < x <∞,(2.2)

where u(x, t) ∈ R
m, A is a positive definite m ×m matrix and f : R

2m → R
m is assumed to

be sufficiently smooth. If f(0) = 0, and if f and its first derivative are globally bounded, then
(2.1) holds for the choice

Y = H2(R,Rm), X = L2(R,Rm).(2.3)
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Clearly, this excludes solutions that do not decay at ±∞. A more general setting will be
discussed in sections 2.4 and 3.

In this example and in what follows we use Hk(R,Rm), k ≥ 1, to denote the standard
Sobolev space of functions that have generalized derivatives in L2 up to order k ≥ 1.

As a second example we mention the semilinear equation

ut = A∆u+ f(u) =: F (u), x ∈ R
2,(2.4)

where u(x, t) and A are as above and f : R
m → R

m satisfies appropriate smoothness and
boundedness assumptions (see section 4).

We further assume that a finite-dimensional (not necessarily compact) Lie group (G, ◦) is
given that acts on X via a representation in GL(X); that is, we have a homomorphism (cf.
[6, Ch. 4.3.1])

a :
G→ GL(X)

γ �→ a(γ)
(2.5)

satisfying

a(1l) = I, a(γ1 ◦ γ2) = a(γ1)a(γ2).(2.6)

Here 1l and I denote the unit elements in G and GL(X), respectively.
Our main assumption is that the mapping F from (2.1) is equivariant under the action

of G in the following sense.
Hypothesis 2.2. For all γ ∈ G,

a(γ)(Y ) ⊆ Y,(2.7)

F (a(γ)u) = a(γ)F (u) ∀u ∈ Y.(2.8)

In the last equation we restrict the equivariance condition to the dense subspace Y . Equa-
tion (2.7) is included to ensure that a(γ) maps the domain of F into itself. Note that (2.7)
implies a(γ)(Y ) = Y since for every γ ∈ G,

Y = a(γ)a(γ−1)(Y ) ⊆ a(γ)(Y ) ⊆ Y.

Example 2.3. Consider Example 2.1 with the additive group (G, ◦) = (R,+) and the action
a(γ) defined by the shift

[a(γ)u] (x) := u(x− γ), x ∈ R, γ ∈ G.(2.9)

With the spaces from (2.3), (2.7) and (2.8) are satisfied.
In case (2.4) we take the two-dimensional Euclidean group (see [6], [28], [29], [10])

G = SE(2) = S1
� R

2,

where the semidirect product S1
� R

2 is defined topologically by the direct product

γ = (θ, b) ∈ S1 × R
2,
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and the group operation is given by

γ1 ◦ γ2 = (θ1, b1) ◦ (θ2, b2) = (θ1 + θ2, b1 + �θ1b2).(2.10)

Here the unit element is 1l = (0, 0) and we write rotations in R
2 as

�θ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.(2.11)

The action on functions is given by (see [6], [29], [10])

[a(γ)u] (x) := u(�−θ(x− b)), x ∈ R
2.(2.12)

One easily verifies the property (2.6) and the equivariance condition (2.8) with the help of the
Euclidean equivariance of the Laplacian

∆x [u(�θx)] = ∆u(�θx), ∆x [u(x− b)] = ∆u(x− b).

2.2. Separating the group motion. A well-known problem in the infinite-dimensional
setting is differentiability of the group action (see [28], [29], [10] for a detailed discussion). We
can neither expect the mapping a to be differentiable from G into GL(X) nor assume that
the mapping γ �→ a(γ)u is differentiable for any fixed u ∈ X. Our assumption is as follows.

Hypothesis 2.4. For any v ∈ X, the mapping

a(·)v :
G→ X

γ �→ a(γ)v
(2.13)

is continuous, and for any v ∈ Y it is continuously differentiable with derivative

aγ(γ)v :
TγG→ X

λ �→ [aγ(γ)v] λ.
(2.14)

We use Aγ = TγG to denote the tangent space of G at γ. Note that A := A1l is the
Lie algebra associated with G, which has the same dimension as G. A general principle of
constructing spaces that satisfy Hypothesis 2.4 will be discussed in section 2.4.

For Example 2.3, continuity is satisfied for v ∈ L2(R,Rm), and continuous differentiability
holds for functions v ∈ H1(R,Rm) ⊃ Y = H2(R,Rm) with

[aγ(γ)v]λ = −vx(· − γ)λ.(2.15)

Consider a solution u(t) of (1.1) and a function γ ∈ C1(R, G), γ(0) = 1l, and define v(t) via
(see Figure 2.1)

u(t) = a(γ(t))v(t).(2.16)

Then by differentiating formally and using the equivariance condition, we obtain

ut = [aγ(γ)v] γt + a(γ)vt = F (u) = F (a(γ)v) = a(γ)F (v).(2.17)
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u0

v(t)

a(γ(t)) u(t) = a(γ(t))v(t)

O(v(t))

O(u0) = {a(γ)u0 : γ ∈ G}

Figure 2.1. Splitting off the group dynamics by extension.

Applying a(γ−1) = a(γ)−1 to both sides, we end up with the equation for the “frozen solution”
v(t):

vt = F (v) − a(γ−1)aγ(γ)vγt, v(0) = u0.(2.18)

In order to make the equivalence of (1.1) and (2.18) rigorous we use a working definition for
solutions, which shares at least some properties of strong solutions for evolution equations
with C0 semigroups (see [17], [28], [29], [10] for the standard solution concept in fractional
order spaces when F = A+ f with a sectorial operator A).

Definition 2.5. A function u ∈ C([0, T ), X)∩C1((0, T ), X) is called a solution of the initial
value problem (1.1) on [0, T ) if u(0) = u0, u(t) ∈ Y for 0 < t < T and if the differential
equation holds in the open interval (0, T ).

With this notion we obtain the following theorem.
Theorem 2.6. Suppose that Hypotheses 2.2 and 2.4 hold and let γ ∈ C1([0, T ), G) satisfy

γ(0) = 1l. Then u is a solution of (1.1) if and only if v, given by (2.16), is a solution of
(2.18).

Proof. We may write (2.16) equivalently as v(t) = a(γ(t)−1)u(t), where γ−1 ∈ C1([0, T ), G)
and γ−1(0) = 1l. Therefore, it is sufficient to show that u(t) inherits the smoothness from
v(t) and that the first equality in (2.17) holds. As in semigroup theory, one concludes from
Hypothesis 2.4 and the uniform boundedness principle that the operator norms |a(γ)| are
uniformly bounded when γ varies in a compact set. This implies continuity of the map
(γ, u) �→ a(γ)u on G×X and thus continuity of u(t) for t ∈ [0, T ). Differentiability in (0, T )
and the desired formula follow from Hypothesis 2.4 by a careful look at the standard proof of
the chain and product rule:

u(t+ h) − u(t) = a(γ(t+ h))(v(t+ h) − v(t) − vt(t)h) + a(γ(t))vt(t)h
+ (a(γ(t+ h)) − a(γ(t)))vt(t)h+ (a(γ(t+ h)) − a(γ(t)))v(t)

= a(γ(t))vt(t)h+ [aγ(γ(t))v(t)] γt(t)h+ o(h).

In (2.18) the path γ(t) in the group is still arbitrary. We fix these degrees of freedom by
so-called “phase conditions,” the number of which equals the dimension of the group. We
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assume that we are given a map

ψ :
X ×G→ A∗

(u, γ) �→ ψ(u, γ)
(2.19)

that satisfies the consistency relation ψ(u0, 1l) = 0. In (2.19) we use A∗ to denote the dual
of the Lie algebra A. Further, by introducing the variable λ = γt we finally arrive at the
following PDAE for the time-dependent variables γ(t) ∈ G, λ(t) ∈ Tγ(t)G, v(t) ∈ Y :

vt = F (v) − a(γ−1)aγ(γ)vλ, v(0) = u0,(2.20)

γt = λ, γ(0) = 1l,(2.21)

0 = ψ(v, γ).(2.22)

In general (2.20) is a PDE, (2.21) an ODE system on a manifold, and (2.22) is an algebraic
constraint. In our example (2.2), (2.3) the PDAE reads

vt = Avxx + f(v, vx) + vxλ, v(0) = u0,(2.23)

γt = λ, γ(0) = 0,(2.24)

0 = ψ(v, γ).(2.25)

Remark 2.7. Decomposing the solution as in (2.16) is also the underlying idea in the center
manifold reduction in [28], [29], [10] as well as in the slice theorem, see [6, Ch. 6]. However,
rather than using it to derive a reduced system which contains global terms from elimination,
we set up an extended system that keeps most of the structure of the original problem. This
will be better suited for numerical methods.

We extend Definition 2.5 by saying that the tuple (v, γ, λ) is a solution of the PDAE on
[0, T ) if v ∈ C([0, T ), X) ∩ C1((0, T ), X) and (γ, λ) ∈ C1([0, T ), TG) such that v(t) ∈ Y for
0 < t < T and such that the differential equation in (2.20) holds in (0, T ) and the equations
in (2.21), (2.22) hold in [0, T ). Note that the tangent bundle TG consists of pairs (γ, λ) with
λ ∈ TγG.

For the phase condition we use the following.
Hypothesis 2.8. ψ ∈ C1(X ×G,A∗), ψ(u0, 1l) = 0 and the linear map

ψγ(u0, 1l) − ψv(u0, 1l)aγ(1l)u0 : A �→ A∗

is nonsingular.
The first part of the following theorem is an immediate consequence of Theorem 2.6.
Theorem 2.9. If (v, γ, λ) is a solution of (2.20)–(2.22) on [0, T ), then u(t) = a(γ(t))v(t)

solves (1.1). Conversely, assume that u(t) solves (1.1) on some interval [0, T ) and that ψ
satisfies Hypothesis 2.8. Then there exists an interval [0, τ) ⊂ [0, T ) and a function γ ∈
C1([0, τ), G) such that (v = a(γ−1)u, γ, λ = γt) is a solution of (2.20)–(2.22) on [0, τ).

Proof. For the second part apply the implicit function theorem to the equation

ϕ(γ, t) := ψ(a(γ−1)u(t), γ) = 0.

Note that ϕ(1l, 0) = 0 and that ϕγ(1l, 0) = ψγ(u0, 1l) − ψv(u0, 1l)aγ(1l)u0 is invertible by Hy-
pothesis 2.8.
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2.3. Phase conditions. Let us assume that we have an inner product 〈·, ·〉 on X that is
continuous with respect to the given norm || · ||, i.e., |u| =

√
〈u, u〉 ≤ C||u||. For (2.3) in

Example 2.1, the two norms are identical and X is a Hilbert space, but we do not assume this
is general. In later applications we will use weighted and locally uniform norms for which the
two norms differ.

One way to set up a phase condition is to minimize the distance of the frozen solution v
from the group orbit of the starting value

O(u0) = {a(γ)u0 : γ ∈ G},

i.e., minimize e1(γ) = |a(γ)u0−v|2. If we require u0 to be the point on the orbit that is closest
to v, we obtain from Hypothesis 2.4 the necessary condition

ψ1(v, γ)µ := 〈aγ(1l)u0µ, u0 − v〉 = 0 ∀µ ∈ A.(2.26)

Similarly, we may require that v is the point of minimal distance from u0 on O(v); i.e., we
minimize e2(γ) = |u0 − a(γ)v|2. This leads to (see Figure 2.2 for an illustration)

ψ2(v, γ)µ := 〈aγ(1l)vµ, u0 − v〉 = 0 ∀µ ∈ A.(2.27)

Proposition 2.10. If the isotropy subgroup (or stabilizer) of u0, given by

Stab(u0) = {γ ∈ G : a(γ)u0 = u0},

is trivial, then both phase conditions (2.26) and (2.27) satisfy Hypothesis 2.8.
Proof. It is well known (see [6, Thm. 4.3.4]) that

dim(O(u0)) = dim(Tu0O(u0)) = dim(G) − dim(Stab(u0)).

Let d be the dimension of G. Then we can choose elements gi ∈ A, i = 1, . . . , d, such that
Si = [aγ(1l)u0]gi form a basis of Tu0O(u0). By a direct calculation, we have for λ, µ ∈ A

−[ψ1,v(u0, 1l)aγ(u0)λ]µ = 〈aγ(1l)u0µ, aγ(1l)u0λ〉.(2.28)

Therefore, ψ1,v(u0, 1l)aγ(u0)λ : A �→ A∗ is nonsingular if and only if the (d × d)-matrix with
entries 〈Si, Sj〉 is nonsingular. Clearly this holds if and only if the Si are linearly independent.
For the second phase condition, (2.27), note that we obtain the same expression, (2.28).

Remark 2.11. If the inner product is G-invariant, then e1(γ) = e2(γ
−1) and the two mini-

mization problems are equivalent. Moreover, the two necessary conditions, (2.26) and (2.27),

v
vu0

u0

Tu0O(u0)

O(u0)

TvO(v)

O(v)

Figure 2.2. Minimizing the distance of v to O(u0) (left) or of u0 to O(v) (right).
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are identical since we have 〈aγ(1l)v, v〉 = 0 for v ∈ Y . The last equation follows by differenti-
ating 〈a(γ)v, a(γ)v〉 = 〈v, v〉 at γ = 1l.

In equivariant bifurcation theory, interesting phenomena arise when the isotropy group of
some relative equilibrium is nontrivial; see [10], [6]. For an initial value problem with some
“generic” u0, however, it seems reasonable to assume a trivial isotropy subgroup.

The remark applies to the parabolic system (2.23)–(2.25) with spaces (2.3). In this case
the phase conditions (2.26) and (2.27) yield the integral constraint

0 = ψ(v) =

∫ ∞

−∞
uT0,x(u0 − v) dx = −

∫ ∞

−∞
uT0,xv dx.(2.29)

Hypothesis 2.8 requires the map λ → λ
∫∞
−∞ uT0,xu0,x dx to be nonsingular, which is satisfied

if u0 is nonconstant.
The phase conditions developed so far depend on the initial value u0 and seem to be useful

only for short times; see Theorem 2.9. During numerical computations one could update the
phase condition by using v(t1), v(t2), . . . at later times instead of u0.

A condition that is applicable in a more global sense is minimizing the temporal change
of v, i.e.,

|vt|2 = |F (v) − a(γ−1)aγ(γ)vλ|2.(2.30)

This is a d-dimensional least squares problem in λ ∈ Aγ . We introduce the operators

S(v, γ) = a(γ−1)aγ(γ)v : Aγ �→ X(2.31)

and S∗(v, γ) : X �→ A∗
γ by

[S∗(v, γ)u]λ = 〈S(v, γ)λ, u〉 for λ ∈ Aγ .(2.32)

If the stabilizer of a(γ)v is trivial, then S(v, γ) is one to one and S∗S(v, γ) ∈ L(Aγ ,A∗
γ) is

nonsingular. Therefore, (2.30) has a unique minimizer given by the solution of the linear
(d× d)-system

ψmin(v, γ, λ) := (S∗S)(v, γ)λ− S∗(v, γ)F (v) = 0.(2.33)

Note that in contrast to (2.25) this phase condition depends also on the derivative γt = λ
so that Theorem 2.9 does not apply. Nevertheless, a given solution u(t), t ∈ [0, T ), of (1.1)
may be written as u(t) = a(γ(t))v(t) with v satisfying (2.20) and (γ, λ) satisfying (2.33) if we
determine γ(t) from the following initial value problem on G:

γt(t) = [(S∗S)−1S∗](a(γ−1)u(t), γ) a(γ−1)F (u(t)), γ(0) = 1l.(2.34)

In order to ensure a unique solution of this problem we need more regularity for F (u(t)),
t ∈ [0, T ), than in Theorem 2.9, such that the right-hand side of (2.34) is continuous in (γ, t)
and locally Lipschitz in γ.

More details on the implementation of the phase condition (2.33) will be given in the
following sections. The condition turns out to be particularly useful near relative equilibria
of (1.1), where we expect vt to tend to zero.
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v(·, t1)

v(·, t2)
v(·, t3 )

v t
(·,
t 1

)

v t
(·,
t 2
)

vt(·, t3)

O(v(·, t1))

O(v(·, t2))

O(v(·, t3 ))

Figure 2.3. Orthogonality of time and group orbit at successive times.

A final alternative is to require that, at any time instance, vt is orthogonal to the group
orbit O(u) = O(a(γ)v) at v (see Figure 2.3).

This leads to the condition

0 = 〈S(v, 1l)µ, vt〉 ∀µ ∈ Aγ .

Using the differential equation (2.20) we rewrite the phase condition as

ψorth(v, γ, λ) = S∗(v, 1l)S(v, γ)λ− S∗(v, 1l)F (v) = 0.(2.35)

Note that this condition is identical with (2.33) if a(γ−1)aγv does not depend on γ.
For example, it is true for the parabolic system (2.23)–(2.25) (and for most of the examples

in sections 3 and 4). Conditions (2.33) and (2.35) both lead to the explicit formula

〈vx, vx〉L2λ = 〈vx, Avxx + f(v, vx)〉L2 = 〈vx, f(v, vx)〉L2 ,(2.36)

which works whenever the function v is nonconstant. Note that the last equality follows from
v ∈ H2(R,Rm) if A = AT .

2.4. Construction of spaces. In [29, Thm. 4.5] the authors set up a general principle
for constructing spaces that satisfy the differentiability condition in Hypothesis 2.4. In the
following proposition we slightly extend their result by constructing a sequence of nested
spaces on which the group acts with increasing smoothness. We use the exponential map
exp : A �→ G, cf. [6, Ch. 4.2].

Proposition 2.12. Let (X0, || · ||0) be a Banach space and let a : G �→ GL(X0) be a homo-
morphism. Then

X1 =

{
u ∈ X0 : ||u||1 := sup

γ∈G
||a(γ)u||0 <∞

}

is a Banach space with respect to the norm || · ||1, and the operators a(γ)|X1
are isometries in

GL(X1). Further, the space

X2 = {u ∈ X1 : γ �→ a(γ)u is continuous in G}
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is a closed subspace of (X1, || · ||1) such that a(γ)|X2
∈ GL(X2) acts strongly continuously.

Finally,

X3 = {u ∈ X2 : γ �→ a(γ)u is continuously differentiable in G}
is a dense subspace of X2 and can be written as

X3 =
⋂
λ∈A

D(λ),(2.37)

where D(λ) is the domain of the infinitesimal generator of the C0-semigroup a(exp(λt)), t ≥ 0.
Proof. If un ∈ X1 is a Cauchy sequence with respect to || · ||1, then a(γ)un is a Cauchy

sequence in X0 for each γ ∈ G and hence converges to some v(γ) ∈ X0. By continuity of a(γ)
we have v(γ) = a(γ)v(1l), and using the Cauchy property again we obtain ||un − u||1 → 0 for
u = v(1l) as well as u ∈ X1. The isometric property of a(γ)|X1

is obvious and the closedness
of X2 with respect to || · ||1 is an easy exercise. The main result in [29, Thm. 4.5] states
that

⋂
λ∈AD(λ) is contained in X3 and is a dense subspace of X2. But the opposite inclusion

X3 ⊂ ⋂
λ∈AD(λ) follows from the chain rule applied to a(exp(λt))u, u ∈ X3, and this finishes

the proof.
Remark 2.13. Under the assumptions of the proposition we can satisfy Hypothesis 2.4 by

taking X = X2 and Y = X3. However, in the applications the right-hand side of (1.1) may
contain differential operators that require an even smaller (but still dense) domain Y .

Example 2.14. For γ ∈ G = R
N consider the shift (see (2.9))

[a(γ)u](x) = u(x− γ), x ∈ R
N .

If we take X0 = C0
b (R

N ,Rm) (continuous bounded functions) with || · ||0 as the sup-norm
in Proposition 2.12, then we obtain X1 = X0, || · ||1 = || · ||0, and the spaces of uniformly
continuous functions X2 = C0

unif(R
N ,Rm), X3 = C1

unif(R
N ,Rm).

Another choice is that of locally uniform spaces as proposed in [20], [19]. Take a positive
and integrable weight function η ∈ C1(RN , (0,∞)) ∩ L1(RN ) that satisfies |∇η(x)| ≤ Cη(x)
for all x ∈ R

N . For p ≥ 1 consider the weighted Lp space

X0 = Lp
η(R

N ) = {u ∈ Lloc(R
N ,Rm) : ||u||Lp

η
<∞},(2.38)

||u||Lp
η

=

(∫
RN

η(x)|u(x)|pdx
)1/p

.(2.39)

From the estimate η(x+ γ) ≤ eC|γ|η(x) one finds that a(γ) : X0 �→ X0 is a bounded operator

with bound e
C|γ|
p . The construction in Proposition 2.12 then yields the locally uniform spaces

(using the notation from [20], [19])

X0 ⊃ X1 = L̃p
ul(R

N ) ⊃ X2 = Lp
ul(R

N ).(2.40)

Here the norm ||u||Lp
ul

= supγ∈RN ||u(·−γ)||Lp
η

inX1 is stronger than ||·||0 and all inclusions are

strict. Finally, the intersection of the domains of the infinitesimal generators ∂
∂xj

, j = 1, . . . , N ,

leads to the weighted Sobolev space

X3 = W 1,p
ul (RN ) =

{
u ∈ Lp

ul(R
N ) :

∂u

∂xj
∈ Lp

ul(R
N ), j = 1, . . . , N

}
.(2.41)
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3. Waves in one space dimension.

3.1. Relative equilibria. Following [10], [6] we define relative equilibria as solutions that
stay in the group orbit of the initial value (see also [10] and [28] for further notions of a relative
periodic orbit and meandering solutions).

Definition 3.1. A solution u(t), t ∈ [0, T ), of (1.1) is called a relative equilibrium if there
exist v ∈ Y , γ ∈ C1([0, T ), G) such that γ(0) = 1l and

u(t) = a(γ(t))v, 0 ≤ t < T.(3.1)

In view of (2.20), (2.21) this implies the following equations:

0 = F (v) − S(v, γ(t))λ(t), where S(v, γ)λ = a(γ−1)aγ(γ)vλ,(3.2)

γt(t) = λ(t), γ(0) = 1l.(3.3)

In the applications, we will frequently have relative equilibria for which the operator S(·, γ(t))λ(t) :
Y �→ X is independent of t.

For example, a traveling wave

[u(t)](x) = v(x− λt), γ(t) = λt,(3.4)

is an equilibrium of system (2.23) with constant λ and a relative equilibrium of (2.2) (take
any of the spaces from Example 2.14). Conversely, if u(t) = a(γ(t))v is a relative equilibrium
of (2.2), then with λ = γt we have

0 = Avxx + f(v, vx) + vxλ(t).

Taking the inner product with vx and assuming that v is nonconstant, we conclude that λ(t)
is in fact time independent. Hence, traveling waves are the only nontrivial relative equilibria
of (2.2).

As a second example consider the complex valued system

ut = Auxx + f(u, ux), x ∈ R, u(x, t) ∈ C
m,(3.5)

where f : C
2m �→ C

m is assumed to be equivariant with respect to phase factors

f(eiθu, eiθv) = eiθf(u, v), θ ∈ S1 = R/2πZ.(3.6)

Well-known special cases are equations of Ginzburg–Landau type:

f(u, v) = au+ bu|u|2 + cu|u|4, u ∈ C, a, b, c ∈ C.(3.7)

In this case the Lie group is G = S1 × R with

(θ1, τ1) ◦ (θ2, τ2) = (θ1 + θ2, τ1 + τ2)(3.8)

and the action is given by

[a(θ, τ)v] (x) = e−iθv(x− τ).(3.9)
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System (2.20), (2.21) now reads

vt = Avxx + f(v, vx) + ivλ1 + vxλ2, v(0) = u0,(3.10)

θt = λ1, τt = λ2, θ(0) = 0, τ(0) = 0.(3.11)

The phase condition (2.26) has the form

ψ1(v, θ, τ) = (〈iu0, v − u0〉, 〈u0,x, v − u0〉) = (0, 0),(3.12)

where 〈·, ·〉 is the inner product in the real system of doubled dimension, i.e.,

〈u+ iv, w + iz〉L2 =

∫
R

uTw + vT z dx.(3.13)

Hypothesis 2.8 is satisfied if the functions iu0 and u0x are linearly independent over R. Relative
equilibria of (3.5) are rotating waves

u(x, t) = e−iλ1tv(x− λ2t), x ∈ R, t ∈ R,(3.14)

where v is in one of the spaces H2(R,Cm), C2
unif(R,C

m), or H2
ul(R,C

m) = W 2,2
ul (R,Cm);

cf. Example 2.14. Similarly to the previous example, we obtain that these are the only
relative equilibria for which iv and vx are linearly independent.

3.2. Numerical computations. For the discretization in time and space we consider a
system of the form (2.2) that is equivariant under a Lie group of dimension d and that—with
a proper choice of coordinates in G and TG—leads to a PDAE (2.20), (2.21) of the form

vt = F (v) − S(v)λ, S(v)λ =
d∑

j=1

Sj(v)λj , v(0) = u0,(3.15)

γt = λ, γ(0) = 0.(3.16)

Here F is given by (2.2) and the Sj are linear differential operators of order ≤ 1 with bounded
continuous coefficients

Sj(v) = Bj(x)vx + Cj(x)v, Bj , Cj ∈ C0
b (R,R

m,m).

For the phase condition we use the orthogonality constraint (2.35), which in this case is the
same as (2.33):

ψorth(v, λ) =

⎛
⎝〈Sν(v), d∑

j=1

Sj(v)λj − F (v)

〉⎞⎠
1≤ν≤d

= 0,(3.17)

where 〈·, ·〉 is the inner product in either L2 or L2
η.

We choose a step size ∆t in time and an equidistant spatial grid

J = {xj = j∆x : 0 ≤ j ≤M}, ∆x =
x+ − x−
M

,
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where [x−, x+] is some large interval. At time tn = n∆t we compute the approximations
γn, λn ∈ R

d and vn : J �→ R
m by a half-explicit Euler method, i.e., a method that is explicit in

the state variable vn but implicit in the algebraic variable λn (see [15], [16] for such methods):

1

∆t
(vn+1 − vn) = F∆x(v

n) − S∆x(v
n)λn+1,(3.18)

1

∆t
(γn+1 − γn) =

1

2
(λn+1 + λn),(3.19)

0 =

⎛
⎝
〈
Sν,∆x(v

n),
d∑

j=1

Sj,∆x(v
n)λn+1

j − F∆x(v
n)

〉⎞
⎠

1≤ν≤d

.(3.20)

Here F∆x and S∆x are standard finite difference approximations

F∆x(v) = D+D−v + f(v,D0v), Sj,∆x(v) = BjD0v + Cjv,

where D± denote forward/backward and D0 = 1
2(D+ +D−) centered difference quotients. In

any time step one first solves the linear (d × d)-system (3.20) for λn+1 and then determines
vn+1, γn+1 from (3.18), (3.19). Standard stability restrictions such as ∆t ≤ 1

2(∆x)2 are taken
into account.

Equation (3.18) has to be completed by boundary conditions. We choose Neumann and
projection boundary conditions.

For traveling waves (more generally, relative equilibria), projection boundary conditions
are commonly used as asymptotic boundary conditions at x± in order to have higher order
approximations of wave form and speed (see [4], [26]). We adapt them to the time-dependent
case as follows. Assume that the limits limx→±∞Cj(x) = Cj,± exist and the solution satisfies

lim
x→±∞ v(x, t) = w±, lim

x→±∞ vx(x, t) = 0, f(w±, 0) −
d∑

j=1

Cj,±w± = 0.(3.21)

The idea behind projection boundary conditions is to control the growing, resp., decaying,
spatial modes obtained by linearizing at ±∞. We write the conditions in the form

V±(v(x±) − w±) +W±vx(x±) = 0,(3.22)

where V±,W± ∈ R
m,m. These matrices can be obtained by setting W± = Z±A, V± =

−Λ−1
± Z±C±, where Λ+,Λ− ∈ R

m,m have only eigenvalues with real part positive, resp., neg-
ative, and where Z± ∈ R

m,m form a corresponding invariant subspace of the “left quadratic
eigenvalue problem”:

Λ2
±Z±A+ Λ±Z±B± + Z±C± = 0,(3.23)

B± = D2f(w±, 0) +
d∑

j=1

Bj,±λj , C± = D1f(w±, 0) +
d∑

j=1

Cj,±λj .(3.24)

In the nth time step one has to set λ = λn in (3.24), and so the projection boundary conditions
(3.22) depend on time.
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3.3. Numerical examples. In the following we test our method on several well-known
examples of parabolic systems that show traveling or rotating waves.

3.3.1. Nagumo wave. The Nagumo equation [21], [22]

ut = uxx + u(1 − u)(u− α), u(x, 0) = u0(x), α ∈
(

0,
1

2

)
(3.25)

has an explicit traveling wave solution u(x, t) = v̄(x− ct) given by

v̄(x) =
1

1 + exp(− x√
2
)
, c = −

√
2

(
1

2
− α

)
.

For the numerical computations, we use parameters α = 1
4 , J = [−30, 30], ∆x = 0.1, ∆t <

1
2∆x2, and Neumann boundary conditions.

In In Figure 3.1 we compare the time evolution of a piecewise linear initial profile for the
unmodified equation with its frozen counterpart computed from (3.18)–(3.20). The frozen
profile stabilizes after a short time, and the parameter λ(t) converges to a fixed value λ∞ =
−0.353555, which is in good agreement with the velocity of the exact solution on R. In contrast
to this, the solution of the original equation becomes constant when the wave reaches the left
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Figure 3.1. Traveling versus frozen Nagumo wave and evolution of velocity λ(t).
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-4
-2

0
2

4

0

10

20

30
0

0.2

0.4

0.6

0.8

1

u

t x

(a) Neumann boundary condi-
tions

-4
-2

0
2

4

0

10

20

30
0

0.2

0.4

0.6

0.8

1

u

t x

(b) Asymptotic boundary condi-
tions

Figure 3.2. Frozen Nagumo wave on J = [−4, 4].
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Figure 3.3. Frozen Nagumo wave on J = [−8, 8], Neumann boundary conditions.

boundary. The reason is, of course, that the constants 0, 1, and α are the only solutions of
the stationary boundary value problem on the finite interval. While the evolution problems
(3.25) and (3.15), (3.16) are equivalent on the whole real line (cf. Theorem 2.6) they become
different when truncated to a finite interval. Figure 3.2 we compare two frozen equations
with different boundary conditions (Neumann and asymptotic) on a rather short interval of
J = [−4, 4]. While asymptotic boundary conditions still admit a stationary profile close to
the original wave, Neumann boundary conditions allow only constant stationary profiles as
solutions of the corresponding frozen equation in the limit t→ ∞.

On the larger interval J = [−8, 8], Neumann boundary conditions are acceptable again; see
Figure 3.3. The solutions for both boundary conditions differ by an amount of the order 10−3,
which cannot be seen in the scale of Figure 3.3(a). Therefore, we show in Figure 3.3(b)



SOLVING EQUIVARIANT EVOLUTION EQUATIONS 101

the difference in λ as a function of time. Summarizing, the pictures demonstrate that the
advantages of projection boundary conditions for the computation of stationary profiles carry
over to the time-dependent case.

3.3.2. FitzHugh–Nagumo wave. A well-known two-component system with traveling
wave solutions is given by the FitzHugh–Nagumo equations [21], [22]

Vt = ∆V + V − 1

3
V 3 −R,

Rt = φ(V + a− bR)

with parameters a = 0.7, b = 0.8, φ = 0.08. As in the Nagumo case, the equation is
equivariant with respect to translation. The numerical parameters are J = [0, 130], ∆x = 0.5,
and ∆t = 0.01 with Neumann boundary conditions.

In Figure 3.4 the time evolution of the V -component of a given initial profile (R has been
set initially to the stationary value R̄ = −0.62426) is shown. The initial hump splits into two
traveling components, and after some time only the left moving pulse exists and leaves the
computational window. Figure 3.5 shows the solution of the frozen equation starting from the
same profile. As before, the initial profile splits into a left and a right traveling pulse. When
the right moving solution has left J , the remaining pulse stabilizes and takes the shape of the
well-known stable pulse (see [21]). The parameter λ(t) converges after a transition phase to
λ∞ = −0.816848. As we see in this example, our method can only freeze one wave at a time.
Which one is selected depends on the type of phase condition used.

In Figure 3.5(a) the adaptive phase condition (3.17) is used and the left moving pulse is
frozen. If we use the fixed phase condition (2.26), as shown in Figure 3.5(b), the right moving
pulse stabilizes at the position of the initial hump.

3.3.3. The complex Ginzburg–Landau equation. We consider a special normalization of
the complex Ginzburg–Landau equation discussed in [19]:

ut = (1 + iα)(uxx − (1 + iω)2u+ (1 + iω)(2 + iω)|u|2u), u = u1 + iu2.(3.26)

Here α and ω are real parameters. As described in section 3.1, this equation is equivariant
under the action of the symmetry group G = S1 × R.
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Figure 3.5. FHN, frozen wave.
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Figure 3.6. Complex Ginzburg–Landau system, rotating vs. frozen solution.

One finds rotating wave solutions of the form u(x, t) = eiφtu0 with a profile u0, which
is constant in x. Inserting this ansatz into (3.26), one obtains, for the absolute value of the
solution u0 and for the angular velocity φ, the formulas

|u0|2 =
ω2 + 2αω − 1

ω2 + 3αω − 2
, φ = (α(2 − ω2) + 3ω)|u0|2 + α(ω2 − 1) − 2ω.

For the numerical computations we choose parameters ω = −2, α = 1
4 , J = [−30, 30],

∆x = 0.5, ∆t = 0.001, and Neumann boundary conditions. We start from an initial pro-
file, which consists of small Gaussian pulses for the components u1 and u2.

In Figure 3.6 the time evolution of the point u(0, t) of the solution for the rotating and the
frozen system are compared. The frozen solution stabilizes after some time at a fixed value
whereas the solution of the original system continues rotating.

As shown in Figure 3.7(a) the parameter λ1(t) = θ̇(t) converges to the exact angular
velocity φ = 21.25, and the translational speed λ2(t) = τ̇(t) stays at zero, as expected. The
evolution of the whole profile of the u1 component of the rotating solution is depicted in
Figure 3.7(b).

Figure 3.8 demonstrates the advantage of the half-explicit scheme for the frozen system
over the explicit scheme for the original system. We compare the discretized analogue of

the normalized L2 norm of the solution ‖u(·, t)‖n =
√

1
|J |
∫
J ‖u(x, t)‖2 dx for the frozen and

the rotating system. Since the parameter λ is computed implicitly from the phase condition
(3.20), the norm ‖u(·, t)‖n converges for the frozen system to the exact value of 2, whereas in
the rotating system the norm is overestimated due to the use of the explicit Euler method.
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Figure 3.7. Complex Ginzburg–Landau equation.
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4. Spiral waves in two dimensions.

4.1. The PDAE for Euclidean symmetry. Consider the semilinear parabolic system (2.4),
i.e.,

ut = A∆u+ f(u), x ∈ R
2, t ≥ 0, u(·, 0) = u0,(4.1)

where A ∈ R
m,m is positive definite and f ∈ C∞(Rm,Rm). The system is equivariant with

respect to action (2.12) of the Euclidean group SE(2) and satisfies (2.1) with the spaces (see
[28], [29])

Y = C2
unif(R

2,Rm), X = C0
unif(R

2,Rm).(4.2)
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It is proved in [20] that this is also true for certain cubic nonlinearities for the uniformly local
spaces (cf. Example 2.14)

Y = H2
ul(R

2,Rm), X = L2
ul(R

2,Rm).(4.3)

Formally differentiating action (2.12) with respect to γ = (θ, b) ∈ S1
�R

2 yields the expression

S(v, θ)λ := a(γ−1) [aγ(γ)vλ] = −vx
[
�π

2
xλ1 + �−θ

(
λ2

λ3

)]
(4.4)

for λ1 ∈ S1, λ2, λ3 ∈ R.
This formula can be shown rigorously, and Hypothesis 2.4 is satisfied if the function v lies

in the space

Ỹ = {v ∈ Y : Pv ∈ X},

where

(Pv)(x) = vx(x)�π
2
x = −x2vx1 + x1vx2 .(4.5)

Note that this follows from Proposition 2.12 since the domain of P corresponds to D(λ1) in
(2.37) and since Y is contained in the domain of the other two infinitesimal generators ∂

∂x1

and ∂
∂x2

.
System (2.20) is of the form

vt = A∆v + f(v) − S(v, θ)λ, v(0) = u0,(4.6)

with S(v, θ) defined in (4.4), and (2.21) reads

θt = λ1, bt =

(
λ2

λ3

)
, θ(0) = 0, b(0) = 0.(4.7)

In contrast to (3.15), the forcing term on the right-hand side of (4.6) depends on the group
variable θ. We can eliminate this dependence by choosing new coordinates (θ, α) on G and
µ on A as follows:

α = �−θb, µ1 = λ1,

(
µ2

µ3

)
= �−θ

(
λ2

λ3

)
.

This transforms (4.6), (4.7) into

vt = A∆v + f(v) − S(v)µ, v(0) = u0, S(v)µ = −vx
[
�π

2
xµ1 +

(
µ2

µ3

)]
,(4.8)

θt = µ1, αt = µ1�π
2
α+

(
µ2

µ3

)
, θ(0) = 0, α(0) = 0.(4.9)
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Note that the second equation in (4.9) is no longer trivial but describes, in the case of a
constant µ, a rotation on a circle of radius |µ1| about the center 1

µ1

(−µ3
µ2

)
. In this version the

two phase conditions (2.33) and (2.35) coincide.
Both systems (4.6) and (4.8) introduce a convection term Pv, which becomes large on

large domains. The numerical discretization will take this into account; see section 4.2 below.
We write system (4.6) in polar coordinates, which are particularly well suited for spiral

waves. With w(r, ϕ) = v(r cosϕ, r sinϕ) we obtain

wt = A∆r,ϕw + f(w) + λ1wϕ +

(
wr

1

r
wϕ

)
�−ϕ−θ

(
λ2

λ3

)
(4.10)

with the Laplacian ∆r,ϕw = wrr + 1
rwr + 1

r2
wϕϕ. In the numerical experiments below we use a

rectangular grid for (4.10), which corresponds to a polar grid for the original equation, (4.6).
The numerical experiments show that the influence of the geometry of the domain is much
stronger for the frozen system. Using a cartesian grid on a rectangular domain shows strong
negative effects of the boundary. In particular, we were not able to freeze nonlocalized spirals
in this situation.

An appropriate inner product that is continuous with respect to the topology of the
space X in both cases (4.2), (4.3) (cf. section 2.3) is

〈u, v〉η =

∫
R2
u(x)T v(x)η(x)dx,(4.11)

where the weight function satisfies (see Example 2.14)

η ∈ C1(R2, (0,∞)) ∩ L1(R2), |∇η(x)| ≤ Cη(x), x ∈ R
2.(4.12)

In some numerical examples below the choice of inner product actually makes a difference
because it enters into the phase condition.

4.2. Numerical method. We consider the polar system (4.10) on a rectangle [0, R]×[0, 2π)
and use periodic boundary conditions in the ϕ-direction and Neumann boundary conditions
vr = 0 at r = R. So far we have not yet set up appropriate projection boundary conditions
that generalize the one-dimensional case, (3.22). These will require us to solve a linearized
exterior boundary value problem that we expect to be quite expensive. Note that in [9] a
simple type of mixed boundary condition is proposed in order to create spiral solutions for a
scalar equation.

For the discretization we choose a rectangular grid on [0, R] × [0, 2π) with step sizes ∆r
and ∆ϕ. Second order derivatives vrr and vϕϕ are replaced by centered difference quotients;
at the origin we use the standard cartesian five-point formula. For the examples in sections
4.3.1 and 4.3.2 below we also use centered differences for the first derivatives. However, for
the last example the artificial convection introduced in (4.10) dominates diffusion so that
it was necessary to use an upwind-downwind scheme (see 4.3.3 for details) Time is again
discretized by a half-explicit Euler method as in (3.18)–(3.20) with S∆x(v

n)λn+1 replaced by
the corresponding discretization of the forcing terms in (4.10). Stability restrictions caused
by the use of the half-explicit method,

∆t ≤ Cmin{(∆r)2, (∆ϕ)2},
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are taken into account. Finally, integrals are replaced by trapezoidal sums.

4.3. Examples. The following computations are performed with a version of Barkley’s
code ezspiral [1] that has been adapted to the discretization described in the previous
section. In all examples we used the phase condition ψmin from (2.33), which minimizes the
temporal change of v. In fact, the numerical values showed no substantial difference between
ψmin and the phase condition ψorth from (2.35), which guarantees orthogonality of time and
group orbit.

As a general remark concerning all of our computations we note that the λ-values after
one time step jump to a consistent value λ = λ1 according to the algebraic condition (3.20).
This is the normal behavior for DAEs, and our λ-plots start after this first step.

Movies are linked to some of the figures for better illustration and their color code is
identical to the code used in the corresponding figures. The time development of the λ variables
is shown in an extra diagram and the behavior of the group variables θ and b is indicated by
a black bar and a white trace.

4.3.1. (λ− ω)-system. Our first example is a (λ− ω)-system [18] in the complex form

ut = ∆u+ (λ(|u|) + iω(|u|))u, u(x, t) ∈ C,(4.13)

where λ and ω are functions of |u|. We take λ(|u|) = 1 − |u|2, ω(|u|) = −|u|2 for which
rigidly rotating waves are known to exist [18]. As shown in section 4.1, (4.13) is equivariant
with respect to the action of the group SE(2) defined in (2.12). We solve the frozen system
(4.10), (4.7) together with the phase condition defined by ψmin using the L2 inner product.
The numerical parameters are R = 50, ∆r = 0.5, ∆ϕ = π

40 , ∆t = 1.5421 · 10−4. Starting from
the initial function

u0(r, ϕ) =
r

R
(cos(ϕ) + i sin(ϕ)),(4.14)

a counterclockwise rotating spiral develops.
In Figure 4.1(a) a color scale plot of a snapshot of the real part of the spiral solution is

shown at a fixed time instance.
In Figure 4.2 the time evolution of a slice along the x-axis of the spiral is compared for

the rotating and the frozen system. As an initial condition we chose the centered spiral shown
in Figure 4.1. Figure 4.1(b) shows the corresponding evolution of the λ parameters of the
frozen system. The rotational velocity λ1 instantly jumps to a fixed value of λ̄ ≈ 0.9, while
the translational speeds λ2 and λ3 remain at zero.

Figure 4.3 compares the time evolution for the frozen and the nonfrozen system starting at
the initial value u0 defined in (4.14) far away from relative equilibria. In both cases, eventually
a spiral of the same shape develops (faster for the rotating wave than for the frozen wave).

If we start with a slightly shifted spiral, we get the results shown in Figure 4.4. Near
the boundary the spiral broadens slightly, an effect that decreases as the size of the domain
increases. The (λ2, λ3)-variables in 4.4(b) show that the center of the spiral now rotates on a
circle.

In fact, the system (4.13) shows equivariance with respect to the larger group SE(2)×S1.
Denoting group elements by γ = (θ, b, φ) ∈ (S1

� R
2) × S1, we see that the action on real
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Figure 4.1. (λ− ω)-system.
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Figure 4.2. Time evolution of a slice for the rotating and the frozen spirals for the (λ−ω)-system. Clicking
on the above image shows the associated movie.

valued functions and the forcing term in (2.31) are given by

[a(γ)v] (x) = �−φv(�−θ(x− b)),

S(v, γ)λ = −vx
[
�π

2
xλ1 + �−θ

(
λ2

λ3

)]
− �π

2
v λ4.

(4.15)

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60051_01.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60051_01.mpg
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Figure 4.3. Time evolution of a slice for the (λ−ω)-system started far away from the spiral wave. Clicking
on the above image shows the associated movie.
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Figure 4.4. (λ− ω)-system started with a shifted spiral, G = SE(2).

In polar coordinates this leads to the term

S(w, γ)λ = −λ1wϕ −
(
wr

1

r
wϕ

)
�−ϕ−θ

(
λ2

λ3

)
− �π

2
w λ4.

Using the full symmetry group SE(2)× S1 immediately freezes the spiral wave in the shifted

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60051_02.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60051_02.mpg
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Figure 4.5. (λ − ω)-system started with a shifted spiral, G = SE(2) × S1. Clicking on the above image
shows the associated movie that compares the evolution of the frozen system for both groups; the φ variable is
indicated by a white bar.

position. Also the velocities λ1 = θ̇, (λ2, λ3) = ḃ, λ4 = φ̇ stabilize at the stationary values
λ̄1, λ̄2, λ̄3 ≈ 10−3, λ̄4 > 0 (see Figure 4.5) and there are no boundary effects as for G = SE(2)
above.

It seems surprising that the smaller group G = SE(2) is sufficient to freeze this spiral
wave, as shown in Figure 4.4. The reason is as follows: The relative equilibrium u(x, t) has
a special symmetry u(�θx, t) = eiθu(x, t) (i.e., the stabilizer is nontrivial). This makes it
possible to transfer a rotation in the image of u to a rotation in the argument. The slight
differences between Figures 4.4(a) and 4.5(a) seem to result from the fact that the coefficient
λ1 of the convective term wϕ in (4.10) is very small for the larger group, whereas it is of order
one for the smaller group.

4.3.2. Quintic Ginzburg–Landau system. The quintic Ginzburg–Landau system (QGL)
given by

ut =

(
β +

i

2

)
∆u− δu+ (ε+ i)|u|2u− (µ+ iν)|u|4u, u(x, t) ∈ C,

possesses strongly localized solutions, so-called spinning solitons. These occur at parameter
values β = δ = 1

2 , ε = 2.5, µ = 1, ν = 0.1; see [7], [8]. The symmetry group is again the
four-dimensional group SE(2)×S1; cf. (4.15). We choose the following numerical parameters
R = 20, ∆r = 1

6 , ∆ϕ = π
40 , ∆t = 0.771 ·10−4. We start at an initial profile that is obtained by

shifting u0(r, ϕ) = 0.2 eiϕre−(r/7)2 slightly to the right on the x-axis. Then a localized vortex
solution develops the real part, which is displayed in Figure 4.6.

We take this solution as initial data for the comparison of the rotating wave and its frozen

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60051_03.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60051_03.mpg
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Figure 4.6. QGL system.
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Figure 4.7. Time evolution of a slice for the rotating and the frozen vortex for the QGL system. Clicking
on the above image shows the associated movie of the original and the frozen system in the transformed variables
(see Figure 4.8(b)).

counterpart. Figure 4.7 shows the corresponding time evolution of a slice along the x-axis.
The behavior of the λ parameters for the frozen system is displayed in Figure 4.8(a).

Their asymptotic behavior is better revealed by solving the reparametrized system (4.8),
(4.9) (see Figure 4.8(b)). While the v-part is identical for both systems, the time plot of the
parameters λ and µ shows a clear difference (see Figure 4.8). The values µ2, µ3 for the system
(4.8), (4.9) stabilize after some time, showing that the center of rotation in (4.9) becomes
constant. In contrast, the values λ2, λ3 for (4.6), (4.7) rotate according to

( λ2
λ3

)
= �θ ( µ2

µ3 ).
The initial phase of this rotation is shown in Figure 4.8(a). The rotational velocities λ1, µ1

and λ4, µ4 are identical and rapidly stabilize at specific negative values.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60051_04.mpg
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Figure 4.8. Frozen QGL system, evolution of parameters.
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Figure 4.9. Time evolution of a slice for the QGL system with initial data u0 shifted to the right. Clicking
on the above image shows the associated movie of the original and the frozen system in the transformed variables.

Even for an initial value far away from any relative equilibrium, the longtime behavior of
the frozen system and the nonfrozen system is similar. To this end we compare in Figure 4.9
the time evolution of both systems started with the shifted initial profile mentioned before.
This initial function leads to a rotating vortex for the nonfrozen (see [7]) as well as for the
frozen system.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60051_05.mpg
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Figure 4.10. Barkley system.

4.3.3. Barkley’s spiral system. Barkley’s well-known system [3] is given by

ut = ∆u+
1

ε
u(1 − u)

(
u− v + b

a

)
,

vt = u− v.

The equation is equivariant with respect to the action of SE(2); cf. (2.12), (4.4).
We test our method in the parameter regime of rigidly rotating waves with ε = 1

50 and
a = 0.75, b = 0.01. The numerical parameters are R = 40, ∆r = 0.5, ∆ϕ = π

40 , ∆t =
1.5421 · 10−4.

In Figure 4.10(a) we show a snapshot of the u component of the spiral solution, and in
Figure 4.10(b) the time evolution of a slice through u along the x-axis is displayed.

Since the system is of mixed hyperbolic-parabolic type, discretizing the convective terms
with an upwind-downwind scheme becomes essential. In the previous examples, diffusion was
strong enough to dominate convection introduced by the freezing procedure. For this example
the contributions to first order derivatives are assembled in b1(r, ϕ)wr, resp., b2(r, ϕ)wϕ, and
approximated by

bj(r, ϕ)D±w = bj(r, ϕ)[χ(bj(r, ϕ))D+w + (1 − χ(bj(r, ϕ)))D−w], j = 1, 2.

The symbols D+, D− denote forward and backward difference quotients in the r- or ϕ-
direction, and the switching function χ is defined by

χ(b) = (1 + exp(−β b))−1, β = 0.2.

The value of β has been chosen in order to balance oscillations introduced by using cen-
tered diffences for the convective terms (β = 0) and artificial diffusion introduced by a strict
switching rule (β large).
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Figure 4.11. Frozen Barkley system, time evolution of a slice and of parameters µ.

We start at a spiral wave, which rigidly rotates in the nonfrozen case. As Figure 4.10(b)
shows, the spiral core still exhibits a slight oscillatory motion.

Figure 4.11(a) shows the result for the frozen system with a weighted L2 norm, where the
weight in (4.11) is η(x) = e−0.5|x|. After some small initial oscillations, the wave eventually
freezes and the parameters µ of the transformed system stabilize.

The importance of the weight in the phase condition is demonstrated in Figure 4.11(b),
which shows the results for the L2 inner product without weight. Now the spiral is perturbed
by an oscillatory motion of the spiral core and finally drifts out of the region. The corre-
sponding µ variables oscillate and drift away as well. These results suggest that the use of
the weighted inner product for the phase condition keeps the continous spectrum in the left
half-plane, while the L2 inner product destabilizes the spectrum. Stabilization by the phase
condition only seems to be different from shifting the whole spectrum to the left by considering

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60051_06.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60051_06.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60051_07.mpg
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the differential equation in a weighted function space as in [27]. The details of this mechanism
need further investigation.

Initial values that are far away from relative equilibria lead to large differences of the time
evolution for the frozen and the nonfrozen system. While the nonfrozen system develops a
rigidly rotating spiral, we were not able to stabilize a corresponding frozen solution in a large
time interval.

In summary, it turns out that freezing the spiral in Barkley’s system is much more sensitive
than in the previous examples. This is probably due to the mixed hyperbolic-parabolic type
of the equation which requires more sophisticated numerical methods than our simple half-
explicit scheme. Moreover, it seems quite a challenging task to freeze drifting spirals or
recognize meandering spirals as periodic orbits.

Acknowledgments. The authors thank both referees for their useful suggestions which
considerably helped in improving the first version of the paper.
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Abstract. We present a numerical method to prove certain statements about the global dynamics of infinite-
dimensional maps. The method combines set-oriented numerical tools for the computation of in-
variant sets and isolating neighborhoods, the Conley index theory, and analytic considerations. It
not only allows for the detection of a certain dynamical behavior, but also for a precise computation
of the corresponding invariant sets in phase space. As an example computation we show the exis-
tence of period points, connecting orbits, and chaotic dynamics in the Kot–Schaffer growth-dispersal
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1. Introduction. The techniques described in this paper are motivated by the following
three observations:

O1. Most of our knowledge concerning the global dynamics of specific nonlinear systems
comes from numerical simulation and as such is lacking in mathematical rigor. In an
attempt to rectify this, over the past decade a growing set of techniques has been devel-
oped that lead to computer assisted proofs of dynamical structures in low- (typically
2 or 3) dimensional systems (see [18, 24, 1] and references therein).

O2. Modeling of phenomena where spatial effects are essential leads to infinite-dimensional
systems such as partial or functional differential equations, or infinite-dimensional
maps. However, within these systems the dynamical structures of interest are often
low-dimensional, e.g., fixed points, periodic orbits, homoclinic and heteroclinic orbits,
horseshoes, or low-dimensional strange attractors.

O3. In dynamical systems the central objects of interest are invariant sets, i.e., collections
of orbits which exist for all time. For a wide variety of infinite-dimensional systems,
individual solutions which exist globally in time are more regular than the typical
functions of the natural phase space (see [9] and references therein).
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Keeping these observations in mind, our goal is to provide a computationally cheap but
accurate numerical method that can be used to prove existence theorems for specific infinite-
dimensional maps. More precisely, the techniques that we describe are designed for continuous
functions Φ : X → X, where X is a Hilbert space for which we have an explicit complete
orthogonal basis {ϕk | k = 0, 1, 2, . . .} and the nonlinear terms are polynomial in nature. To
provide a concrete demonstration of these ideas we will consider the Kot–Schaffer [15] growth-
dispersal model for plants. This consists of a map Φ : L2([−π, π])→ L2([−π, π]) of the form

Φ[a](y) :=
1

2π

∫ π

−π
b(x, y)g[a](x)dx,(1.1)

with dispersal kernel b(x, y) = b(x− y) and (polynomial) growth function g. In the following

example, g[a](x) := µ a(x)(1 − a(x)
c(x) ) with µ > 0 and c ∈ L2([−π, π]). Observe that the

regularity of this map is determined by the regularity of the dispersal kernel b and the spatial
heterogeneity of c in the nonlinear term.

There are three obvious difficulties that need to be overcome to achieve our goal:
1. Because of the finite nature of a computer, it is impossible to compute directly on an

infinite-dimensional system. Therefore, it is necessary to use an appropriate finite-
dimensional reduction.

2. Given a finite-dimensional system, we need to be able to perform two tasks. The first
is to locate the different dynamical objects. Since in many cases these objects are
dynamically unstable, this is not a trivial task. The second is to rigorously verify that
these dynamical structures exist for the finite-dimensional system.

3. We need to be able to lift the results of the finite-dimensional computations to the full
infinite-dimensional system.

How these difficulties can be dealt with in a systematic and computationally efficient manner is
the subject of this paper and as such is a natural extension of [26]. As the reader might expect,
some of the details are fairly technical in nature, and therefore, we take the opportunity of
this introduction to provide a broad outline of the procedures which will be developed in the
following sections.

Let us begin with a reasonably abstract description of what will be done. We think of
Φ : X → X as generating a dynamical system with a′ = Φ(a). Recall that {ϕk | k = 0, 1, 2, . . .}
is a complete orthogonal basis for X. Let

Pm : X → Xm := span {ϕk | k = 0, 1, . . . ,m− 1}
be the orthogonal projection onto the first m modes. The standard Galerkin procedure sug-
gests replacing the study of Φ by that of the map f (m) : Xm → Xm, where f (m) := Pm ◦ Φ.

The problem is that if we study the dynamics using f (m), then we do not have any
information concerning the errors introduced by the reduction to Xm and by the projection
Pm. Observe that, to get around this problem, we can write

Φ(a) = Φ(Pma) + (Φ(a)− Φ(Pma)) .(1.2)

In general we cannot hope to determine the right-hand term exactly. However, if we restrict
our attention to a “small” set of a, then we may be able to obtain a useful bound on this
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term. With this in mind, let W be a compact subset of Xm and let V be a compact subset of
(I − Pm)X. Then,

Z := W × V

is a compact subset of X.

Now assume that it can be shown that for all a ∈ Z,

‖Φ(a)− Φ(Pma)‖ < ε.

Then, for all a ∈ Z, Φ(a) lies within an ε-ball of Φ(Pma). We want to recast these statements
about bounds into the language of dynamical systems. Furthermore, we want this dynamics to
be finite-dimensional so that we can effectively analyze it. This leads us to consider multivalued
or set-valued maps F : W⇒R

m with the property that for all a ∈ Z,

PmΦ(a) ∈ F (Pma).(1.3)

Perhaps it is worth noting at this point that if the images of F are “too large,” then we
will not be able to extract useful information from it. Thus, obtaining good bounds on
‖Φ(a)− Φ(Pma)‖ is essential.

At this point we have introduced two functions, the continuous map f (m) = Pm ◦Φ : W →
R

m, which we do not know explicitly, and a multivalued map F : W⇒R
m, which encloses

f (m) in the sense that f (m)(a) ∈ F (Pma). It is the function F , which implicitly contains the
error estimates, that we would like to analyze. However, to directly manipulate an object
with the computer that object needs to have a combinatorial structure. With this in mind,
W is decomposed into a cubical complex on which a combinatorial multivalued map F that
takes grid elements to sets of grid elements is defined. Since each grid element corresponds to
a set in W , it is easy to pass from the combinatorial map F to the multivalued map F .

This is perhaps a good point at which to emphasize the notational conventions adopted
for this paper:

• Calligraphic characters represent combinatorial objects or maps.
• Capital letters refer to topological sets or set-valued maps.
• Single-valued maps (with the exception of Φ) are denoted by lowercase letters.

The discussion up to this point has described how one proceeds from the infinite-dimensional
problem to a combinatorial object that can be analyzed using the computer. The question
that remains is how to use this combinatorial information to draw conclusions about the dy-
namics of Φ. The key tool is the Conley index theory, which is a topological generalization of
Morse theory. In particular, it can be expressed in terms of homology, which is a combinato-
rial algebraic topological theory. Furthermore, the index can be used to prove the existence
of specific dynamical structures such as fixed points, periodic orbits, heteroclinic orbits, and
shift dynamics.

As will be detailed later, F is used to construct isolating neighborhoods and index pairs,
and finally to compute the associated Conley index for the map f (m). The important the-
oretical considerations are that one can pass from F to a multivalued map F , which is an
enclosure of f (m), and that the Conley index information is preserved through this transition.
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The final step is to show that there are conditions under which the Conley index of f (m) is
equivalent to the Conley index of Φ restricted to Z. However, since Z is compact, the Conley
index theory can be applied immediately to draw conclusions about the existence of dynamic
structures for Φ.

At this level of abstraction, it is probably not even clear what are the issues involved
in implementing this approach. With this in mind, we shall provide a broad outline of the
procedures in the context of the Kot–Schaffer map (1.1).

1.1. Finite-dimensional reduction. We begin with the reduction to the finite-dimensional
system, using Fourier modes to decompose X = L2. In particular, letting ϕk(x) := eikx, (1.1)
becomes equivalent to the countable system of maps,

a′k = µbk


ak − ∑

j+l+n=k

cjalan


 , k ∈ Z,(1.4)

where ak, bk, ck ∈ C are the coefficients of the Fourier expansions of a, b, and c−1, respectively.
For simplicity, we restrict ourselves to the case ak = a−k, bk = b−k, and ck = c−k for all k ∈ Z.
Therefore, (1.4) reduces to the system

a′k = fk(a) := µbk


ak − ∑

j+l+n=k

c|j|a|l|a|n|


 , k = 0, 1, 2, . . . .(1.5)

The resulting finite-dimensional system f (m) : R
m → R

m upon which our numerical compu-
tations will be based is given by

a′k = f
(m)
k (a0, . . . , am−1) := µbk


ak − ∑

j+l+n=k
0≤|l|,|n|≤m−1

c|j|a|l|a|n|


 ,(1.6)

where k = 0, 1, . . . ,m− 1.

Of course, in the end we will need to be able to justify that computation with (1.6) allows
us to draw conclusions about the dynamics of (1.1). With this in mind, we rewrite the form
of the maps as in (1.2) and define

f
(m+)
k (a) := fk(a)− f

(m)
k (a0, . . . , am−1).

Then, the full system becomes

a′k = f
(m)
k (a0, . . . , am−1) + f

(m+)
k (a), k = 0, 1, 2, . . . .(1.7)

As was indicated earlier, we need to be able to bound values of the f
(m+)
k term when we

restrict our attention to specific compact subsets of L2.
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It is easy to check that the specific form of the nonlinear term in (1.6) comes from the fact
that Φ has a quadratic nonlinearity. More generally, for a monomial of the form c(x)a(x)p,
the corresponding terms are

bk
∑

n0,...,np−1∈Z

cn0an1 · · · anp−1ak−(n0+···+np−1).

In section 5 we will prove the following fundamental estimates (in slightly different forms).
Proposition 1.1. Assume that there exist constants s > 1, C > 0, and A > 0 such that

|ck| ≤ C

|k|s and |ak| ≤ A

|k|s , k �= 0.(1.8)

Then, for all k ∈ Z,∣∣∣∣∣∣
∑

n0,...,np−1∈Z

cn0an1 · · · anp−1ak−(n0+···+np−1)

∣∣∣∣∣∣ ≤
{

αpApC
|k|s k �= 0,

αpApC k = 0,

where α = 2
s−1 + 2 + 3.5 · 2s.

Proposition 1.2. Assume that there exist constants s > 1, C > 0, and A > 0 such that

|ck| ≤ C

s|k|
and |ak| ≤ As

s|k|
.(1.9)

Now fix γ > 1. Then, for all k ∈ Z,∣∣∣∣∣∣
∑

n0,...,np−1∈Z

cn0an1 · · · anp−1ak−(n0+···+np−1)

∣∣∣∣∣∣ ≤
αpApC

s|k|
γ|k|,

where α = 2
ln s + γ

ln(γ) .
The hypotheses of these propositions may appear artificial until one recognizes that they

are regularity conditions. In particular, the assumption on ck is an explicit assumption on
the regularity of the spatial heterogeneity of the nonlinear term in (1.1). The assumption on
the ak, however, needs greater justification. Obviously, if a is a typical element of L2, then
neither (1.8) nor (1.9) will be satisfied. However, our interest lies in elements which belong to
invariant sets. As was mentioned in observation O3, such elements often possess considerable
regularity. This property will be shown explicitly in Lemma 5.1 for the Kot–Schaffer map.

To make use of Proposition 1.1 or 1.2 we need to determine the constants A, s, and m.
As is explained in detail in section 3, this is done via simulations of the finite-dimensional
system f (L) : R

L → R
L, where L is large. In particular, we choose an initial condition

a0 = (a0
0, . . . , a

0
L−1) and examine the iterates a1 := f (L)(a0), a2 := f (L)(a1), a3 := f (L)(a2), . . . .

We can then divide the individual coordinates into two groups as follows. First, we look for
those coordinates that fluctuate on a predetermined scale under the iterations. Typically, these
involve the “lower modes”; i.e., there exists an integer m such that the only ak’s which change
significantly under iterations of the map are those for which k < m. Then, one examines the
remaining ank ’s for m ≤ k < L and uses this information to choose the constants As and s.
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Observe that at this step we are not making any claims of rigor. This is an important
point. Experience suggests that rigorous computations are typically expensive. Therefore, our
approach is to use simulations as much as possible and at the final step to perform a rigorous
verification of the results.

Using the above procedure we arrive at a finite-dimensional system f (m) : R
m → R

m.
As was indicated earlier, the first problem we need to consider is how to find the dynamical
structures of interest. From the simulation, we choose a range of values of the coordinates
ak, k = 0, . . . ,m− 1; i.e., we choose constants a−k and a+

k such that we are only interested in
ak ∈ ãk := [a−k , a

+
k ]. Let

W :=

m−1∏
k=0

[a−k , a
+
k ]

and consider f (m) : W → R
m.

Having fixed W , we can now determine the constant A in Proposition 1.1 or 1.2. Observe
that by this procedure we have effectively restricted our attention to the dynamics of Φ on
the set

Z := W ×
∞∏

k=m

ãk,(1.10)

where ãk := [− As
|k|s ,

As
|k|s ] or ãk := [− As

s|k| ,
As

s|k| ] depending on whether one assumes polynomial
or exponential decay rates. Clearly, for s sufficiently large, Z is a compact set. The obvious
question at this point is whether this assumption restricts the types of invariant sets that
one can capture. Here again observation O3 comes into play. For a large variety of systems,
elements of invariant sets possess significant regularity properties, and therefore, will lie in a
set of the form of Z.

We can then use Proposition 1.1 or 1.2 to determine bounds ε
(m+)
k > 0 for f

(m+)
k , k =

0, 1, 2, . . . , i.e., for all a ∈ Z, |f (m+)
k (a)| < ε

(m+)
k .

1.2. Analysis of finite-dimensional systems. Up to this point in the analysis, most of
what has been described is easily subsumed within the standard Galerkin approximation
techniques. We now change the perspective in our analysis of the finite-dimensional system.

While we have an explicit representation of f
(m)
k , we are really interested in the dynamics of

the system generated by the fk. Unfortunately, the best we have been able to do is determine

a bound ε
(m+)
k on f

(m+)
k . To incorporate the errors into our analysis, we adopt the philosophy

that our finite-dimensional system should be viewed as a set-valued map satisfying (1.3).

Observe that, even if the multivalued map satisfies (1.3), it is probably not directly
amenable to analysis by the computer since it does not have a combinatorial structure. To
resolve this problem we partition W into a cubical grid,

G(σ) :=

{
G =

m−1∏
k=0

a−k +

[
ik
2σ
,
ik + 1

2σ

]
wk

∣∣∣∣∣ ik ∈ {0, . . . , 2σ − 1}
}
,
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where wk = a+
k − a−k and σ ∈ N. Given B ⊂ G(σ), let |B| denote the union of all the elements

in B viewed as subsets of R
m. We will use a multivalued map F (σ) : G(σ)⇒G(σ) that satisfies

the following property. For every G ∈ G(σ),{
(f0, . . . , fm−1)(a)

∣∣∣∣∣ a ∈ G×
∞∏

k=m

ãk

}
⊂ int(|F (σ)(G)|).(1.11)

Observe that this is just a restatement of (1.3).
For the moment, we will treat σ as fixed and so simplify the notation by setting F = F (σ)

and G = G(σ). Since F is defined on the set of cubes in G and has images that consist of sets of
these cubes, it is a combinatorial object. Hence it can be analyzed directly by the computer.
A precise description of the construction of F is given in section 3. For now it is sufficient

to observe that it is determined by the bounds ε
(m+)
k on f

(m+)
k and estimates on f

(m)
k for

k = 0, . . . ,m − 1. Furthermore, the estimates on f
(m)
k depend on the size of the elements of

G. In particular, larger σ leads to better estimates.
F is the finite-dimensional dynamical system whose structure we will study. Since the

reader may not have encountered multivalued dynamical systems before, we include a few
essential definitions at this point. A full combinatorial trajectory of F through G ∈ G is a
bi-infinite sequence γG : Z → G satisfying γG(0) = G and γG(n + 1) ∈ F(γG(n)) for all
n ∈ Z. S ⊂ G is a combinatorial invariant set if for every G ∈ S there exists a full solution
γG : Z → S.

Even though F is a finite combinatorial object, and therefore, capable of being examined
directly by the computer, the associated complexity is impractical. Observe that the number
of elements of G is (2σ)dimW . To avoid this problem we make use of a subdivision algorithm
as described in [4] to find the maximal invariant set A of F in G. The computational effort to
find A is of the same order as the number of elements in A, which is approximately (2σ)dimA.
This is the point at which the observation O2 comes into play. If we are looking for low-
dimensional dynamical structures, then we can hope to do so in a computationally efficient
manner even if m, the dimension of the approximation, is large.

The condition (1.11) guarantees that F acts as an outer approximation of the map f (m).
However, knowledge of trajectories of F does not directly lead to information about the
existence of trajectories of f (m). For example, the existence of a fixed point for F , i.e., a full
solution γG : Z → G that has the form γG(n) = G for all n ∈ Z, does not imply that f (m)

possesses a fixed point. To obtain this information requires the use of algebraic topology and,
in particular, the Conley index theory.

The starting point for the computational version of this theory is the notion of a com-
binatorial isolating neighborhood, a finite set whose maximal invariant set lies strictly in its
interior. To make this precise in the setting of a cubical grid, given B ⊂ G, let

o(B) := {G ∈ G| |G| ∩ |B| �= ∅} .
Observe that o(B) is the smallest neighborhood of B that can be represented using elements
of the cubical grid. Given I ⊂ G, the maximal combinatorial invariant set in I is

Inv(I,F) := {G ∈ I | there exists a full trajectory γG : Z → I} .
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I is a combinatorial isolating neighborhood if

o(Inv(I)) ⊂ I.(1.12)

An important result following from (1.11) is that if I is an isolating neighborhood for F , then
|I| is an isolating neighborhood for f (m).

To each isolating neighborhood I of f (m) one can assign a Conley index, which is denoted
by χ∗(I, f (m)). To compute this index one needs to first construct an index pair. As was
indicated earlier, these computations are done using the combinatorial multivalued map for
which we make use of the following definition.

Definition 1.3. Let I be an isolating neighborhood for F . A pair N = (N1,N0) of subsets
N0 ⊂ N1 ⊂ I is a combinatorial index pair if the following conditions are satisfied:

1. F(Ni) ∩ I ⊂ Ni;
2. F(N1 \ N0) ⊂ I;
3. o (Inv(I,F)) ⊂ N1 \ N0.

Of course our immediate interest does not lie with the multivalued map F , but rather
with the single-valued map f (m). We will make use of the fact that an index pair for F is also
an index pair for f (m). In fact, Szycmzak [22, 23] has shown that we can use a slightly weaker
construction based on F . Let S be an isolated invariant set for F . Define,

N1 := S ∪ F(S) and N0 := N1 \ S.(1.13)

Then, |N | = (|N1|, |N0|) is an index pair for f (m).

Further details concerning this index are provided in section 2. For the moment, two
remarks suffice. The first is that χ∗(|N1| \ |N0|, f (m)), the Conley index under f (m), can be
computed using the combinatorial information of F . The second is that the Conley index
provides information about the structure of the associated maximal invariant set.

These remarks should make it clear that, in order to use the Conley index to understand
the dynamics of f (m), it is essential that we are able to efficiently find isolating neighborhoods
I of F . Furthermore, we need to be able to find isolating neighborhoods that isolate specific
dynamical objects of interest such as fixed points, periodic orbits, heteroclinic orbits, etc. Up
to this point we have treated F as a dynamical system. However, to efficiently find specified
orbits, it is useful to view F as a directed graph; the vertices correspond to the elements of G,
and if G1 ∈ F(G0), then there is a directed edge from G0 to G1. Full trajectories of F now
correspond to infinite paths in the directed graph. These paths, or sets of paths, representing
either recurrent sets or connecting orbits between recurrent sets, can be found using standard
graph-theoretic algorithms (see [7] and references therein). In this paper we make use of the
implementation in the software package GAIO as detailed in [5].

Observe that the above-mentioned paths correspond to a set of elements I ⊂ G. I is clearly
an invariant set for F , and hence, cannot be an isolating neighborhood. However, o(I) is a
candidate for being an isolating neighborhood. In particular, we can compute Inv(o(I),F).
If o(Inv(o(I),F)) ⊂ I, then I is an isolating neighborhood. If not, then we can repeat the
procedure starting with the larger invariant set Inv(o(I),F). The specific algorithm is given
in section 4.

http://www.upb.de/math/~agdellnitz/gaio
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1.3. Lifting to the full system. At this point we have described the finite-dimensional
reduction and the computer-assisted analysis of the resulting finite-dimensional system. In
particular, assume that we have found a pair of subsets N = (N1,N0) of G satisfying (1.13).
As was mentioned above, this allows us to determine the Conley index χ∗(|N1| \ |N0|, f (m)).
This is the information that we wish to lift to the full infinite-dimensional system.

Recall that we have restricted our attention to the dynamics in

Z = W ×
∞∏

k=m

ãk.

Let us further assume that for high modes, i.e., k ≥ m, the system is contracting. More
precisely, assume that for all a ∈ Z,

fk(a) ⊂ int(ãk).(1.14)

In practice this is verified using Proposition 1.1 or 1.2.
In this case it is easy to show (see Theorem 2.3) that

Ñ = (Ñ1, Ñ0) :=

(
|N1| ×

∞∏
k=m

ãk, |N0| ×
∞∏

k=m

ãk

)

is an index pair for Φ and that

χ∗(Ñ1 \ Ñ0,Φ) ∼= χ∗(|N1| \ |N0|, f (m)).

Observe that both Ñ1 and Ñ0 are compact sets. Therefore, we can apply the classical results
from the Conley index theory to draw conclusions about the dynamics of Φ.

1.4. Refinement of the combinatorial invariant set. We mentioned above that, given an
isolating neighborhood, we have algorithms that compute the associated Conley index. As
will become clear when we present the results from specific computations in section 6, this
is by far the most computationally intensive step. Therefore, our strategy is to compute the
Conley index using a minimal number of modes, i.e., as small an m as possible, and the fewest
boxes, i.e., choosing σ as small as possible.

As was described earlier, we use the Conley index of an isolating neighborhood I to obtain
information about Inv(I, f (m)). Since Inv(I, f (m)) ⊂ I, the diameters of the components of
I provide us with bounds on the individual trajectories in Inv(I, f (m)). One of the other
important properties of the Conley index is that it is an index of invariant sets; i.e., if I and
I ′ are different isolating neighborhoods such that

Inv(I, f (m)) = Inv(I ′, f (m)),

then χ∗(I, f (m)) = χ∗(I ′, f (m)). This allows us to efficiently improve the bounds on the
invariant sets as follows. Let I ⊂ G(σ) be an isolating neighborhood for the map F (σ). Now
choose σ′ > σ. Then, there exists a set B ⊂ G(σ′) such that |B| = |I|. Let I ′ := Inv(B,F (σ′)).
Then, in general |I ′| ⊂ |I|. However, χ∗(|I ′|) = χ∗(|I|). Thus, we retain the information
about the invariant set, but with better bounds.
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Still, there is a natural limit to how big we can choose σ′ to be for a given m. This limit

is essentially determined by the bounds ε
(m+)
k on the terms f

(m+)
k in (1.7)—note that one

would not expect |I ′| to be any smaller than |I| if the bounds ε
(m+)
k are of the same order of

magnitude as the size of the grid elements in G(σ′). There are two ways to escape from this
dilemma:

1. Improve the values a−k , a
+
k , k ≥ m, i.e., make the intervals [a−k , a

+
k ] as small as

possible—since this will decrease the bounds ε
(m)
k via Propositions 1.1 and 1.2. Once a

tighter neighborhood I ′ has been constructed, the intervals can be updated such that
(1.14) is still satisfied.

2. Increase the number of modes m used in the computations—this will also decrease the

bounds ε
(m+)
k . Again, we make use of the fact that by suitably lifting the isolating

neighborhood I from R
m to R

m+1, we retain the index information and thus the infor-
mation about the invariant set. One may think that the computational effort increases
dramatically when going to higher-dimensional phase spaces. This is not the case, as
will be detailed in later sections and demonstrated in the examples section. In fact,
due to the hierachical design of the refinement process and the way the combinatorial
map F is computed, the computational effort grows only linearly in m.

1.5. Results. In section 6 we are going to prove a couple of prototype results about the
dynamics of the map Φ for different parameter values. These results are meant to serve as
examples of what kind of statements may be obtained by our method and are, of course, by
no means a complete description of the dynamics of Φ. We are going to sketch these results
in the following; for the exact technical statements we refer to section 6.

Result 1. For certain parameter values the map Φ possesses a fixed point a1 and a period
two point a2, as well as an orbit limiting in backward time to a neighborhood of a1 and in
forward time to a neighborhood of a2. We localize these objects up to an error of 10−12.

Result 2. For the same parameter values, the map Φ possesses an invariant set on which
it exhibits complicated dynamics. The topological entropy of Φ is at least 1.2.

Result 3. For certain parameter values, the map Φ possesses an invariant set on which Φ
is semiconjugate to the subshift dynamics given by the transition graph T shown in Figure 1.1.

2. The Conley index. The Conley index theory is a key component in our approach to the
rigorous analysis of high-dimensional dynamical systems. It provides the tool by which we can
pass from combinatorial data to dynamical structures. We present it here (for the most part)
as a black box; that is, notation, definitions, and key theorems are stated, but no attempt
is made to motivate the underlying justification. In part, this is done for reasons of space
but also to convey the fact that the computational methods being developed are sufficiently
self-contained to be performed without knowledge of the index theory, and similarly, the index
theory can be applied without reference to the details of the computations. As such, depending
on the reader’s preferences, this section can be skipped and only referred to for notation or
critical results.

There are two issues that, in the context of our approach, are of particular importance.
The first is robustness of the index with respect to perturbation. There are essentially two
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perturbations that need to be controlled: the numerical approximation used to study the finite-
dimensional map, and the finite-dimensional approximation of the true infinite-dimensional
dynamics. The second issue is that of using the index to recover information about the dy-
namics.

2.1. Robustness. As was indicated in the introduction, depending on our immediate
needs, we use the original system to construct three types of dynamical systems in this paper:
continuous maps, f : Y → Y ′; multivalued maps, F : Y⇒Y ′; and combinatorial maps,
F : G⇒G. It is assumed that Y is a compact subset of Y ′ and that G is a cubical complex
such that |G| = Y .

Of course, the relationship between these maps is crucial. Throughout our discussion we
require that (1.11) be satisfied. Observe that the process of passing from a combinatorial map
to a multivalued map is quite simple. Given F , define F : |G|⇒|G| by

F (y) :=
⋃
y∈G

|F(G)|.(2.1)

Now, observe that a single-valued map f : Y → Y is a special case of a multivalued map F :
Y⇒Y . Therefore, any definition given in terms of a multivalued map is immediately applicable
to continuous maps. In the introduction, we gave some of the fundamental definitions in the
setting of combinatorial dynamics. We repeat them now in the context of multivalued maps.

A full trajectory of F is a bi-infinite sequence σy : Z → Y satisfying σy(0) = y and
σy(n + 1) ∈ F (σy(n)) for all n ∈ Z. S ⊂ Y is an invariant set if for every y ∈ S there exists
a full solution σy : Z → S. A compact set I ⊂ Y is an isolating neighborhood if its maximal
invariant set is contained in its interior, i.e.,

Inv(I, F ) := {y ∈ I | ∃σy : Z → I} ⊂ int(I).
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An isolated invariant set is the maximal invariant set of an isolating neighborhood.

The following definition is due to Szymczak [23].

Definition 2.1. A pair N = (N1, N0) of compact sets is an index pair for F if the following
conditions are satisfied:

1. F (N0 ∩ cl (N1 \N0)) ∩N1 ⊂ N0;
2. F (N1 \N0) ⊂ N1;
3. I := cl (N1 \N0) is an isolating neighborhood under F .

Notice that if one applies the same idea used to transform the combinatorial map F to the
multivalued map F as in (2.1), then the definitions for the combinatorial objects given in the
introduction are consistent with these new definitions. In this way we can use graph-theoretic
techniques to compute topological objects.

Let F, F ′ : Y⇒Y ′. F encloses F ′ if

F ′(y) ⊂ F (y)

for every y ∈ Y . In the special case where F ′ is a continuous single-valued map, F ′ is called
a continuous selector for F .

The following result is trivial but is of special interest in the case where F ′ is a continuous
selector because it allows us to transfer the topological constructions for multivalued maps
(which encode the errors) to continuous maps, which are not explicitly known.

Proposition 2.2. Assume F encloses F ′.
1. If σy is a trajectory for F ′, then σy is a trajectory for F .
2. If I is an isolating neighborhood for F , then I is an isolating neighborhood for F ′.
3. If N = (N1, N0) is an index pair for F , then N is an index pair for F ′.

Now consider the case of a continuous map f : Y → Y ′. Let N = (N1, N0) be an index
pair under f with isolating neighborhood I := cl (N1 \ N0). Let N1/N0 denote the quotient
space obtained by identifying the elements of N0 to a single point. Then, by [23, Theorem
1.4] f induces a continuous map

fN : (N1/N0, [N0])→ (N1/N0, [N0]).

On the level of homology, fN induces a map

χ∗(I, f) : H∗(N1, N0)→ H∗(N1, N0)

which, up to an equivalence class, is the Conley index of I. For details the reader is referred
to [23, 8, 16].

A fundamental property of the Conley index which we will exploit heavily is the following.
Let I be an isolating neighborhood for a multivalued map F taking contractible values. If g
and f are continuous selectors for F , then their Conley indices are the same, i.e.,

χ∗(I, f) ∼= χ∗(I, g).

Since F encodes the numerical errors, this is a statement about the robustness of the index
with respect to numerical error.
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We now have the following sequence of implications. Let F be a combinatorial map. As will
be indicated in section 3, there are efficient algorithms to produce an isolating neighborhood
I and index pair N = (N1,N0) for F . Using (2.1) we obtain a multivalued map F for which
I = |I| is an isolating neighborhood and N = (N1, N0) = (|N1|, |N0|) is an index pair. Let f
be a continuous selector for F . Then, I is an isolating neighborhood for f with an index pair
N = (N1, N0). An important remark is that one can use the combinatorial information of F
and N to compute H∗(N1, N0) and χ∗(I, f); see [17, 11].

We now focus our attention on a specific setting of relevance to this paper. Let X be a
Hilbert space with an orthogonal basis (ϕk). Let Pm : X → Xm := span {ϕk | k = 0, . . . ,m}
be a projection and let Qm = I−Pm be the projection onto the complementary subspace X ′

m.
Let W ⊂ Xm and V ⊂ X ′

m be compact subsets. In addition, assume that V is contractible.
Let ∂V denote the boundary of V ⊂ X ′

m and let Z = W × V .
Theorem 2.3. Let F ′ : Z⇒Xm × V and F : W⇒Xm be multivalued maps such that

PmF
′(z) ⊂ F (Pmz) ∀ z ∈ Z.(2.2)

Assume that

QmF
′(Z) ⊂ int(V ).(2.3)

Then the following results hold:
(a) If I is an isolating neighborhood for F , then Î := I × V is an isolating neighborhood

for F ′.
(b) If N = (N1, N0) is an index pair for F , then N̂ := (N1 × V,N0 × V ) is an index pair

for F ′.
(c) Let g and g′ be continuous selectors for F and F ′, respectively; then

χ∗(Î , g′) ∼= χ∗(I, g).

Proof. (a) To show that Î is an isolating neighborhood it is sufficient to show that ∂(Î)∩
Inv(Î , F ′) = ∅. Consider z ∈ ∂(Î). Suppose first that Pmz ∈ ∂I and let σz : Z → X be a
full trajectory through z under F ′, i.e., σz(n + 1) ∈ F ′(σz(n)) and σz(0) = z. Observe that,
by (2.2), Pmσz defines a full trajectory for F . However, Pmz ∈ ∂I. Since I is an isolating
neighborhood for F , there exists n ∈ Z such that Pmσz(n) �∈ I, and hence σz(n) �∈ Î. If,
however, Pmz /∈ ∂I, then Qmz ∈ ∂V . In this second case, (2.3) implies that z �∈ Inv(Î , F ′).

(b) Suppose N = (N1, N0) is an index pair for F . We now prove that N̂ := (N̂1, N̂0),
where N̂i := Ni × V , is an index pair for F ′. By Definition 2.1-3, I := cl (N1 \ N0) is an
isolating neighborhood under F . By (a), Î := cl (N̂1 \ N̂0) is an isolating neighborhood for F ′

and condition (3) is satisfied for the pair N̂ . We now need to check that the remaining two
conditions of Definition 2.1 are satisfied by N̂ = (N̂1, N̂0).

(1) Let z ∈ N̂0 ∩ cl (N̂1 \ N̂0). Then Pmz ∈ N0 ∩ cl (N1 \N0) and using (2.2),

Pm

(
F ′(z) ∩ N̂1

)
⊂ F (Pmz) ∩N1 ⊂ N0 = Pm(N̂0).

By (2.3),

Qm

(
F ′(z) ∩ N̂1

)
= Qm

(
F ′(z)

) ∩ V ⊂ Qm(N̂0).
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Therefore, F ′(N̂0 ∩ cl (N̂1 \ N̂0)) ∩ N̂1 ⊂ N̂0.
(2) Let z ∈ N̂1 \ N̂0. By (2.2), PmF

′(z) ⊂ F (Pmz). Since Pmz ∈ N1 \N0, F (Pmz) ⊂
N1 = PmN̂1. Hence, PmF

′(z) ⊂ PmN̂1. In addition, by (2.3) QmF
′z ⊂ intV ⊂ QmN̂1.

Therefore, F ′(N̂1 \ N̂0) ⊂ N̂1.
(c) By assumption, V is contractible; i.e., there exists a continuous map h : V × [0, 1]→ V

such that h(·, 0) = IV , the identity on V , and h(·, 1) = v0 ∈ V . Define H : Z × [0, 1] → Z by
H(z, s) = Pmg

′(z)+h(Qmg
′(z), s). Observe that H(z, 0) = g′(z) and H(·, 1) : Z →W ×{v0}.

Furthermore,

PmH(z, s) ∈ F (Pmz) ∀ z ∈ Z.
Therefore, if Î is an isolating neighborhood for F ′, then it is also an isolating neighborhood
for H(·, s) for all s ∈ [0, 1]. By the continuation property of the Conley index, χ∗(Î , H(·, 1)) ∼=
χ∗(Î , g′).

Define q : W → Xm by q(w) = PmH(w + v0, 1). By [19, Theorem 1.12], χ∗(I, q) ∼=
χ∗(Î , H(·, 1)). Finally, the result follows by [12, Theorem 5.4].

The following two corollaries, which are just special cases of the previous theorem, are
used in this paper. The first allows us to lift the information from R

m to R
m+1. As was

indicated in the introduction, computing the homology index is by far the most expensive
calculation, and the expense grows rapidly with dimension. Therefore, we adopt the strategy
of computing the index with a very coarse low-dimensional approximation, i.e., χ∗(I, g) in
the following corollary. To improve the accuracy, we need to increase the dimension of the
approximation. This corollary guarantees that the index does not change.

Corollary 2.4. Let F ′ : W × [a−, a+]⇒Xm × [a−, a+] and F : W⇒Xm be multivalued maps
satisfying (2.2). Let F ′

m(z) := QmF
′(z) and assume that F ′

m(Z) ⊂ (a−, a+).
(a) If I is an isolating neighborhood for F , then Î := I × [a−, a+] is an isolating neighbor-

hood for F ′.
(b) If N = (N1, N0) is an index pair for I under F , then N̂ := (N1×[a−, a+], N0×[a−, a+])

is an index pair for Î under F ′.
(c) Let g and g′ be continuous selectors for F and F ′, respectively; then

χ∗(Î , g′) ∼= χ∗(I, g).

Once the dimension of the approximation has been increased sufficiently to obtain the de-
sired accuracy, the following result implies that the index computed with the finite-dimensional
approximation is actually valid for the full infinite-dimensional system. We now return to
the notation of the introduction. In particular, as in (1.10) Z = W × ∏∞

k=m ãk, where
ãk := [− As

|k|s ,
As
|k|s ] or ãk := [− As

s|k| ,
As

s|k| ]. Furthermore, s is chosen large enough that Z is

compact. Also, as in (1.5), a′k = fk(a) for all a ∈ Z.
Corollary 2.5. Let f : Z → Xm×V be a continuous map. Let F : W⇒R

m be a multivalued
map satisfying

Pmf(a) ⊂ F (Pma) ∀ a ∈ Z.
Finally, assume that for all k ≥ m and all a ∈ Z,

fk(a) ∈ (a−k , a
+
k ).(2.4)
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(a) If I is an isolating neighborhood for F , then Î := I × V is an isolating neighborhood
for f .

(b) If N = (N1, N0) is an index pair for I under F , then N̂ := (N1 × V,N0 × V ) is an
index pair for Î under f .

(c) If g is continuous selector for F , then

χ∗(Î , f) ∼= χ∗(I, g).

2.2. Dynamics via the Conley index. We now turn to the question of how the Conley
index can be used to draw conclusions about the dynamics of a continuous map f . For a
particularly clear and complete explanation the reader is referred to [23], which is the basis
for the following discussion. Let N = (N1, N0) be an index pair for an isolating neighborhood
I of f . Let (N1/N0, [N0]) be the pointed topological space obtained by collapsing N0 to a
single point. Since N = (N1, N0) is an index pair, the induced quotient map

fN : (N1/N0, [N0])→ (N1/N0, [N0])

is continuous, and hence defines a dynamical system on a compact set. In particular, we have
the induced map on homology,

fN∗ : H∗(N1/N0, [N0])→ H∗(N1/N0, [N0]).

We will write

fN,n : Hn(N1/N0, [N0])→ Hn(N1/N0, [N0])

when we need to indicate the homology map on the nth level.

Since in our applications the Ni’s are polygons, fN∗ is equivalent to the Conley index map
χ∗(I, f). For the same reason, throughout this section we will assume that H∗(N1, N0) are
free Abelian groups; in other words, the relative homology groups of the index pairs do not
have a torsion subgroup.

The simplest dynamical result is the Ważewski principle: If fN∗ is not nilpotent, then
Inv(I, f) �= ∅. Under appropriate conditions it is also fairly simple to check for the existence
of a fixed point. Let

Λ(I, f) :=

∞∑
n=0

(−1)ntr fN,n,(2.5)

and if Λ(I, f) �= 0, then f has a fixed point in I [23, Corollary 1.2]. Similarly, if Λ(I, fs) �= 0
for some positive integer s, then I contains a periodic point, though the minimal period may
be less than s.

We are, of course, interested in more complicated dynamics. The simplest criterion
is due to [2], where it is shown that if the spectral radius of fN,1 : H1(N1/N0, [N0]) →
H1(N1/N0, [N0]) is greater than 1, then the entropy of Inv(I, f) is positive. To obtain a more
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detailed description of the dynamics, we need to impose further restrictions on the index pair
(N1, N0). Following the ideas of [23, 22, 21, 20], assume that the sets Ni are cubical and that

cl (N1 \N0) =

J⋃
j=1

Bj ,

where the Bj ’s are compact disjoint sets. Let Ej := cl (N1 \ Bj). Then there is a continuous
induced map fBj : (N1/Ej , [Ej ]) → (N1/Ej , [Ej ]). Observe that if πj : (N1/N0, [N0]) →
(N1/Ej , [Ej ]) denotes the projection map, then fBj = πj ◦fN . Thus we can recover fBj∗ from
fN∗.

This information can be used to describe the invariant set in terms of symbolic dynamics
as follows. Let ΣJ = {1, . . . , J}N with the product topology. Define ρ : Inv(I, f)→ ΣJ by

(ρ(x))n = j if fn(x) ∈ Bj .

Let γt+1 = (γ0, . . . , γt) ∈ {1, . . . , J}t+1. Define

fγt+1 = fBγt∗ ◦ · · · ◦ fBγ1∗.

Let

Γ := cl

(⋃
t∈N

{
γt+1 ∈ {1, . . . , J}t+1 | fkγt+1 �= 0∀ k ∈ N

})
⊂ ΣJ .

Then,

Γ ⊂ ρ(Inv(I, f)).(2.6)

3. Reduction of Φ. In this section we are going to describe in detail how to reduce the
infinite-dimensional map Φ to a combinatorial multivalued map F : G ⇒ G on some finite set G,
which we can deal with on the computer. This reduction process involves three main steps, as
outlined in the introduction. First, we recast the map into a (single-valued) countable system
f of maps using a Galerkin projection. Second, we define a finite-dimensional multivalued
map F in such a way that the dynamics of f is captured by F in a given subset of the phase
space. Finally, we discretize the phase space of F using a finite cubical grid G and define a
map F on G, which captures the dynamics of F .

3.1. The Galerkin projection. As laid out in the introduction, using Fourier modes
ϕk(x) = eikx, k ∈ Z, as the basis for L2 we get the countable system of maps

ak �→ fk((ai)i≥0) := µbk


ak − ∑

j+l+n=k

cjalan


 , k = 0, 1, 2, . . . ,

where ak = a−k, bk = b−k, ck = c−k ∈ R, k ∈ Z, are the coefficients of the Fourier expansions
of a, b, and c−1, respectively.
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3.2. Finite-dimensional approximation. We next need to reduce the countable system f
to a finite-dimensional one. The idea is to do computations using the first m coordinates of f
and to incorporate the neglected terms into a fixed error, which makes the finite-dimensional
map multivalued.

So we split fk into a part which depends only on the variables a0, . . . , am−1 and a remainder
term:

fk((ai)i≥0) = f
(m)
k (a0, . . . , am−1) + f

(m+)
k ((ai)i≥0), k = 0, 1, 2, . . . .

Now f (m) := (f
(m)
0 , . . . , f

(m)
m−1) defines a map on R

m. In order to deal with the error contributed

by the f
(m+)
k term, we consider the dynamics of f on the set

Z =

∞∏
k=0

[a−k , a
+
k ] = W ×

∞∏
k=m

[a−k , a
+
k ]

(where the a±k ’s are chosen in such a way that Z is compact) and use interval arithmetic and

the estimates in section 5 to bound f
(m+)
k (Z), k = 0, . . . ,m − 1, by an interval ε

(m+)
k [−1, 1];

i.e., we compute ε
(m+)
k > 0, k = 0, . . . ,m− 1, such that

f
(m+)
k (Z) ⊂ ε

(m+)
k [−1, 1].

The finite-dimensional multivalued map F (m) : W ⇒ R
m is now defined as

F (m)(a0, . . . , am−1) = f (m)(a0, . . . , am−1) +

m−1∏
k=0

ε
(m+)
k [−1, 1].

Obtaining the bounds a±k . One way to compute initial values for the bounds a±k is to run a
simulation of f (L) : R

L → R
L for some large L. That is, for some arbitrary finite set A ⊂ R

L

of points and some numbers K0 < K1 ∈ N, we compute

AK :=

K1⋃
k=K0

(
f (L)

)k
(A).

For k = 0, . . . , L− 1, set

A−
k := min{ak | (a0, . . . , aL−1) ∈ AK}

A+
k := max{ak | (a0, . . . , aL−1) ∈ AK}.

Since the values of the bounds a±k will have a strong impact on how large the errors ε
(m+)
k

will be, we decide to split these into two groups: We will use explicit bounds for k < M , where
M > m is some constant which will be determined by inspecting the values A±

k . For k ≥M we
will use a polynomial or an exponential decaying bound for a±k , i.e., a±k = ±As

ks , respectively,
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a±k = ±As

sk
, k ≥ M . The decay rate of the A±

K ’s yields a first guess for the constants As and
s; i.e., we choose As and s such that

[A−
k , A

+
k ] ⊂ As

ks
[−1, 1], resp., [A−

k , A
+
k ] ⊂ As

sk
[−1, 1],

for k = M, . . . , L− 1. Now choose the a±k such that

[A−
k , A

+
k ] ⊆ [a−k , a

+
k ] for k = 0, . . . ,M − 1,

as well as

a±k := ±As

ks
, resp., a±k := ±As

sk
, for k ≥M.

Determining the projection dimension. We still have to determine the dimension m used

in the reduction process. If we choose m too small, the errors ε
(m+)
k will be too big and we

will not be able to extract interesting dynamics on F (m). On the other hand, if m is chosen
too big, we will be doing unnecessary computations. So roughly speaking, we will choose the
smallest m such that a numerical study of F (m) yields interesting results. In practice this
essentially involves doing some sample computations using different values of m.

3.3. Finite representation. So far, we deduced a finite-dimensional multivalued map F (m)

from the original system Φ. The next step will be to get a finite representation of F (m), which
we can deal with in the computer. To this end, we are partitioning the phase space W of F (m)

into a finite number of cubical sets. A cubical set is a subset B of R
m of the form

B = B(c, r) = {x | |xk − ck| ≤ rk, k = 0, . . . ,m− 1},

where c, r ∈ R
m, rk ≥ 0, are the center and radius of B. Note that the number of sets in a

cubical partition of W grows exponentially in the dimension m of W , a fact that would render
the following computational approach prohibitively expensive. For that reason we are actually
not going to work with a partition of the whole of W but instead with a cubical covering of
the maximal invariant set of F in W . This way the numerical effort is essentially determined
by the dimension of the maximal invariant set—which typically is much smaller than m (see
[4]).

Note that W is a cubical set. Let c = (c0, . . . , cm−1) be the center and r = (r0, . . . , rm−1)
the radius of W ; then by bisecting W with respect to the jth coordinate direction, one obtains
two cubical sets B− = B(c−, r̂) and B+ = B(c+, r̂), where

r̂k =

{
rk for k �= j,
rk/2 for k = j,

c±k =

{
ck for k �= j,

ck ± rk/2 for k = j.

A cubical set, which can be represented by iterating this subdivision process, will be called
a box. Note that a binary tree represents a certain set of boxes if one assigns a coordinate
direction to each level (i.e., the set of all nodes with the same distance from the root) of the
tree: the root corresponds to the box W , and all nodes of a given depth (i.e., on the same
level) in the tree correspond to a subset of a cubical grid on W (see [4] for a more detailed
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description of this approach). Denote by Bk the collection of all boxes represented by the
nodes on depth k of a tree (where the root has depth 0). For a subset B ⊂ Bk let |B| denote
the union of all boxes in B. Let o(B) be the set of all boxes in Bk which intersect |B|, i.e., the
smallest representable neighborhood of |B| in Bk.

The multivalued map F (m) defines in a natural way a multivalued map F (m) on Bk: For
B ∈ Bk let F (m)(B) be the set of all boxes in Bk which intersect the set F (m)(B). However,
in order to allow for errors introduced when computing and representing F (m)(B), we will
actually deal with an enclosure of F (m), i.e., a map F (m) : Bk ⇒ Bk such that

F (m)(B) ⊂ int |F (m)(B)|
for B ∈ Bk. It is the map F (m) that we are dealing with in the computer. In a concrete
implementation it may be represented as, e.g., a (sparse) matrix or a graph.

Computing an enclosure of F . Let us start by considering a single-valued map g : R
m → R

m

(for example, consider the single-valued part f (m) of F (m)). An approximate method for
computing all boxes B′ in the collection Bk which intersect the image g(B) of a given box
B ∈ Bk is to choose a finite set T of test points in B and to consider all boxes B′ which contain
at least one of the image points f(T ). This is the approach originally proposed in [4, 5]. Note
that, due to the hierarchical storage scheme of the boxes in a binary tree, the computational
complexity of determining the box B′ ∈ Bk, which contains some specific image point, is only
O(k). In general this approach will not yield an enclosure of g. However, in [10] it has been
shown how to extend this approach to compute an enclosure by constructing an appropriate
mesh of test points in each box.

The approach used in this paper for the multivalued map is still different and based on
the following observations:

1. For small enough boxes (i.e., large k), the image of a box B ∈ Bk under a map
g : R

m → R
m is approximately given by its image under the linear part of g.

2. For a given cubical set C ⊂ R
m, the set of all boxes B′ ∈ Bk which intersect C can

efficiently be determined by a single depth first search in the tree.
So the idea is to use the linear part of f (m) (the single-valued part of F (m)) to compute an
approximate image of a box B, to enclose this image by a cubical set, and then to enlarge
this cubical set by the errors made by neglecting the nonlinear terms of f (m), as well as
the multivalued part of F (m). In doing these computations we use interval arithmetic as
implemented in the BIAS, PROFIL, and b4m libraries (see [13, 14, 25]) in order to control
round-off errors.

Let us be more precise. Consider the box B = B(c, r) ∈ Bk. For h ∈ R
m we can decompose

f (m) as

f (m)(c+ h) = f (m)(c) +Df (m)(c)h+ f (m),nl(c, h),

where f (m),nl(c, 0) = 0. Compute ε(m),nl(c) ∈ R
m such that

max
h∈B(0,r)

|f (m),nl(c, h)| ≤ ε(m),nl(c).

Then F (m)(B) will be contained in the cubical set B(f (m)(c), R), where

R = |Df (m)(c)|r + ε(m),nl(c) + ε(m+),
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and for a matrix A = (aij) ∈ R
d,e we write |A| := (|aij |) ∈ R

d,e. One should emphasize
that the computation of ε(m),nl may eventually be expensive—it is not in our case. Now the
enclosure F : Bk ⇒ Bk of F (m) is defined in the following way: Let F(B) be the set of boxes
which is intersected by the cubical set B(f (m)(c), R).

The following algorithm (when called as cap(∅,W,C, k)) computes the set I of all boxes
in Bk which have a nonempty intersection with the cubical set C.

Algorithm 1.
I = cap(I, B,C, k)

if B ∩ C �= ∅
if depth(B) = k

I := I ∪ {B}
else

I := I ∪ cap(I, B+, C, k) ∪ cap(I, B−, C, k)
return I

Here the function depth(B) returns k if B ∈ Bk, and B+ and B− are the two boxes which
result from bisecting B with respect to some coordinate direction—as defined by the tree used
to store the box collections.

4. Computing isolating neighborhoods. After reducing the map Φ to a combinatorial
map F on a grid, we are now interested in computing isolating neighborhoods for F which iso-
late certain sets of interest. In particular we will be interested in isolating periodic points, con-
necting orbits and—combining these two—invariant sets with complicated dynamics. These
neighborhoods will translate directly into isolating neighborhoods for the multivalued map F
(see section 1) and—together with certain conditions on f—into isolating neighborhoods for
f and thus for Φ (see section 2).

Szymczak [22] describes an algorithm for finding isolating neighborhoods of F in a given
subset B of Bk. The basic idea is to “cut” the proper pieces out of B until the resulting
collection satisfies the criterion (1.12). This method has the drawback that one has to choose
a suitable set B a priori and may eventually end up with the empty set as a trivial isolating
neighborhood. The approach we will describe now proceeds in some sense in the opposite
direction: one starts with a guess for an isolating neighborhood of some interesting invariant
set and “fattens” this set by adding neighborhoods until condition (1.12) is satisfied.

4.1. Guessing isolating neighborhoods. Guesses for isolating neighborhoods of specific
invariant sets of F can easily be obtained as follows:

• k-periodic points of F are identified by nonzero diagonal entries of Mk
F , where the

transition matrix MF = (mij) is given by

mij =

{
1 if Bj ∈ F(Bi),
0 else,

and Bk = {B1, . . . , Bp};
• more generally, recurrent sets of F are given by strongly connected components of a

graph representing F ;
• in this graph, connecting orbits of F can be identified by shortest path algorithms

(e.g., the Dijkstra algorithm; see [6]);
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• Szymzcak [22] describes how to compute the maximal invariant set of F .

4.2. Turning the guess into a true isolating neighborhood. Once a guess Ĩ for an
isolating neighborhood of F has been computed, we construct by the following procedure a
(true) isolating neighborhood I containing Ĩ.

Algorithm 2.
I = make isolated(Ĩ)

I := Inv(Ĩ,F)

while o(I) �⊂ Ĩ
Ĩ := Ĩ ∪ o(I)
I := Inv(Ĩ,F)

if I ⊂ int |o(I)| return I
else return ∅

By construction this algorithm returns a combinatorial isolating neighborhood I for F .
Similarly to the procedure proposed in [22], one may end up with the empty set, in which
case the set |I| touched the boundary of W .

4.3. Tightening the isolating neighborhood. So far we computed an isolating neigh-
borhood I ⊂ Bk for F . We are now going to address the question of how to improve this
neighborhood in the sense that one gets a tighter covering of the underlying invariant set.
This process of tightening involves three steps, which may be applied repeatedly until the
desired accuracy has been reached or the machine resources are exhausted.

4.3.1. The subdivision algorithm. In [4] Dellnitz and Hohmann describe a subdivision
procedure for the computation of relative global attractors of maps. The basic idea of the
therein advocated multilevel approach is to iteratively refine a given collection of boxes and
then to select a certain subset of the refined collection which contains the dynamics of interest.

Algorithm 3 (see [4]). Given the initial collection B0, one inductively obtains Bk from Bk−1

for k = 1, 2, . . . in two steps.
1. Subdivision: Construct a new collection B̂k by bisecting each box in Bk−1 with respect

to some coordinate direction.
2. Selection: Compute the relevant subset Bk of B̂k.

The second step obviously defines which sets will be contained in Bk. In our case, since we
want to compute isolating neighborhoods, we are interested in covering the maximal invariant
set. So we set

Bk = Inv(B̂k,F)(4.1)

(cf. [22]), where we start with B0 = I. The following statement formalizes that we do not
lose the isolation property for the tightened neighborhood. Its proof is essentially the same
as that for Theorem 2.2 in [22].

Proposition 4.1. Let B0 = I be a collection of boxes which is an isolating neighborhood for
F : B0 ⇒ B0. Then the collections Bk, k = 1, 2, . . . , computed by Algorithm 3 with selection
criterion (4.1), are also isolating neighborhoods for F : Bk ⇒ Bk.

In practice it will not be advisable to perform more than a few steps of the subdivision
procedure at once. Recall that the combinatorial map F has been defined on the basis of the
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multivalued map F = F (m), which incorporated the errors ε
(m+)
k contributed to the dynamics

of f (m) by the higher order modes. As soon as these errors and the size of the boxes in
the current collection Bk are on the same order of magnitude, a further refinement using

Algorithm 3 no longer makes any sense. Instead, one will first have to make ε
(m+)
k smaller by

the following two methods.

4.3.2. Updating the bounds a±
k . Recall that we start all computations on the infinite-

dimensional cube

Z = W × V =

∞∏
k=0

[a−k , a
+
k ],

where we obtained initial guesses for a±k by running a simulation of f (m) for a large m. The

size of a±k will have a crucial influence on the size of the errors ε
(m)+
k introduced in the

multivalued map F (m) by estimating the contribution from the neglected modes. Since these
errors determine the precision of the computations (and whether we will be able to perform
an interesting computation in the first place) we are interested in making |a±k | as small as
possible. Remember that we split the variables ak into three groups as follows:

1. 0 ≤ k < m: These are the actual variables with which we are computing. We are get-
ting tight bounds on these by encapsulating our covering B# of the maximal invariant
set of F (m) : W ⇒ R

m into a cube; i.e., we choose a±k , 0 ≤ k < m, such that

|B#| ⊂
m−1∏
k=0

[a−k , a
+
k ].

2. m ≤ k < M : For these we store bounds on the ak explicitly. As laid out in section 2,
in order to lift the index information to the full system it is sufficient to require that
the map f satisfy

fk(Z) ⊂ (a−k , a
+
k ), k ≥ m.

Note that, via the estimates in section 5, we are able to bound fk(Z) in terms of an
interval. What is more, since we are dealing with a polynomial nonlinearity, whenever
we decrease |a±# | for some >, the bound on fk(Z) will also decrease. This is the basis
for the following update scheme for the a±k with m ≤ k < M : For k = m, . . . ,M − 1
we compute the new [a−k , a

+
k ] as the interval bounding fk(Z) using the estimates in

section 5, in particular, Corollary 5.5, respectively, 5.11.
3. k ≥ M : These variables are bounded by a decay law of exponential or polynomial

type, i.e., a±k = ±As

sk
, respectively, a±k = ±As

ks . In this case one gets tighter bounds by
updating the constants s and As. This is detailed in section 5 (Lemmas 5.7 and 5.13).

4.3.3. Increasing the projection dimension m. The third method for obtaining tighter
bounds on the computed invariant set is to increase the number of Galerkin modes used in

the computations. We write Bk = B(m)
k for a box collection in R

m. Define

B(m+1)
k =

{
B × [a−m, a

+
m] : B ∈ B(m)

k

}
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and let F (m+1) : B(m+1)
k ⇒ B(m+1)

k be the combinatorial map defined by the multivalued map

F (m+1) : W (m+1) ⇒ R
m+1, W (m+1) = W (m) × [a−m, a+

m]. Now let I(m) ⊂ B(m)
k be an isolating

neighborhood for F (m) : B(m)
k ⇒ B(m)

k and set

I(m+1) = {B × [a−m, a
+
m] : B ∈ I(m)}.

Using Corollary 2.4 we get that I(m+1) is an isolating neighborhood for F (m+1), and in par-
ticular, the index information of a corresponding index pair carries over from dimension m to
m+ 1.

5. Error bounds (polynomial nonlinearity). As discussed in section 1, we need to study
maps of the form

(ak)k �→ bk
∑

n0,...,np−1∈Z

cpn0
an1 . . . anp−1ak−(n0+···+np−1)

corresponding to a monomial cpa
p of the growth function, where ak = a−k, bk is the kth

eigenvalue for the underlying linear operator, and cpk and ak are the kth coefficients of the
expansions of cp and a, respectively. The maps for a polynomial growth function are the sums
of the maps for the monomials. It is important to note, however, that when written in terms of
an appropriate basis, a wide variety of systems with polynomial nonlinearities produce maps
of this form.

We next restrict the domain to a set Z =
∏

k[a
−
k , a

+
k ] = W ×∏

k≥M [a−k , a
+
k ], where for

k ≥M , 0 ∈ [a−k , a
+
k ], and a+

k −a−k satisfies some decay rule. The justification of this restriction
is given by the following lemma.

Lemma 5.1. Any invariant set of Φ is contained in a set Z of the form given above, where
the decay in the higher modes reflects the decay of the eigenvalues bk of the linear operator.

Proof. Let a ∈ X with corresponding Fourier expansion
∑

k akϕk.
The projection of the image of a onto the kth mode is

〈Φ(a), ϕk〉 =

∫ π

−π
Φ(a)(y)ϕk(y)dy

=

∫ π

−π

1

2π

∫ π

−π
b(x, y)g(a)(x)ϕk(y)dxdy

=
1

2π

∑
n

bn

∫ π

−π
ϕn(x)g[a](x)

(∫ π

−π
ϕn(−y)ϕk(y)dy

)
dx

= bk

∫ π

−π
ϕk(x)g[a](x)dx

= bk〈g[a], ϕk〉
≤ Cg,abk

for some constant Cg,a that does not depend on k.
In particular, any set which is invariant (forward and backward in time) must be contained

in a set of the form of Z =
∏

k[a
−
k , a

+
k ], where for k sufficiently large (k ≥ M), a+

k − a−k is
shrinking according to the contraction given by the eigenvalue bk.
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In practice, the domain intervals are determined by preliminary simulations, with a decay
rule reflecting the decay found in the eigenvalues for the linear operator. We now use interval
arithmetic to determine bounds for the error term f (m+)(a) resulting from considering only
the first m modes as variables. To emphasize our use of intervals we will write ãk := [a−k , a

+
k ].

5.1. Exponential decay. In this section, we assume that the eigenvalues bk of the linear
operator decay exponentially. That is, there exist constants b > 1 and B > 0 such that
|bk| ≤ B

bk
. In this case, we begin by setting ãk =

[−As

sk
, As

sk

]
for all k ≥ M , where the

constants As > 0 and s > 1 are determined by preliminary simulations. In order to reduce
the number of cases we need to consider, we will extend the asymptotic bounds to all k. In
other words, ãk ⊆ A

s|k| [−1, 1] for all k ∈ Z, where A = max{As,max0≤k<M,ak∈ãk s
k|ak|}. For

future computations, fix β such that b
s < β < b.

Consider the monomial ap of order p with coefficient 1. We begin by bounding the sum
in the corresponding maps.

Lemma 5.2. For all k ∈ Z,

∑
n1,...,np−1∈Z

ãn1 . . . ãnp−1 ãk−(n1+···+np−1) ⊆
αp−1Ap

s|k|

(
b

β

)|k|
[−1, 1],

where α =
(

2
ln s + b

β ln (b/β)

)
.

Proof. This formula holds for p = 1 since

ãk ⊆ A

s|k|
[−1, 1] ⊆ A

s|k|
( b
β

)|k|
[−1, 1].

Assume the formula holds for p− 1. Then, for k ≥ 0,

∑
n1,...,np−1

ãn1 · · · ãnp−1 ãk−(n1+···+np−1)

=
∑
n1

ãn1

∑
n2,...,np−1

ãn2 · · · ãnp−1 ã(k−n1)−(n2+···+np−1)

⊆
∑
n1

ãn1

αp−2Ap−1

s|k−n1|

(
b

β

)|k−n1|
[−1, 1]

⊆
(∑

n1≤k

ãn1

αp−2Ap−1

sk−n1

(
b

β

)k−n1

+
∑
n1>k

ãn1

αp−2Ap−1

sn1−k

(
b

β

)n1−k
)

[−1, 1]

⊆
(∑

n1>0

Aαp−2Ap−1

sk+2n1

(
b

β

)k+n1

+

k∑
n1=0

Aαp−2Ap−1

sk

(
b

β

)k−n1

+
∑
n1>k

Aαp−2Ap−1

s2n1−k

(
b

β

)n1−k
)

[−1, 1]
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⊆
(
αp−2Ap

sk

(
b

β

)k ( b

sβ

)0 ∑
n1>0

1

sn1
+
αp−2Ap

sk

(
b

β

)k k∑
n1=0

(
β

b

)n1

+ αp−2Apsk
(
β

b

)k ( b

sβ

)k ∑
n1>k

1

sn1

)
[−1, 1]

⊆
(
αp−2Ap

sk

(
b

β

)k ∫ ∞

0
s−xdx+

αp−2Ap

sk

(
b

β

)k ∫ ∞

−1

(
β

b

)x

dx

+ αp−2Ap

∫ ∞

k
s−xdx

)
[−1, 1]

⊆ αp−2Ap

sk

(
b

β

)k ( 2

ln s
+

b

β ln (b/β)

)
[−1, 1]

=
αp−1Ap

sk

(
b

β

)k

[−1, 1].

The case k < 0 may be reduced to the previous case via a change of indices.

If the expansion of the coefficient function exhibits similar decay to that of ãk, then we
may extend this argument to the maps corresponding to cap.

Corollary 5.3. If there exists a constant C such that cn ∈ c̃n := C
s|n| [−1, 1] for all n, then

∑
n0,n1,...,np−1∈Z

c̃n0 ãn1 · · · ãnp−1 ãk−(n0+···+np−1) ⊆
αpApC

sk

(
b

β

)k

[−1, 1].

We now take advantage of the explicit bounds ãn, 0 ≤ n < M , instead of using only
the extended asymptotic bounds As

sn [−1, 1]. By increasing M , the error computations become
more costly while giving tighter bounds on the error terms.

Lemma 5.4. For 0 ≤ k < M ,

∑
n1,...,np−1∈Z

ãn1 · · · ãnp−1 ãk−(n1+···+np−1)

⊆
∑

|n1|,...,|np−1|≤M

ãn1 · · · ãnp−1 ãk−(n1+···+np−1)

+
(p− 1)αp−2Ap−1As

sM ln s

[(
b

sβ

)M−k

+

(
b

sβ

)M+k
]

[−1, 1]

for any M > 0.
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Proof.

∑
n1,...,np−1∈Z

ãn1 · · · ãnp−1 ãk−(n1+···+np−1)

⊆
∑

|n1|,...,|np−1|≤M∗
ãn1 · · · ãnp−1 ãk−(n1+···+np−1)

+

p−1∑
i=1

max
an∈ãn




∑
nj∈Z,|ni|>M

|an1 | · · · |anp−1 ||ak−(n1+...+np−1)|

 [−1, 1].

By symmetry,

∑
nj∈Z,|ni|>M

|an1 | · · · |anp−1 ||ak−(n1+···+np−1)| =
∑

nj∈Z,|n1|>M

|an1 | · · · |anp−1 ||ak−(n1+···+np−1)|

for i = 1, . . . , p− 1.

Using the previous asymptotic estimates,

∑
nj∈Z,|n1|>M

|an1 | · · · |anp−1 ||ak−(n1+···+np−1)|

≤
∑

n1>M

As

sn1

αp−2Ap−1

sn1−k

(
b

β

)n1−k

+
∑

n1<−M

As

s−n1

αp−2Ap−1

sk−n1

(
b

β

)k−n1

= αp−2Ap−1Ass
k

(
β

b

)k ( b

sβ

)M ∑
n1>M

1

sn1

+
∑

n1>M

As

sn1

αp−2Ap−1

sk+n1

(
b

β

)k+n1

≤ αp−2Ap−1Ass
k

(
β

b

)k ( b

sβ

)M ∫ ∞

M
s−xdx

+
αp−2Ap−1As

sk

(
b

β

)k ( b

sβ

)M ∫ ∞

M
s−xdx

=
αp−2Ap−1As

sM ln s

[(
b

sβ

)M−k

+

(
b

sβ

)M+k
]
.
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Therefore,∑
n1,...,np−1∈Z

ãn1 · · · ãnp−1 ãk−(n1+···+np−1)

⊆
∑

|n1|,...,|np−1|≤M

ãn1 · · · ãnp−1 ãk−(n1+···+np−1)

+
(p− 1)αp−2Ap−1As

sM ln s

[(
b

sβ

)M−k

+

(
b

sβ

)M+k
]

[−1, 1].

By a similar argument, we obtain the following corollary.
Corollary 5.5. For 0 ≤ k < M ,∑

n0,...,np−1∈Z

c̃pn0
ãn1 · · · ãnp−1 ãk−(n0+···+np−1)

⊆
∑

|n0|,...,|np−1|≤M

c̃pn0
ãn1 · · · ãnp−1 ãk−(n0+···+np−1)

+
αp−1ApC

sM ln s

[(
b

sβ

)M−k

+

(
b

sβ

)M+k
]

[−1, 1]

+
(p− 1)αp−1Ap−1CAs

sM ln s

[(
b

sβ

)M−k

+

(
b

sβ

)M+k
]

[−1, 1]

for any M > 0.
Notice that the sum in these last estimates is finite. Therefore, we may decide on a case-

by-case basis which of these terms contains only variables (ak with 0 ≤ k < m). These terms
are included in the finite-dimensional map, f (m), and should not be considered when bounding
the error term, f (m+). In the remaining terms, we may use the explicit interval bounds instead
of the extended asymptotic bounds. This, in principle, should give us a tighter bound on the
error.

Corollary 5.6. For 0 ≤ k < m and M > 0, the error in the kth coordinate map, [f (m+)(Z)]k,
corresponding to a nonlinear term of the form cpa

p is bounded by

[f (m+)(Z)]k ⊆
∑

|n0|,...,|np−1|≤M

cpn0an1 · · · anp−1ak−(n0+···+np−1)

+ (A+ (p− 1)As)
(αA)p−1C

sM ln s

[(
b

sβ

)M−k

+

(
b

sβ

)M+k
]

[−1, 1],

where cpn0an1 · · · anp−1ak−(n0+···+np−1) is 0 if all of the indices have absolute value less than m
and is the interval product c̃pn0 ãn1 · · · ãnp−1 ãk−(n0+···+np−1) otherwise.

Besides computing the errors for the multivalued map, we also wish to update both the
explicit interval bounds (0 ≤ k < M) and the asymptotic bounds for the tail of the sequence
k ≥M . For the first set of updates, (0 ≤ k < M), we may use the estimates given in Corollary
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5.5. When updating the bounds for k ≥ M , we use the computations given in Corollary 5.3
as follows.

Lemma 5.7. Suppose the nonlinearity is g(a) =
∑d

p=0 cpa
p with the expansions of the coef-

ficient functions satisfying the decay rules cpn ∈ c̃pn :=
Cp

s|n| [−1, 1] for some constants Cp. Then

for k ≥M , we may set new bounds ãk to be
Aβs

(βs)k
[−1, 1], where

Aβs = B(C0 + αAC1 + · · ·+ αdAdCd)

Proof. For a fixed k ≥M , we have bounds for the image of the corresponding map using
the bounds for |bk| and the bounds for the sum given by Corollary 5.3.

The projection of the image of Z under the full map onto the kth mode is

[F (Z)]k = bk

d∑
p=0

∑
n0,...,np−1

c̃pn0
ãn1 . . . ãk−(n0+···+np−1)

⊆ B

bk
1

sk

(
b

β

)k

(C0 + αAC1 + · · ·+ αdAdCd)[−1, 1]

=
Aβs

(βs)k
[−1, 1],

where Aβs is as given in the statement of the lemma.

By setting the new bounds ãk to be the bounds on the image [F (Z)]k, we preserve iso-
lation.

5.2. Polynomial decay. We now consider the case when the eigenvalues, bk, for the linear
operator exhibit polynomial decay. In other words, there exist constants b > 1 and B > 0 such
that |bk| ≤ B

|k|b for all k ∈ Z\{0}. Again, we assume that the sequence exhibits similar decay to

that of the eigenvalues. That is, for some constants As > 0 and s > 1 initially given by simula-
tions, ãk = As

|k|s [−1, 1] for all k > M . SetA = max{As,maxa0∈ã0 |a0|,max0<k<M,ak∈ãk |k|s|ak|}.
Then ãk ⊆ A

|k|s [−1, 1] for all k ∈ Z\{0} and ã0 ⊆ A[−1, 1]. The following estimates are similar
to those given in the exponential decay case.

Lemma 5.8. Let α = 2
s−1 + 2 + 3.5 · 2s. Then

∑
n1,...,np−1∈Z

ãn1 · · · ãnp−1 ãk−(n1+···+np−1) ⊆
{

αp−1Ap

|k|s [−1, 1], k �= 0,

αp−1Ap[−1, 1], k = 0.

Proof. For p = 1, this inequality holds for all k. Now assume that

∑
n1,...,np−2∈Z

ãn1 · · · ãnp−2 ãk−(n1+···+np−2) ⊆
{

αp−2Ap−1

|k|s [−1, 1], k �= 0,

αp−2Ap−1[−1, 1], k = 0.
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For k = 0, ∑
n1,...,np−1

ãn1 · · · ãnp−1 ãk−(n1+···+np−1)

⊆
(∑

n1<0

A

(−n1)s
αp−2Ap−1 +Aαp−2Ap−1

+
∑
n1>0

A

ns
1

αp−2Ap−1

)
[−1, 1]

⊆ αp−2Ap

[
2

(
1 +

∫ ∞

1
t−sdt

)
+ 1

]
[−1, 1]

= αp−2Ap

[
3s− 2

s− 1

]
[−1, 1]

⊂ αp−1Ap[−1, 1].

The following inequality is needed for the case k > 0:

k−1∑
n=1

1

ns

1

(k − n)s
≤ 3.5 · 2s

ks
.

First, note that we may assume k > 2 since the sum is empty when k = 1 and the
inequality holds for the single term when k = 2.

For s = 2,

k−1∑
n=1

1

n2

1

(k − n)2
≤ 2

(k − 1)2
+

∫ k−1

1

1

x2(k − x)2
dx

≤ 2

(k − 1)2
+

4

k3
ln |k − 1|+ 2(k − 2)

k2(k − 1)

≤ 2

(k − 1)2
+

6

k2

<
8

k2
+

6

k2

=
3.5 · 22

k2
.

Here, 2
(k−1)2

< 8
k2 since k > 2.

Now assume that
k−1∑
n=1

1

ns−1(k − n)s−1
≤ 3.5 · 2s−1

ks−1

or, equivalently,
k−1∑
n=1

ks−1

ns−1(k − n)s−1
≤ 3.5 · 2s−1.
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Then

k−1∑
n=1

ks

ns(k − n)s
=

k−1∑
n=1

(
k

n(k − n)

)
ks−1

ns−1(k − n)s−1

≤ k

k − 1

k−1∑
n=1

ks−1

ns−1(k − n)s−1

≤ 2 · 3.5 · 2s−1

= 3.5 · 2s.

Therefore,
k−1∑
n=1

1

ns

1

(k − n)s
≤ 3.5 · 2s

ks

for all s ≥ 2.

Now, for k > 0,

∑
n1,...,np−1

ãn1 · · · ãnp−1 ãk−(n1+···+np−1)

⊆
∑
n1

ãn1 |
αp−2Ap−1

|k − n1|s [−1, 1]

⊆
(∑

n1<0

A

(−n1)s
αp−2Ap−1

(k − n1)s
+
Aαp−2Ap−1

ks

+

k−1∑
n1=1

A

ns
1

αp−2Ap−1

(k − n1)s
+

∑
n1>k

A

ns
1

αp−2Ap−1

(n1 − k)s

)
[−1, 1]

⊆ αp−2Ap

[
2

ks

(
1 +

∫ ∞

1
t−sdt

)

+

k−1∑
n1=1

1

ns
1

1

(k − n1)s

]
[−1, 1]

⊆ αp−2Ap

[
2

ks

(
1 +

1

s− 1

)
+

3.5 · 2s
ks

]
[−1, 1]

⊆ αp−2Ap

ks

[
2

s− 1
+ 2 + 3.5 · 2s

]
[−1, 1]

=
αp−1Ap

ks
[−1, 1].

The case k < 0 may be reduced to the previous case via a change of indices.

We may extend this argument to the maps corresponding to cap, provided that the ex-
pansion of the coefficient function also exhibits polynomial decay.
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Corollary 5.9. If there exists a constant C such that cn ∈ c̃n := C
|n|s [−1, 1] for all n, then

∑
n0,n1,...,np−1∈Z

c̃n0 ãn1 · · · ãnp−1 ãk−(n0+···+np−1) ⊆
{

αpApC
|k|s [−1, 1], k �= 0,

αpApC[−1, 1], k = 0.

We now refine the error bounds using the explicit interval bounds ãn for n < M .
Lemma 5.10. For 0 ≤ k < M ,∑

n1,...,np−1∈Z

ãn1 · · · ãnp−1 ãk−(n1+···+np−1)

⊆
∑

|n1|,...,|np−1|≤M

ãn1 · · · ãnp−1 ãk−(n1+···+np−1)

+
(p− 1)αp−2Ap−1As

M
s−1

(s− 1)

[
1

(M − k)s
+

1

(M + k)s

]
[−1, 1]

for any M > 0.
Proof.∑
n1,...,np−1∈Z

ãn1 · · · ãnp−1 ãk−(n1+···+np−1)

⊆
∑

|n1|,...,|np−1|≤M

ãn1 · · · ãnp−1 ãk−(n1+···+np−1)

+

p−1∑
i=1

max
an∈ãn




∑
nj∈Z,|ni|>M

|an1 | . . . |anp−1 ||ak−(n1+···+np−1)|

 [−1, 1].

Note that∑
nj∈Z,|ni|>M

|an1 | · · · |anp−1 ||ak−(n1+···+np−1)| =
∑

nj∈Z,|n1|>M

|an1 | · · · |anp−1 ||ak−(n1+···+np−1)|

for i, . . . , p− 1.
By Lemma 5.8, ∑

nj∈Z,|n1|>M

|an1 | · · · |anp−1 ||ak−(n1+···+np−1)|

≤
∑

n1>M

As

ns
1

αp−2Ap−1

(n1 − k)s

+
∑

n1<−M

As

(−n1)s
αp−2Ap−1

(k − n1)s

= αp−2Ap−1As

∑
n1>M

1

ns
1(n1 − k)s
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+ αp−2Ap−1As

∑
n1>M

1

ns
1(k + n1)s

≤ αp−2Ap−1As

(M − k)s

∫ ∞

M
x−sdx

+
αp−2Ap−1As

(M + k)s

∫ ∞

M
x−sdx

=
αp−2Ap−1As

M
s−1

(s− 1)

[
1

(M − k)s
+

1

(M + k)s

]
.

Therefore,∑
n1,...,np−1∈Z

ãn1 · · · ãnp−1 ãk−(n1+···+np−1)

⊆
∑

|n1|,...,|np−1|≤M

ãn1 · · · ãnp−1 ãk−(n1+···+np−1)

+
(p− 1)αp−2Ap−1As

M
s−1

(s− 1)

[
1

(M − k)s
+

1

(M + k)s

]
[−1, 1].

Corollary 5.11. For 0 ≤ k < M ,∑
n0,...,np−1∈Z

c̃pn0
ãn1 · · · ãnp−1 ãk−(n0+···+np−1)

⊆
∑

|n0|,...,|np−1|≤M

c̃pn0
ãn1 · · · ãnp−1 ãk−(n0+···+np−1)

+
αp−1ApC

M
s−1

(s− 1)

[
1

(M − k)s
+

1

(M + k)s

]
[−1, 1]

+
(p− 1)αp−1Ap−1CAs

M
s−1

(s− 1)

[
1

(M − k)s
+

1

(M + k)s

]
[−1, 1]

for any M > 0.
Since the sum in these last estimates is finite, we may decide on a case-by-case basis which

of these terms contains only variables (ak with 0 ≤ k < m). These terms are contained in
f (m) and should not be included when computing bounds for f (m+). We may also compute
a better bound of the remaining terms in the sum by using explicit interval bounds for an,
n < M , instead of the extended asymptotic bounds.

Corollary 5.12. For 0 ≤ k < m, the error in the kth coordinate map from the neglected
higher modes,

[f (m+)(Z)]k ⊂
∑

|n0|,...,|np−1|≤M

cpn0an1 · · · anp−1ak−(n0+···+np−1)

+ (A+ (p− 1)As)
(αA)p−1C

M
s−1

(s− 1)

[
1

(M − k)s
+

1

(M + k)s

]
[−1, 1],
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where cn0an1 · · · anp−1ak−(n0+···+np−1) is 0 if all of the indices have absolute value less than m
and is the interval bound c̃pn0 ãn1 · · · ãnp−1 ãk−(n0+···+np−1) otherwise.

The computations in this section may be used to calculate error bounds (Corollary 5.12)
to be used in the construction of the multivalued map and to update explicit interval bounds
(Corrollary 5.11). In the following lemma, we use Corollary 5.9 to update the bounds ãk,
k > M .

Lemma 5.13. Suppose the nonlinearity is g(a) =
∑d

p=0 cpa
p with the expansions of the

coefficient functions satisfying the decay rules cpn ∈ c̃pn :=
Cp

|n|s [−1, 1] for some constants Cp.

Then for k ≥M , we may set new bounds ãk to be
As+b

k(s+b) [−1, 1], where

As+b = B(C0 + C1Aα+ · · ·+ CdA
dαd).

Proof. For a fixed k ≥ M , we have bounds for the projection onto the kth mode of the
image of Z under the full map using the bounds for |bk| and the bounds for the sum given by
Corollary 5.9.

[Fm(Z)]k = bk

d∑
p=0

∑
n0,...,np−1

c̃pn0
ãn1 · · · ãk−(n0+···+np−1)

⊆ B

kb
1

ks
(C0 + αAC1 + · · ·+ αdAdCd)[−1, 1]

=
As+b

k(s+b)
[−1, 1],

where As+b is as given in the statement of the lemma. We preserve isolation by setting the
new bounds to be the bounds on the image.

6. Example computations. In this section we apply the previously described methodology
for the analysis of the Kot–Schaffer map. We perform rigorous computations in order to prove
the existence of (and compute an approximation to) the following three types of invariant sets
for Φ:

1. A heteroclinic orbit connecting a neighborhood of a fixed point to a neighborhood of
a period two orbit (6.1).

2. An invariant set with chaotic dynamics, i.e., with positive entropy (6.2).
3. A second complicated invariant set, which is described in terms of chaotic symbolic

dynamics (6.3).

The computations have been performed using the GAIO [3] and CHomP [17] packages. There
are scripts available that will perform the following procedures.

6.1. Connecting orbits. In this section we show the existence of a heteroclinic orbit of Φ
connecting a (small) neighborhood of a fixed point to a (small) neighborhood of a period two
point and compute an approximation of this orbit to an accuracy on the order of 10−12. The
parameter values for the equivalent countable system (1.4) are as follows:

µ = 3.5, bk = 2−k, c0 = 0.8, c1 = −0.2, and ck = 0 for k > 1.(6.1)

http://www.upb.de/math/~agdellnitz/gaio
http://www.math.gatech.edu/~chom
http://www.upb.de/math/~junge/kot_schaffer/code
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Figure 6.1. Projections of the set AK .

In order to initialize the a priori bounds a±k , we run a simulation of f (L) : R
L → R

L for
L = 50 with the initial condition A = {(2−k)49k=0}, K0 = 10, and K1 = 10000. Figure 6.1
shows two projections of the resulting set AK . We choose M = 50 and an exponential estimate
for k ≥M with As = 1 and s = 2 as well as the initial bounds as stated in Table 6.1.

Table 6.1
Initial guess for error bounds a±k .

k a−k a+
k

0 0.2 1.5
1 0.05 0.5
2 −0.001 0.1

2 < k < M −2−k 2−k

The next step is to choose the (initial) projection dimension m. To this end we compute

bounds for the errors ε
(m+)
k , k = 0, . . . ,m − 1, for various m. Based on these values (cf.

Table 6.2) we decide to start off with m = 5. Again, this is a preliminary choice and at this
point in the procedure we cannot guarantee that they will be sufficient later when trying to
compute isolating neighborhoods.

Table 6.2
Errors induced by neglecting the higher order modes for different projection dimensions.

m 2 3 4 5 6

ε
(m+)
k

0.32139
0.27164

0.18083
0.13052
0.19013

0.058333
0.040833
0.032630
0.047533

0.014583
0.011849
0.010208
0.008158
0.011883

0.0036458
0.0029622
0.0029622
0.0025521
0.0020394
0.0029708

http://www.upb.de/math/~junge/kot_schaffer/code/ex1/A_K.dat


A RIGOROUS NUMERICAL METHOD 151

We are now able to compute guesses for invariant sets of F (5). We do this by running
Algorithm 3 with selection criterion (4.1), yielding an approximate covering of the maximal
invariant set in the chosen region W (5) =

∏4
k=0[a

−
k , a

+
k ]. In the course of the algorithm the

coordinate direction j in which the boxes are subdivided varies cyclically with the number of
subdivisions k; i.e., j = kmod5. For computing the multivalued map F (5) on the collections
Bk we employ the heuristic method of mapping test points—here we use a set of 100 points
per box distributed randomly according to a uniform distribution. Figure 6.2 shows two
projections of the resulting box collection in R

5 after 35 steps of the algorithm.

Figure 6.2. Projections of the (approximate) box covering B35 of the maximal invariant set of F (5) in W (5).

Before we proceed with extracting the desired dynamical objects from the collection B35

we update the a priori bounds a±k , k = 5, . . . , 49, (see section 4.3.2) in order to reduce the error
ε(m+). The resulting ε(m+) using the updated bounds is smaller than (0.05, 0.1, 0.2, 0.6, 1.25)T ·
10−4. Note that this error (rather than the initial error as shown in Table 6.2) determines
whether we will be able to perform a useful computation later on. It essentially sets a lower
bound to the size of the boxes used to cover the objects of interest. In our case, ε(m+) is
roughly (at least) four times smaller than the radius of the boxes in B35.

Recall that our aim is to compute an orbit connecting a fixed point to a period two point
of Φ. Guesses for isolating neighborhoods of the periodic points of f (5) are easily obtained
by considering the periodic points of F (5) : B35 ⇒ B35 as laid out in section 4.1. Figure 6.3
shows the guess Ĩ1 for the fixed points and the guess Ĩ2 for the period two points. Finally, we
obtain a guess Ĩc for a connecting orbit by computing the shortest path from the box in Ĩ1

to some box in Ĩ2 (cf. Figure 6.3(c); see again section 4.1). Using the collection Ĩc as input
we now intend to use Algorithm 2 to compute an isolating neighborhood for the multivalued
map F (5). To this end we need to deal with a (true) enclosure of F (5) (in contrast to the
heuristic one we used so far in order to obtain our initial guesses). Bounds on the errors ε(m+)

are computed using the results of section 5.2 and updated using the procedures discussed in
section 4.3.2.

By running Algorithm 2 with input Ĩc, now we obtain a combinatorial isolating neighbor-
hood I for F (5) (cf. Figure 6.4). The union |I| of these boxes is an isolating neighborhood

http://www.upb.de/math/~junge/kot_schaffer/code/ex1/mis.dat
http://www.upb.de/math/~junge/kot_schaffer/code/ex1/updated_bounds.dat
http://www.upb.de/math/~junge/kot_schaffer/code/ex1/fp.dat
http://www.upb.de/math/~junge/kot_schaffer/code/ex1/p2.dat
http://www.upb.de/math/~junge/kot_schffer/code/ex1/co.dat
http://www.upb.de/math/~junge/kot_schaffer/code/ex1/iso.dat
http://www.upb.de/math/~junge/kot_schaffer/code/ex1/iso.dat
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(a) (b)

(c)

Figure 6.3. Guesses for isolating neighborhoods of (a) the fixed points, (b) the period two points (note that
the fixed points are covered, too), and (c) a connecting orbit of f (5) (projections onto the first two coordinates).

for F (5) (cf. [22]). Using (1.13) we finally compute a corresponding index pair (|N1|,|N0|).
Figure 6.5 shows two different views of these sets, where the exit set |N0| corresponds to the
red boxes. The resulting relative homology groups of the pair N = (|N1|, |N0|) are

H∗(|N1|, |N0|) ∼= (0, Z
7, 0, 0, . . . ).

Obviously, the associated homology map f
(5)
N∗ : H∗(|N1|, |N0|) → H∗(|N1|, |N0|) induced by

f
(5)
N is trivial everywhere but level one. For an appropriate choice of basis, f

(5)
N,1 can be

http://www.upb.de/math/~junge/kot_schaffer/code/ex1/N1.dat
http://www.upb.de/math/~junge/kot_schaffer/code/ex1/N0.dat
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Figure 6.4. Combinatorial isolating neighborhood for F (5) (projections onto the first and the second two
coordinates, respectively).

Figure 6.5. Index pair for the multivalued map F (5) (projections onto the first three coordinates). The red
boxes correspond to the exit set |N0|.

expressed as the following matrix:

f
(5)
N,1 :=




−1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 1
0 0 0 0 0 −1 0



.

An important observation is that each generator of H1(|N1|, |N0|) lies in a distinct con-
nected component of |N1| \ |N0|. Using the same notation as in section 2.2 we label these
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components as B1, . . . , B7. The multivalued map F (5) provides us with the following infor-
mation concerning the dynamics between the boxes:

1. F (5)(B1) ∩Bj �= ∅ only if j = 1, 2.
2. For i = 2, . . . , 6, F (5)(Bi) ∩Bj �= ∅ only if j = i+ 1.
3. F (5)(B7) ∩Bj �= ∅ only if j = 6.

In particular, we can consider the following index maps, obtained from f
(5)
N,1 by projection

onto the corresponding connected components:

f
(5)
B1,1

:=




−1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



, f

(5)
B6∪B7,1

:=




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 −1 0



.

Observe that tr f
(5)
B1

= −1 and tr (f
(5)
B6∪B7

)2 = −2.

There are several conclusions that can be drawn from this information. First, Inv(B1, f
(5)) �=

∅ and Inv(B6∪B7, f
(5)) �= ∅. In fact, by (2.5) we know that Inv(B1, f

(5)) contains a fixed point
and Inv(B6 ∪B7, f

(5)) contains a periodic point. The second and third pieces of information
concerning the multivalued map F (5) indicate that this periodic orbit has minimal period 2.

Finally, f
(5)
N,1 is not shift equivalent to f

(5)
B1,1

⊕f (5)
B6∪B7,1

; thus the Conley indices of Inv(I, f (5))

and Inv(B1 ∪ B6 ∪ B7, f
(5)) are different. This in turn implies that Inv(I, f (5)) �= Inv(B1 ∪

B6 ∪ B7, f
(5)). Again, returning to the information concerning the multivalued map F (5) we

can conclude that Inv(I, f (5)) must contain an orbit whose omega limit set is contained in
B6 ∪B7 and whose alpha limit set is contained in B1.

Since these results concerning the existence of orbits follow from the algebra of the Conley
index, after checking condition (2.4) we can immediately carry over this existence result to
the infinite-dimensional system (1.4), and thus to (1.1).

However, we aim for a more precise localization of the detected objects and continue with
tightening the computed covering as described in section 4.3. We end up with a collection I(11)

of 24,078 boxes in R
11 and—employing Corollaries 2.4 and 2.5—the following theorem.

Theorem 6.1. For the parameter values (6.1) the map Φ possesses the following orbits, all
of which lie in the set

|I(11)| ×
49∏

k=11

[a−k , a
+
k ]×

∞∏
k=50

1

2k
[−1, 1],

where the a±k are the final bounds:
1. A fixed point p with the property that

‖p− p∗‖L2 < 3 · 10−12, ‖p− p∗‖C0 < 3.6 · 10−12,

where the Fourier coefficients of p∗ (given in Table 6.3) are determined by B1.

http://www.upb.de/math/~junge/kot_schaffer/code/ex1/11d_iso.dat
http://www.upb.de/math/~junge/kot_schaffer/code/ex1/11d_bounds.dat


A RIGOROUS NUMERICAL METHOD 155

2. A periodic orbit q = {q1, q2} with the property that

‖qi − q∗i ‖L2 < 3.3 · 10−12, ‖qi − q∗i ‖C0 < 4.3 · 10−12, i = 1, 2,

where the Fourier coefficients of q∗1 and q∗2 (given in Table 6.4) are determined by B6

and B7, respectively.
3. A heteroclinic orbit a = (aj)j∈Z, with the property that

δ(α(a), p) < 3.5 · 10−12, δ(ω(a), q) < 3.8 · 10−12,

where δ(·, ·) is the distance in the Hausdorff metric on compact sets.

Table 6.3
Fourier coefficients of p∗.

k (p∗)k
0 1.01701222469896
1 0.194337336695483
2 0.030518985313998
3 0.00388416812157288
4 0.000406689870061427
5 3.59686642677538 · 10−5

6 2.75312512992254 · 10−6

7 1.85783274541004 · 10−7

8 1.12063486092261 · 10−8

9 6.10776632026745 · 10−10

10 3.03735627584813 · 10−11

≥ 11 0

Table 6.4
Fourier coefficients of q∗1 and q∗2 .

k (q∗1)k (q∗2)k
0 0.612404314978377 1.20068110795964
1 0.240548407216622 0.191505924758062
2 0.0427803169880592 0.0186218996298865
3 0.00371012084664812 0.00293452057215404
4 0.000286872331997756 0.000493085588431086
5 2.85759422150114 · 10−5 4.83837782923445 · 10−5

6 2.46114548652796 · 10−6 3.16438225821576 · 10−6

7 1.61009990418761 · 10−7 1.78892095960431 · 10−7

8 9.62062994427963 · 10−9 1.00726290466515 · 10−8

9 5.95120614532175 · 10−10 5.28784988682338 · 10−10

10 3.43628779469884 · 10−11 2.46555443216212 · 10−11

≥ 11 0 0

6.2. Positive entropy. As a second example we now reveal the presence of complicated
dynamics for the parameter values chosen in the previous example.

Using the methods employed in the previous example, we first construct an isolating
neighborhood, which contains a heteroclinic cycle between a fixed point and a period two
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point of Φ. To this end we compute guesses Ĩc12⊂ B36 and Ĩc21⊂ B36 for orbits connecting the
fixed point to a period two point of F (5) and vice versa as described in the previous example.
Then we use Algorithm 2 with input Ĩc12 ∪ Ĩc21 to construct an isolating neighborhood I(5)

for F (5). A corresponding index pair (N1, N0) is shown in Figure 6.6.

Figure 6.6. Index pair for F (5) (projection onto the first two coordinates). The yellow boxes cover the
invariant set; the red boxes constitute the exit set.

The relative homology of the index pair N = (|N1|, |N0|) for f (5) is

H∗(|N1|, |N0|) ∼= (0, Z
14, 0, 0, . . . )

and the map f
(5)
N∗ : H∗(|N1|, |N0|) → H∗(|N1|, |N0|) induced by f (5) in homology is trivial at

all levels but level one, on which f
(5)
N∗ acts on the 14 ordered generators as follows:

f
(5)
N,1 =




0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0




.

http://www.upb.de/math/~junge/kot_schaffer/code/ex2/c12.dat
http://www.upb.de/math/~junge/kot_schaffer/code/ex2/c21.dat
http://www.upb.de/math/~junge//kot_schaffer/code/ex2/iso.dat
http://www.upb.de/math/~junge/kot_schaffer/code/ex2/N1.dat
http://www.upb.de/math/~junge/kot_schaffer/code/ex2/N0.dat
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Figure 6.7. Projections of the set AK .

The spectral radius of f
(5)
N,1 is bigger than 1.2, therefore—according to [2] and using Corol-

lary 2.5—we have the following theorem.
Theorem 6.2. For the values given in (6.1), there exists an invariant set contained in

|I(5)| ×
49∏
k=6

[a−k , a
+
k ]×

∞∏
k=50

1

2k
[−1, 1], j ∈ Z,

(where [a−k , a
+
k ] are the final bounds), on which Φ exhibits positive entropy.

6.3. A 2d-unstable horseshoe. As a last example we prove the existence of and localize
another invariant set on which Φ exhibits complicated dynamics. In contrast to the previous
computation, this time we aim for the dimension of its unstable manifold to be two.

We are considering the map (1.4) with the following values for its parameters:

µ = 3.8, b0 = 1, b1 = 0.99, b2 = 0.1, b3 = 0.025, bk = 2−k, k ≥ 3,

c0 = 0.8, c1 = −0.2, and ck = 0 for k > 1.

Again, we start by running a simulation of f (L) : R
L → R

L for L = 100 with the initial
point A = {(10−4, 0, . . . , 0)}, K0 = 100, and K1 = 50000. Figure 6.7 shows two projections
of the resulting set AK . We choose m = 6, M = 50, and an exponential estimate for k ≥ M
with As = 1 and s = 2 as well as the initial bounds as indicated in Table 6.5.

Again, in order to compute guesses for invariant sets we first compute a covering of the
maximal invariant set of F (6) by running 44 steps of Algorithm 3 with selection criterion
(4.1). We employ the heuristic method of mapping 200 randomly distributed (according to a
uniform distribution) test points per box in order to compute F (6). The resulting collection
consists of 1,130,128 boxes. As in the previous examples, we now update the bounds. The
updated bounds lead to an error ε(m+), which is smaller than (2 · 10−7, 5 · 10−7, 2 · 10−7, 2 ·
10−6, 7 ·10−6, 2 ·10−5)T . Similarly to the previous example, we compute guesses Ĩc12⊂ B44 and
Ĩc21⊂ B44 for orbits connecting the fixed point to a period two point of F (5) and vice versa.

http://www.upb.de/math/~junge/kot_schaffer/code/ex2/updated_bounds.dat
http://www.upb.de/math/~junge/kot_schaffer/code/ex3/updated_bounds.dat
http://www.upb.de/math/~junge/kot_schaffer/code/ex3/c12.dat
http://www.upb.de/math/~junge/kot_schaffer/code/ex3/c21.dat
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Table 6.5
Initial guess for error bounds a±k .

k a−k a+
k

0 0.1601 1.7781
1 -0.06131 0.70231
2 -0.0036184 0.04173
3 -0.00032171 0.033337

3 < k < M −2−k 2−k

Again, we use Algorithm 2 with input Ĩc12 ∪ Ĩc21 to construct an isolating neighborhood I(6)

for F (6). The relative homology of the corresponding index pair N = (|N1|, |N0|) for f (6) is

H∗(|N1|, |N0|) ∼= (0,Z, Z
18, 0, 0, . . . ).

The neighborhood |N1| consists of 11 connected components, A,B, . . . ,K. We label the
18 generators of H2(|N1|, |N0|) according to their location in these components as shown
in Figure 6.8. The combinatorial map F (6) on the boxes induces a map on the compo-
nents A,B, . . . ,K. This map is shown in Figure 6.8(a), together with the homology map on
H2(|N1|, |N0|) (Figure 6.8(b)).

We now use the index information to prove that there exists a set contained in |N1| ×
Πk≥6[a

−
k , a

+
k ] on which the full map Φ exhibits symbolic dynamics as depicted by the transition

graph T1 shown in Figure 6.8(a).
Let Σ = {(Zi)i∈Z | Zi ∈ {A,B, . . . ,K}} and let σ : Σ→ Σ be the shift map. Consider the

subset Σ∗ = {(Zi)i ∈ Σ | (Zi, Zi−1) is an edge in T1}. As in section 2, define ρ : |N1| → Σ∗
by ρ(x) = (Zi)i∈Z, where Zi is the connected component of |N1| containing (f (6))i(x), i ∈ Z.
A result of [20] allows us to decompose the index information into maps on the connected

components of |N1|. Let f
(6)
Z,2, Z ∈ {A, . . . ,K}, be the index map obtained from f

(6)
N,2 by

projecting onto the connected component Z. According to Szymczak in [23], for every n there
exists at least one trajectory under f (6) through Z1, . . . , Zn provided that the composition

f
(6)
Z1,2

◦· · ·◦f (6)
Zn,2

is not nilpotent. In the limit, any infinite sequence of symbols in Σ∗ corresponds

to at least one trajectory under f (6) through the given components. Furthermore, if the

Lefschetz number of f
(6)
Z1∗ ◦ . . . ◦ f

(6)
Zn∗ is nonzero, then a periodic orbit under f (6) through

components Z1, . . . , Zn exists (see also (2.5)). Since trace f
(6)
N,i = 0 for i �= 2 (we have f

(6)
N,1 = 0),

the Lefschetz number is nonzero provided that the trace of the composition of restricted index
maps for H2(|N1|, |N0|) is nonzero. This can be shown for the composition of restricted index
maps for any periodic sequence given by the transition graph in Figure 6.8. By extension,
ρ maps onto Σ∗, the closure of periodic orbits given in the transition graph T1 shown in
Figure 6.8(a).

By construction, ρ is a semiconjugacy between f (6) on the (nonempty) invariant set con-
tained in |N1| \ |N0| and the shift map σ on Σ∗. After checking that the lifting condition (2.4)
is satisfied, we have the following theorem.

Theorem 6.3.For the parameter values (6.2) there is an invariant set contained in |N1| ×
Πk≥6[a

−
k , a

+
k ] (where [a−k , a

+
k ] are the final bounds), on which Φ is semiconjugate to the subshift

given by the transition graph T1 shown in Figure 6.8(a).

http://www.upb.de/math/~junge/kot_schaffer/code/ex3/updated_bounds.dat
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Figure 6.8. (a) The graph T1. It indicates the existence of 11 connected components of the isolating
neighborhood. The arrows indicate how the connected components are related by the map F (6). (b) The graph
T2. This graph indicates the relative homology classes within each connected component, and the edges indicate
how the generators of these homology classes are mapped into each other. The ± signs indicate whether the
matrix entry for F

(6)
2 : H2(N1, N0)→ H2(N1, N0) is ±1.
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Abstract. We present an algorithm to compute the one-dimensional stable manifold of a saddle point for a
planar map. In contrast to current standard techniques, here it is not necessary to know the inverse
or approximate it, for example, by using Newton’s method. Rather than using the inverse, the
manifold is grown starting from the linear eigenspace near the saddle point by adding a point that
maps back onto an earlier segment of the stable manifold. The performance of the algorithm is
compared to other methods using an example in which the inverse map is known explicitly. The
strength of our method is illustrated with examples of noninvertible maps, where the stable set
may consist of many different pieces, and with a piecewise-smooth model of an interrupted cutting
process. The algorithm has been implemented for use in the DsTool environment and is available
for download with this paper.
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1. Introduction. Many interesting dynamical systems arising in applications can be de-
scribed by maps; examples are mechanical systems, laser systems, electronic circuits, biologi-
cal processes, and interactions between populations. An important class consists of Poincaré
maps of continuous vector fields, including, in particular, periodically driven systems such
as the driven damped pendulum or the forced Van der Pol oscillator; see [9, 31] for general
references. Poincaré maps are also often used when the periodicity is intrinsic in the vector
field. For such systems, however, the Poincaré map may not be defined globally, and thus
the resulting discrete system is not a global diffeomorphism. Note that there is generally no
explicit expression for the Poincaré map of a given vector field. In a number of applications
the map is defined explicitly; such maps include the Ikeda map [12, 15], as well as the example
of a highly interrupted cutting process [4, 5, 33] discussed in this paper.

The goal of analyzing a given system is to understand its overall, or global, behavior.
To this end, one needs to find special invariant objects. For two-dimensional discrete-time
systems, these are the attractors, the repellers, and the saddle points, together with their stable
and unstable manifolds. In particular, these manifolds tell us a lot about the dynamics of the
system. For example, they may form the boundaries of basins of attraction. Furthermore,
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intersections between stable and unstable manifolds may lead to homoclinic or heteroclinic
tangle and chaotic dynamics. Stable and unstable manifolds are global objects that cannot
normally be found analytically and, hence, must be computed numerically.

Several methods have been developed to compute the stable and unstable manifolds of
a saddle fixed point. We concentrate here on the simplest case, which is when these man-
ifolds are one-dimensional. Most algorithms compute the manifold by starting from a local
approximation near the saddle point. A common technique is that of iterating a fundamental
domain [13, 14, 29, 30, 35]. This involves iterating a local section of the manifold to build up
connecting pieces of manifold. An alternate approach, also used here, is to grow the manifold
point by point and to parameterize by its arclength [17]. All these methods have in common
the fact that the stable manifold is computed as the unstable manifold of the inverse map.
This is not a problem when one is dealing with a globally defined Poincaré map. Such a map
always has an inverse, which can be computed numerically by following the flow of the vector
field backward in time.

However, except in idealized circumstances, an explicit map that arises in a particular
application does not have an explicit inverse. The expression for such a map is generally quite
intricate, contains many parameters, and is often written as the composition of several sub-
maps. Therefore, it is usually impossible to derive an explicit expression for its inverse. What
is more, the map may not even be invertible, meaning that there may be several branches
of inverses. Consequently, the standard algorithms requiring the inverse cannot be used to
compute stable sets (i.e., the generalization of stable manifolds; see section 2.1) of saddle
points in this case. If the inverse exists but is not available in closed form, it is possible to
approximate it with, say, Newton’s method. To this end, a good seed (i.e., initial guess) is
required for finding the inverse. Moreover, one needs to know the Jacobian of the map, which
may not be well defined or may become singular at certain points. Such requirements are
often not practical in applications, as is illustrated in the example of the highly interrupted
cutting process [33] in section 4.5.

In this paper we present an algorithm to compute the stable manifold, or the stable set,
of a saddle point of a planar map without requiring any knowledge of its inverse map either
explicitly or approximately. In particular, our algorithm can also be used in the case where
the map is noninvertible so that multiple pre-images may exist. The algorithm grows branches
of the stable manifold, or the stable set, point by point. A new point is found by searching
for an intersection point of the image of a circle around the last computed point with the
part of the manifold that was already computed. We refer to this as the search circle (SC)
algorithm. By prespecifying certain accuracy parameters, we achieve a good resolution of the
computation.

Another computational technique that does not require knowledge of the inverse map is
the proper interior maximum triple (PIM-triple) technique [25], also known as straddling, to
compute chaotic saddles. It can be used to find saddle straddle trajectories that remain in a
given region for a long period of time. If the region contains a saddle point, then points on
the stable manifold are found because they remain in the region indefinitely. However, the
PIM-triple technique has not been used to compute long pieces of stable manifolds.

The SC algorithm is fully implemented in the DsTool environment [3]. The user may
download the code for linking with the Tcl/Tk version of DsTool; see [26] for details. All
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images in this paper were produced with this implementation.
The performance of the SC algorithm is demonstrated with several examples. First we

consider a simple test map, the shear map, for which the inverse is known explicitly [17]. Then
we compute the stable manifold of the modified Ikeda map (without an explicit inverse), which
was computed in [16] by approximating the inverse with Newton’s method. Our third example
is a noninvertible map with a stable set that crosses regions where there are two pre-images
as well as regions where there are no pre-images. Next, we consider the noninvertible map
introduced in [24]. The global stable set for this map contains infinitely many disjoint pieces,
and we compute a number of them for the first time. Our last example is a map of a highly
interrupted cutting process [4, 5, 33]. It does not have an explicit inverse, and the map is only
piecewise smooth.

The outline of this paper is as follows. In section 2 we introduce the notation and explain
some of the mathematical concepts. In particular, we give a brief overview of the relevant
theory for noninvertible systems in section 2.1. The SC algorithm is explained in section 3
and we investigate its performance with the examples in section 4. In section 5 we draw
conclusions and point to open problems.

2. Mathematical setting. We consider a discrete dynamical system with a two-dimensional
phase space, given by a continuous map

f : R
2 �→ R

2.

If f is not orientation preserving, we consider its second iterate. We assume that f has a fixed
point x0 = f(x0) and that f is differentiable in a neighborhood of x0, but it may not have a
unique inverse.

The fixed point x0 of f is a saddle if the Jacobian matrix Df(x0) has one stable eigen-
value λs inside the unit circle and one unstable eigenvalue λu outside the unit circle. The
stable manifold theorem [27] guarantees that there exist local stable and unstable manifolds
W s

loc(x0) andW u
loc(x0) tangent at x0 to the stable and unstable eigenspaces Es(x0) and Eu(x0),

respectively.
The global unstable manifold W u(x0) of x0 consists of points that converge to x0 under

backward iteration of the map f . In terms of forward iterates, this is defined as

W u(x0) =

{
x ∈ R

2

∣∣∣∣ ∃ {qk}∞k=0 , q0 = x and f (qk+1) = qk, such that lim
k→∞

qk = x0

}
.

The unstable manifold can be expressed in terms of the successive union of images of the local
unstable manifold W u

loc(x0), namely,

W u(x0) =
∞⋃
n=1

fn(W u
loc(x0)).

Note that, even if f is noninvertible, the images of W u
loc(x0) will be unique and, hence, W u(x0)

is an embedded manifold in the phase space. In particular, we are justified in speaking of
W u(x0) as the unstable manifold.



164 J. P. ENGLAND, B. KRAUSKOPF, AND H. M. OSINGA

The global stable set W s(x0) of x0 is defined as the set of points that converge to x0 under
forward iteration of f ,

W s(x0) =
{
x ∈ R

2 | fn(x) → x0 as n→ ∞
}
.

It can be obtained as the union of the successive pre-images of W s
loc(x0). If the map f is

invertible, then W s(x0) is an embedded manifold and one speaks of W s(x0) as the stable
manifold. However, if multiple inverses exist, then the stable set W s(x0) may consist of
disjoint pieces. In particular, this set is not an embedded manifold, and this is why one
speaks of W s(x0) as the global stable set [22]. Throughout this paper, we refer to the unique
piece of W s(x0) that contains the fixed point x0 as the primary manifold. Because it contains
W s

loc(x0), the primary manifold is indeed a one-dimensional manifold.

2.1. Background on noninvertible maps. In order to assist the discussion of the two
examples in sections 4.3 and 4.4, we briefly introduce here some necessary concepts from the
theory of noninvertible maps; see, for example, [1] for more details.

For simplicity, we consider only planar maps, so we suppose that f is a smooth noninvert-
ible map on R

2. Typically, the phase space is divided into regions where points have different
numbers of pre-images. The curves separating these regions are defined as follows. Adopting
the notation in [24], we define the so-called curve of merging pre-images (also denoted LC−1),

J0 = {x | Df (x) is singular} ,

where the determinant of the Jacobian vanishes. The image of this curve, J1 = f(J0), divides
the phase space into regions with a constant number of pre-images. (This curve, J1, is also
called ligne critique (LC) [7, 24].)

Geometrically, we are dealing with the following problem in singularity theory: How is the
plane mapped over itself by the smooth map f? The curve J0 marks where the phase space
folds under iteration of f . The fold is mapped to J1, which marks a change in the number of
pre-images. As one crosses J1 from one region to the next, one generically crosses a fold, and
the number of pre-images increases or decreases by two; see, for example, [2]. The simplest
case is when J1 is a smooth curve that divides the plane into exactly two regions, which is
the situation we consider in section 4.3. In this situation the map f is often referred to as a
(Z0 − Z2) map. In this notation Zi represents the region with i first-rank pre-images [21].

However, J1 may have self-intersections, in which case more regions with different numbers
of pre-images exist. Furthermore, there may be singularities of higher codimension on the
curve J1 corresponding to a kernel of Df (x) of dimension larger than one. We encounter
this type of more complicated map in section 4.4 that, locally near the primary manifold,
features two folds, with a separate sheet of inverses underneath; we classify this map as type
(Z1+1–Z3+1–Z1+1). The saddle for this map has a negative stable eigenvalue, so that we need
to work with the second iterate. The structure for the number of pre-images in the phase
space of the second iterate is even more complicated because the Jacobian Df2(x) is singular
when either Df(x) or Df(f(x)) is singular. Hence, for the second iterate f2 we have

J0(f
2) = {x | Df (x) or Df (f(x)) is singular} := J−1 ∪ J0,
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where J−1 is the set of pre-images of J0, that is, J0 = f(J−1). Note that J−1 may consist of
several curves. Similarly,

J1(f
2) = f2 (J−1 ∪ J0) := J1 ∪ J2,

where J2 = f2 (J0).

3. The algorithm. The SC algorithm grows a one-dimensional branch of the stable set
in steps by adding new points according to the local curvature properties of the branch. The
difference between the SC algorithm and the algorithm from [17] lies in how the next point
is found. Instead of using the inverse f−1 for finding the next point, the SC algorithm finds
a new point close to the last computed point that maps under f to a piece of the stable set
that was already computed. Before we explain this in detail, we recall for completeness the
basic idea of growing a branch step by step.

3.1. Growing a branch of the stable set. The algorithm produces a piecewise-linear
approximation of a branch of the stable manifold, or the primary manifold, of W s(x0) by
computing an ordered list of points M = {p0, p1, . . . , pN} at varying distances from each
other. The first point p0 is the saddle x0. We use a linear approximation for W s

loc(x0), so the
next point p1 is taken a small distance δ > 0 from p0 along Es(x0). The distance between
consecutive points is adjusted according to the curvature of the branch, as explained below.

Suppose that the branch under consideration has been grown up to pk such that M =
{p0, p1, . . . , pk}. We wish to find the next point pk+1 at a distance ∆k from pk. The stable
set is forward invariant, so new points, and in particular pk+1, must map back onto the piece
of the branch that has been computed so far. Indeed, if the map is a diffeomorphism and
f−1 is known, then we can search the previously computed part of the branch to find a point
that maps at distance ∆k from pk under f−1. This is the method used in [17] to compute the
stable manifold. We wish to avoid the use of f−1 and instead use a different method, which
is explained in detail in section 3.2.

We use the strategy of [17] to ensure an acceptable resolution of the curve according to
prespecified accuracy parameters. In particular, we monitor αk, the angle between pk−1, pk,
and pk+1, and the product ∆kαk. We approximate αk by

αk = 2 sin−1
( ‖p̄− pk−1‖

2‖pk − pk−1‖

)
≈ ‖p̄− pk−1‖

‖pk − pk−1‖
,

where

p̄ = pk +
‖pk − pk−1‖
‖pk − pk+1‖

(pk − pk+1)

is the point on the line through pk and pk+1 that lies at the same distance from pk as pk−1.
We check the conditions

αk < αmax,(3.1)

∆kαk < (∆α)max.(3.2)

Condition (3.1) ensures that enough points are computed along the branch, and condition
(3.2) controls the local interpolation error. If one of these criteria is not satisfied, then we
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Pseudocode

Grow Manifold (Fixed point: p0, first point along Es(p0): p1, target arclength: A)
M = {p0, p1};
pleft = p0;
pright = p1;
arclength = ‖p1 − p0‖;
while (arclength < A)
pk = last point in M ;
pk−1 = next to last point in M ;
(pcandidate, pi−1, pi) = Search Circle(M , pleft, pright);
/* [pi−1, pi] is the interval in which f(pcandidate) lies. */
αk = ∠(pk−1, pk, pcandidate)
/* αk is the angle between pk−1, pk and pk+1. */
if ( (αk < αmax and ∆kαk < (∆α)max) or ∆k < ∆min)

/* Accept point. */
pk+1 = pcandidate;
append pk+1 to M ;
arclength = arclength+ ∆k;
pleft = pi−1;
pright = pi;
if (αk < αmin and (∆kαk) < (∆α)min)

/* Increase ∆k for the next step. */
∆k = 2∆k;

end if
else

/* Accuracy conditions not satisfied. Reject point and decrease ∆k. */
∆k = ∆k/2;

end if
end while
return M ;

end.

Figure 1. A pseudocode representation of the Grow Manifold algorithm, which calls Search Circle in
Figure 3 to find the next point on the branch.

replace ∆k with 1
2∆k and repeat the procedure to find a new candidate for pk+1. Otherwise,

we accept pk+1 and set ∆k+1 = ∆k, unless both αk < αmin and ∆kαk < (∆α)min hold for a
user-specified choice of parameters αmin and (∆α)min. If this is the case, then the manifold
is relatively straight and we try ∆k+1 = 2∆k. This ensures that the number of points used
to approximate the branch is in some sense optimized for the required accuracy constraints.
Note that, at sharp folds, it may be necessary to accept αk > αmax due to ∆k becoming
very small. In this case we accept the point if ∆k < ∆min, where ∆min is also a predefined
parameter, and we note the occurrence; see [17] for more details.
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f (C (pk, ∆k))

pi−1 f (pk+1)
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p
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Figure 2. Graphical illustration of the SC algorithm. A new point pk+1 is found on the circle C (pk,∆k)
centered at pk with radius ∆k, such that f(pk+1) lies on a previously computed part of W s(x0).

A pseudocode representation of how the branch is grown is given in Figure 1.

3.2. The SC method. We now explain how the next point along W s(x0) is found when
f−1 is unknown. The SC algorithm finds the point pk+1 at distance ∆k from pk as a point that
maps back onto a piece of branch that was already computed. The method is illustrated in
Figure 2 and described in pseudocode in Figure 3. We know that pk+1 must lie somewhere on
a circle of radius ∆k centered at pk. The image of this circle must then intersect a previously
computed part of the branch. Note that the circle centered at pk itself necessarily intersects
the branch that has been computed so far. Hence, its image intersects the branch at the image
of this intersection point. If ∆k is small enough, there will be a unique second intersection,
which is the image of the point pk+1 that we wish to find. As depicted in Figure 2, the point
pk+1 must lie somewhere on the green circle C(pk,∆k). The image f(C(pk,∆k)) of this circle
is the closed loop shown in magenta. If ∆k is small enough, then f(C(pk,∆k)) will only
intersect the branch twice; we are not interested in one of the intersections because it is the
image of a point on the previously computed branch. The other point intersects the segment,
say [pi−1, pi], of the approximated branch, and it is the image of pk+1, as indicated by the
arrow. The point that maps to this intersection is our candidate for pk+1.

The accuracy constraint (3.1) puts an upper bound on the allowable angle between consec-
utive segments. We can ensure immediately that αk does not exceed αmax by only searching
the part of the circle that satisfies this criterion. We denote this search region by Cα (pk,∆k),
which is the arc between pstart and pend; see the segment of the green circle in Figure 2 enclosed
by the black lines. The image of this segment is the thick magenta curve f(Cα (pk,∆k)). Note
that this automatically ensures that we do not accidentally search for a pre-image of the other
intersection point (which we are not interested in).

In order to find pk+1 we first need to find the segment [pi−1, pi] of the calculated branch
that contains the intersection point with f (Cα (pk,∆k)). We start this search with the segment
that was used in the previous step to find a candidate for pk+1, which we denote [pleft, pright].

An important step in this search is performed in the routine Find Point On Line; see
Figure 3. We use bisection on Cα (pk,∆k) to find a point ptry on the circle that maps within
a normal distance εB to the line {(1 − τ) pleft + τpright | τ ∈ R}; that is, we allow for the
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Search Circle (M , pleft, pright)

do

(pcandidate, τ) = Find Point On Line (pleft, pright);

/* If τ < 0 or τ > 1, point is on line, but not on segment. */

if (τ < 0) /* move backward. */

(pleft, pright) = (pleft−1, pleft);

else if (τ > 1) /* move forward. */

(pleft, pright) = (pright, pright+1);

end if

while (τ /∈ [0, 1]);

return (pcandidate, pleft, pright);

end.

Find Point On Line (pleft, pright)

L(τ) = line [pleft, pright] = {(1 − τ)pleft + τpright | τ ∈ R};
θstart = −αmax;

θend = αmax;

pstart = point on circle at angle θstart;

pend = point on circle at angle θend;

p̄ = point on circle at angle 0;
�Vstart = f (pstart) − pright;
�Vend = f (pend) − pright;
�W = normal vector to pleft − pright;

if ( 〈�Vstart, �W 〉 ∗ 〈�Vend, �W 〉 > 0 )

/* f(pstart) and f(pend) do not lie on opposite sides of L. */

increase Cα (pk,∆k) search region.

end if

do

/* Bisection to find point on L(τ). */

θtry = (θend + θstart) /2;

ptry = point on circle C(Pk,∆k) at angle θtry from p̄− pk.
�V = f (ptry) − pright;

if ( 〈�Vend, �W 〉 ∗ 〈�V , �W 〉 > 0 )

/* f(ptry) is on same side as f(pend). */

θend = θtry;

else

/* f(ptry) is on same side as f(pstart). */

θstart = θtry;

end if

while ( |〈�V , �W 〉| < εB)

/* Normal distance between L and f (ptry) < εB .

Accept as candidate.*/

return (ptry, τ).

end.

Figure 3. The Search Circle routine, given here in pseudocode, finds a new point pk+1 on a branch of
the stable set at distance ∆k from pk, the last point computed so far.
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possibility that f(ptry) is only εB-close to the closest point (1 − τ)pleft + τpright on the line.
Here εB is a prespecified bisection tolerance; see section 3.6 for a discussion on the bisection.
To start the bisection we require that pstart and pend lie on opposite sides of the line, which
we check by assessing the sign of the projection of these points onto the normal of the line.
The next point ptry is then found by bisection, and in the next bisection step it replaces the
point that lies on the same side of the line. The bisection stops when the normal distance
from f(ptry) to the segment [pleft, pright] is less than εB, and it also returns the value of τ
corresponding to the projection of f(ptry) onto the line.

We now need to check that ptry actually maps inside the segment [pleft, pright]; that is, we
need to check that 0 ≤ τ ≤ 1. If this is indeed the case, then ptry is a candidate for the next
point pk+1. If τ > 1, we repeat the search with the following segment [pright, pright+1]. If the
map has multiple pre-images, then, as we search for new points to add to the branch, their
images may start to move backward along the branch. In this case, τ < 0, and we need to
search for f(pk+1) on the previous segment [pleft−1, pleft]; see the examples of noninvertible
maps in sections 4.3 and 4.4.

Once we have found a proper candidate for pk+1 whose image lies within a normal distance
εB to {(1 − τ) pleft + τpright | 0 < τ < 1}, we return the candidate pcandidate, together with the
respective segment, which is the segment [pi−1, pi] that we set out to find. We then check the
accuracy conditions (3.1) and (3.2). If these conditions are satisfied, then the candidate point
is added as pk+1 to the list of points M , and ∆k is adjusted if necessary. If the candidate fails
the accuracy conditions, ∆k is halved and the entire procedure is repeated, as was explained
in section 3.1.

Note that, occasionally, pstart and pend may not be on opposite sides of the segment
[pleft, pright]. In this case we increase αk beyond its allowed maximum until the starting
conditions for the bisection procedure are satisfied. Normally, this happens only if there is
a sharp fold in the stable set or if we are searching for pk+1 using the incorrect segment. In
the latter case, the point will be rejected anyway. Otherwise, we accept the point and give a
warning message, provided ∆k < ∆min; see [17] for a further discussion of sharp folds.

Figure 4 shows the algorithm in practice, computing the stable manifold for the shear map
of section 4.1. Figure 4(a) shows the algorithm searching for pk+1, with the points pstart and
pend and the successive points ptry of the bisection in green. Figure 4(b) shows the images of
these search points, getting closer to the segment [pleft, pright]. Bisection is done until f(ptry)
lies at distance εB = 10−6 from [pleft, pright]. As shown in Figure 4, f(ptry) lies εB-close to
the segment {(1 − τ)pleft + τpright | 0 ≤ τ ≤ 1}, so ptry is a proper candidate for pk+1 and
[pi−1, pi] = [pleft, pright]. Furthermore, ptry satisfies conditions (3.1) and (3.2), and thus it is
accepted and the new segment [pk, pk+1], with pk+1 = ptry is added to the approximation of
W s(x0).

3.3. Estimating the initial value for ∆1. When we start our algorithm from the saddle
point, the point p1 is taken at a small distance δ along the stable eigendirection, Es(x0). It is
not straightforward what value to choose for ∆1. This distance must be much smaller than
restricted by the accuracy criteria, because the primary manifold stretches relatively little
close to the fixed point. We cannot just iterate the endpoints, as we do not know the inverse,
but we wish to grow the primary manifold such that f(pk+1) ≈ pk.
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Figure 4. Computing the stable manifold for the shear map of section 4.1. Searching Cα (pk,∆k) using
bisection to find pk+1 (a) and the images of the green points on Cα (pk,∆k) in (a) on f (Cα (pk,∆k)) (b). Only
f(pk+1) also lies on [pi−1, pi]. Therefore, only pk+1 ∈ Cα (pk,∆k) lies on W s(x0).

Hence, our aim is to add a new point p2 at distance ∆1 from p1, such that the point f(p2)
lies on [x0, p1] very close to p1. If we choose ∆1 too small, then the algorithm computes too
many mesh points close to the saddle. However, if we choose ∆1 too large, then the image of
the segment Cα (pk,∆k) does not intersect [x0, p1] at all. A good estimate for ∆1 is found as
follows. The stable eigenvalue λs is the linear contraction rate along the stable eigenvector.
Near the saddle, we may use λs as an estimate of the nonlinear contraction, and thus the
initial estimate is

λs(δ1 + ∆1) = δ1 ⇔ ∆1 = δ1

(
1

λs
− 1

)
,

where δ1 = δ is the distance from x0 to p1. Since ∆1 may still be too large, we search over the
interval ∆1 ± 1

2∆1 on a line through x0 and p1 to find an acceptable ∆1. We use bisection on
points in this interval to find points that map close to p1, assessing on which side the points
lie of a line perpendicular to the line through x0 and p1. We do not have to be exactly on this
line, but we have to ensure that we do not choose ∆1 too large. This method may need to be
applied several times to find acceptable ∆k’s until the accuracy conditions are met. Then the
normal SC algorithm is started.

3.4. Maps with multiple inverses. For a map with multiple pre-images, the SC algorithm
works in exactly the same way, except that it is now possible for the images of the newly
added points pk+1 to traverse back along the manifold toward the saddle. This happens when
the manifold crosses the curve of merging pre-images J0; see section 2.1 for details. This
phenomenon is automatically detected by our algorithm and does not cause any problems. In
section 4.3 we discuss this in more detail.

If part of the stable set lies in a region with at least three pre-images, then it is possible
that the image of one branch of the primary manifold covers a part of the other branch; an
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example of this phenomenon is investigated in section 4.4. (This should not be confused with
the case in which the eigenvalues of the saddle are negative, where one branch of the manifold
is mapped to the other.) In this case the images of points that are added to the branch
traverse back along the computed branch until the fixed point is reached again. That is, the
new point that is added to the computed branch is another pre-image of the saddle point,
which lies by definition on W s(x0). At this moment, further new points map to the other side
of the saddle, that is, they lie on the branch that has not yet been computed. Therefore, we
must stop and compute part of the other branch first before the present branch can be grown
further. It may be necessary to stop several times and swap between the growth of the two
branches to grow one or both up to the required arclength.

In noninvertible maps there may be disjoint parts of the stable set. The SC algorithm
can also be used to find these. This is done by selecting, for example, pre-images of the
saddle point that do not lie on the branch computed so far. Because the saddle point is not
on the curve J0, the Jacobian of the saddle point is nonsingular and, for example, Newton’s
method can be used to find its pre-images. The next point on the respective branch is then
found by allowing a search of the whole circle for points that map back onto the primary
manifold (which contains the saddle point). At this initial step we use ∆k = δ. Note that,
when computing a disjoint branch, the SC method can start as soon as one point on the new
branch has been found, meaning that no fundamental domain needs to be constructed; see
the example of the noninvertible map in section 4.4.

3.5. DsTool implementation. The SC algorithm has been fully implemented in the Tcl/Tk
version of the DsTool environment [3]. The code can be downloaded as an extension module
to DsTool and is available with this paper; see the link in [26]. The installation procedure is
straightforward and instructions are included with the code.

Note that our module can be viewed as a replacement of the module presented in [19],
which implements the algorithm in [17]. The implementation of the SC algorithm has been
combined with that algorithm so that the unstable manifold can be computed with the method
of [17] and the stable set (initially, the primary manifold) using either method, depending on
whether the inverse is known or not. The window that appears in DsTool when using the
module allows the user to choose which method to use to calculate the stable manifold or set.
In fact, it is possible to directly compare the two algorithms in cases where f−1 is known or
approximated by Newton’s method.

A screenshot of the module window in DsTool is shown in Figure 5. The window is
essentially the same as that presented in [19] but with some additional features incorporating
the SC algorithm. As before, the user can decide which branch to compute: positive side,
negative side, or both sides, using the selection menu at the top. Below that, one can specify
the initial step size δ, and the required arclength of both the stable and unstable manifold
computations. (Note that it is now possible to compute only, say, the stable manifold without
setting the arclength for the unstable manifold to zero.) Next, the accuracy parameters αmin,
αmax, (∆α)min, (∆α)max, and ∆min that are used by both algorithms are specified; see section
3.1. The parameter ε is the uncertainty factor from [17]. The parameter convergence controls
the detection of convergence to a fixed point, which happens when the branch has finite
arclength.
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Figure 5. The implementation of the SC algorithm as it appears in the DsTool environment.

The user is now able to select the method from the drop-down menu that should be used to
compute the stable manifold or set. The options are the Explicit/Approximate inverse method,
the Monte Carlo method, and the Search Circle method. If the Explicit/Approximate
inverse or Monte Carlo method is selected, then the algorithm from [17] will be used to
compute the stable manifold. The Monte Carlo method uses random seeds for Newton’s
method to find the inverse, whether an inverse has been defined or not. If no explicit or
approximate inverse is defined, then the Explicit/Approximate inverse option will not appear
in the drop-down menu.
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If the Search Circle method is selected, then two extra parameters appear. The bi-
section error εB is set in bisection error. The parameter iteration max is only used when the
map has multiple inverses; see section 4.4 for more details. The final drop-down menu allows
the user to extend the stable set from a selected point. If this option is selected, then the
algorithm will try to extend disjoint parts of the stable set from points saved in the DsTool
Selected window. This is important for cases where the map has multiple inverses and disjoint
pieces of the stable set exist. The user must first find a point on a disjoint piece. This can
be done, for example, by using Newton’s method in combination with Monte Carlo seeds for
finding pre-images of the fixed points that do not lie on the pieces computed so far.

3.6. Comment on accuracy. A complete discussion of the accuracy of the basic algorithm
is given in [13] and [17]. Our method introduces an additional error, which does not appear
in [17], due to the bisection error εB. This is a parameter of the computation, and we can
make it as small as we like. It is not practical to set this parameter to zero, but by setting it
to the same order as the interpolation error, the overall error is of the order given in [17].

4. Examples. In this section we use the SC algorithm to compute approximations of
the stable manifolds or sets of five planar maps. The same accuracy parameters are used
throughout, unless otherwise stated. The initial step is δ = 10−3 and the other accuracy
parameters are αmin = 0.2, αmax = 0.3, (∆α)min = 10−6, (∆α)max = 10−5, and ∆min = 10−4.
We chose a bisection error εB = 10−6 for all calculations.

We begin with the shear map in section 4.1. The shear map is an ideal test case for all
algorithms computing stable and unstable manifolds. Namely, the local stable and unstable
manifolds are parts of the coordinate axes of the system, and there is a homoclinic tangency
for a specific parameter value. Therefore, we know that the algorithm is accurate if the folds
of the manifolds are tangent to the axes in a neighborhood of the origin.

Our next example, in section 4.2, is a modified form of the Ikeda map. It was introduced in
[16] as an example of a diffeomorphism that does not have an inverse in closed analytic form.
We use this map for comparison with the algorithm in [16], which uses Newton’s method to
approximate the inverse.

Two different maps with multiple inverses are considered in sections 4.3 and 4.4. In section
4.3 the stable set is such that the primary manifold forms a closed loop; there may also be
a finite number of disjoint pieces of the stable set. In section 4.4 the stable set consists of
infinitely many disjoint curves and, starting from the saddle point, our algorithm computes
the primary manifold without difficulty; the disjoint parts can be computed as well by starting
from respective pre-images of the fixed point.

Finally, we discuss a model of a highly interrupted cutting process in section 4.5. Most
real-life systems are either noninvertible or difficult to invert due to their complexity. For this
map, which is the real-life mechanical system describing a cutting tool [4, 5, 33], the Jacobian
of the system is discontinuous along a straight line in phase space. (The map can be split into
two diffeomorphisms, each having a unique inverse, and the manifolds are continuous across
the smoothness boundary.) We compute the stable and unstable piecewise-smooth manifolds
even though they cross the smoothness boundary. To our knowledge, global manifolds of
piecewise-smooth systems have not been computed before.
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Figure 6. The shear map computed at first tangency (c = 0.811580) with the stable manifold calculated
using the SC method. The unstable manifold was computed as the stable manifold of the inverse of the shear
map, also using the SC method. Panel (b) is an enlargement near the fixed point. (The main branch of W s(0)
was computed to arclength 5000 and W u(0) to arclength 100.)

4.1. Shear map. The shear map was first introduced in [17] and is based on an abstract
construction given in [28]. The map is such that the origin is always a saddle point and the
local stable and unstable manifolds are the coordinate axes of the system.

The shear map is a composition of simple linear saddle-type behavior with a nonlinear
shear that is effective only away from a neighborhood of the origin. The linear map is defined
as

φ

(
x
y

)
=

(
λux
λsy

)
,

where the stable and unstable eigenvalues 0 < λs ≤ (λu)−1 < 1 are fixed parameters. The
nonlinear shear ψc depends on the parameter c and is defined as

ψc

(
x
y

)
=

(
x− c s(x+ y)
y + c s(x+ y)

)
,

where

s(z) =

{
0 for z ≤ 1,

(z − 1)2 for z > 1.

Hence ψc produces a quadratic shear along the diagonals x+ y = const > 1. The shear map
is defined as the composition

Ψc = ψc ◦ φ.

By construction, W s(0) contains the half-line {x ∈ (−∞, 1], y = 0} and W u(0) contains
{y ∈ (−∞, 1/λs], x = 0}. There is a value c = c∗ ∈ [0, λu] for which there is an initial
homoclinic tangency. The homoclinic tangency for λu = 0.4 and λ = 2.0 was found to
be c∗ ≈ 0.811580, which is precise up to five digits; see [17]. Figure 6 shows the stable and
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Figure 7. A part of W u(0) (red curve) overlaid with black points computed with the SC algorithm as the
stable manifold of the inverse map.

unstable manifolds of the shear map, both computed using the SC algorithm at this homoclinic
tangency. Here Ψc was used to calculate W s(0), shown in blue, and Ψ−1

c was used to calculate
W u(0), shown in red. That is, we calculated W u(0) as the stable manifold of Ψ−1

c (note that
one would not normally use the inverse to calculate an unstable manifold, but we did this for
testing purposes because W u(0) is bounded, while W s(0) is not).

Figure 6(b) shows the results of our computation, where we zoomed in near the fixed
point, a test that was also performed in [17]. There are no visible differences in the two
computations. We remark that the stable manifold makes longer and longer excursions into
the region of negative y before returning to the next tangency. However, due to the way the
mesh is adapted, only very few mesh points are computed along each such excursion; see the
discussion in [17] and also [35]. Note that the limit of numerical accuracy was reached near
the fixed point: the last fold of W s(0) crosses W u(0), but the last fold of W u(0) just misses
W s(0).

Figure 7 shows in red a close-up piece ofW u(0) calculated using Ψc and the algorithm from
[17]. The black points are on the stable manifold of Ψ−1

c computed with the SC algorithm.
Here we used the larger values (∆α)min = 10−5 and (∆α)max = 10−4 to demonstrate how
the distribution of points is adapted to the curvature. Despite the lower accuracy, the black
points computed with the SC method lie exactly on the red manifold.
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Figure 8. The stable manifold of the modified Ikeda map up to arclength 150 calculated using the SC
method. (A = 1, b = 0.9, e = 1,φ = 0.4, q = 6.)

4.2. Modified Ikeda map. The Ikeda map describes the dynamics of an optical ring laser
cavity [12, 15]. A modification of the Ikeda map is used in [16] as an example of a system
that does not have a closed analytic form of the inverse map. It is defined by

g

(
x
y

)
=

(
A+ bx cosm− ey sinm
by cosm+ ex sinm

)
,(4.1)

where

m = φ− q

1 + x2 + y2
,

and A, b, e, φ, and q are parameters of the system. The standard Ikeda map has b = e, and it
is possible to find an explicit inverse. We consider b = 0.9, e = 1 and use A = 1, φ = 0.4, and
q = 6 as was done in [16]. Figure 8 shows the stable manifold of the saddle (1.08332,−2.40796),
indicated by a green cross, computed up to arclength 150. The two branches of the stable
manifold are shown in blue; one of the branches immediately goes to infinity; the other branch
stretches and folds as it forms a homoclinic tangle creating a chaotic saddle, while at the same
time also going to infinity. This branch is computed to approximately the same arclength
as shown in [16, Figure 3], where 17 iterates of a fundamental domain were computed and
the inverse was approximated by Newton’s method. (The exact fundamental domain is not
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specified in [16].) There appear to be no differences between the approximations of the stable
manifold in Figure 8 and [16, Figure 3].

4.3. Modified Gumowski–Mira map. In [10, 11] Gumowski and Mira investigated a non-
invertible map for which the two sides of the primary manifold of the stable set of a saddle
point join to form a smooth closed loop; see also [8] for a different example. The area enclosed
by the primary manifold is the basin of attraction of a sink. Here we study a modified form
of this map to demonstrate the simplest case of this phenomenon, namely, of a saddle point
with positive eigenvalues, where the orientation of the map is preserved. The map is defined
as

Q

(
x
y

)
=

(
y

ax+ bx2 + y2

)
.(4.2)

For a = 0.8 and b = 1 we obtain the system studied in [10, 11]. However, we choose a and b
such that the map Q has a saddle fixed point p with two positive eigenvalues.

The determinant of the derivative vanishes along the vertical line J0 := {x = −a/2b}.
The curve J1 = Q(J0) is then a parabola and divides the plane into two regions, one with
two pre-images and the other with no pre-images. This is the simplest case of a noninvertible
map of so-called (Z0 − Z2) type; see also section 2.1. The saddle p always has at least one
pre-image, namely itself, so that it cannot lie in the Z0 region. Hence, p lies in the Z2 region.
Therefore, p has a second pre-image, not equal to p, which lies in the Z0 region. For this
particular example, the second pre-image of p, denoted q, has the same y-coordinate as p.

The computation of the stable set W s(p) for this map is difficult because it crosses the
curve J0, where the Jacobian is singular. Algorithms that use Newton’s method, such as in
[16], will fail to compute W s(p) in its entirety. At best, only the part of W s(p) up to J0 can
be computed. Gumowski and Mira [10, 11] computed W s(p) for a = 0.8 and b = 1 by using
fundamental domain iteration, which requires detailed knowledge of the two inverses.

The SC algorithm is more general and does not need any specific information about the
system. Two examples of a stable set are shown in Figure 9. In Figure 9(a) we chose a = −0.8
and b = 0.2 and in Figure 9(b) we used a = −0.8 and b = 0.1. Notice that the stable set
W s(p) is symmetric about J0 and that the primary manifold forms a closed loop: its two
branches meet at the pre-image q of the saddle point p.

Let us first focus our attention on Figure 9(a). Most of the phase space in this figure
belongs to the Z0 region, where no pre-images exist. Only the points above the parabola J1

have two pre-images and belong to the Z2 region. Even though it is not clear from the figure,
p does lie inside this region. Both J0 and J1 intersect W s(p) exactly twice. The (symmetric)
part of W s(p) to the right of J0 is mapped by Q onto the part of W s(p) in between the
two intersections with J1. The part to the left of J0 is contracted to this same segment,
which accounts for the two pre-images of W s(p) in this region. Figure 9(c) gives a schematic
representation of how the two branches of W s(p) in Figure 9(a) are mapped by Q. (Here the
primary manifold is “cut” at q and “stretched out” to a straight line with the saddle p as the
cross in the center.) Also marked are the intersections with the J0 and J1 curves. Consecutive
sections are indicated by alternating colors, green for the left branch and blue for the right
branch. The corresponding images of these sections are shown above and below the primary
manifold.
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Figure 9. Panel (a) shows the primary manifold of the map defined in (4.2) for a = −0.8 and b = 0.2,
computed up to arclength 20. Panel (b) shows the stable set of the map defined in (4.2) for a = −0.8 and
b = 0.1. The red crosses indicate a point on the primary manifold and its pre-image, from which the disjoint
piece of the stable set was grown. Panel (c) is a schematic illustration of how the primary manifold of panel
(a) is grown. Segments of a particular color map to similarly colored segments.

Figure 9(c) also illustrates how the SC algorithm computes the primary manifold. Let us
consider the right branch of the primary manifold in Figure 9(c). The SC algorithm grows
the branch starting with p and a point in Es(p) at distance δ = 10−3 from p. The part
of the manifold from p up to the intersection with J0 is mapped one-to-one to the segment
from p up to the intersection with J1, which is indicated by the similarly colored piece shown
immediately above the primary manifold. The intersection with J0 may be called a point
of alternance [11], since here the direction of the images switches. This is detected by our
algorithm by a change in direction of the search for the image of pk+1. Namely, the segment
from the intersection with J0 up to q is mapped to the piece of the primary manifold that
traverses back from J1 to the saddle point p. Further points on the branch past q would then
map onto the left branch of the primary manifold that has not yet been computed, and so
the algorithm stops. The left branch is grown in the same way. Note that the two branches
connect smoothly at q because the image of W s(p) near q under the smooth map Q is the
part of W s(p) near p, which is indeed smooth.
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We also computed W s(p) for a = −0.8, b = 0.1. Now, W s(p) intersects J1 at four points
and there are two disjoint segments on W s(p) that have two pre-images; see Figure 9(b). The
primary manifold of W s(p) is the closed loop that contains p. The two (symmetric) halves
of W s(p) on either side of J0 account for the two pre-images of the segment in the Z2 region
that contains p in much the same way as described for the case with a = −0.8 and b = 0.2 in
Figure 9(a). The other segment of W s(p) that lies in the Z2 region also has two pre-images,
but these do not lie on W s(p). Hence, a disjoint piece containing the pre-images of this
segment must exist and it is part of the global stable set W s(p) of p; see also section 2.1. The
set of pre-images forms the disjoint closed loop inside W s(p) in Figure 9(b), which was also
computed with the SC algorithm. To this end, we pick an arbitrary point on the segment of
W s(p) in the Z2 region that does not contain p. By definition, the Jacobian is nonsingular
at this point so that we can use Newton’s method to find a pre-image of this point; both are
indicated by a red cross in Figure 9(b). We can now apply the SC algorithm to find a new
point that maps to W s(p) and continue in the same way to calculate the entire closed loop
inside W s(p). Again, the images traverse the segment of W s(p) in the Z2 region in between
the two intersections with J1 twice; the direction switches each time we cross J0.

This example shows that it is quite important to know where the J1 curve lies with respect
to the global stable set. Namely, the intersections with J1 determine whether disjoint pieces
exist. In fact, one not only needs to know the curve J1, but also how many pre-images there
are of points in specific regions. Our algorithm is not designed to detect the intersections
with J1, though some information can be obtained by monitoring the direction of the images
of successive points pk+1 during the computation. In order to find the entire global stable
set, one should find the curves J0 and J1 and also investigate the number of pre-images in
regions separated by J1. For example, the package Pisces [34] is designed for this purpose,
and combining it with the SC algorithm would result in a powerful tool for the study of the
global dynamics of noninvertible maps.

4.4. Nien–Wicklin map. A more complex noninvertible map was investigated in [24] to
test the performance of the program Pisces [34] to determine the regions of the phase space
with different numbers of pre-images. The map is given as

Λ

(
x
y

)
=

(
x4 + νx2 + xy + µx
(1 + a) y + b+ εx2

)
.(4.3)

As in [24], we set µ = a = b = ε = 0.1 and ν = −1.9. The map Λ has a saddle fixed point
at p = (0,−b/a) = (0,−1) with a negative stable eigenvalue. The phase space is divided
into regions that have different numbers of pre-images by the curve J1, which is the image of
the curve J0. This map has a more complex folding of type (Z0 − Z2 � Z4). The J1 curve
contains two cusps forming a region, called a dovetail in [21]; see also Figure 10(c). (This is
due to the fact that for these parameter values the map is close to a swallowtail bifurcation
in which two cusps are created [2].) Points inside the dovetail have four pre-images, whereas
points immediately outside the dovetail have two pre-images. Points above the J1 curve in
the upper left-hand corner have zero pre-images. The authors of [24] compute successive pre-
images of p to demonstrate the complexity of this map. The stable set W s(p) contains all
these pre-images, but the stable set itself is not computed in [24].
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Figure 10. The stable set (blue) and unstable manifold (red) of the map defined in (4.3) with µ = a = b =
ε = 0.1 and ν = −1.9. The red squares in panels (a), (b) and the corresponding squares in panel (c) indicate a
period-two repeller. The other squares in panel (c) are pre-images of this period-two repeller. Panel (a) shows
the stable set computed using the built-in method of DsTool and panel (b) shows all points that map onto the
saddle after at most 15 iterations. The color of the points indicates the number of iterations it takes to map to
the saddle point; see the color bar. Panel (c) shows the primary manifold computed using the SC method. (The
unstable manifold in red is computed up to arclength 10.) Note how the primary manifold is extended to the
stable set from selected pre-images of the saddle point. All points on the disjoint pieces of the stable set map to
the primary manifold within 12 iterations.
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Figure 11. Illustration of how the plane folds under Λ (a) and Λ2 (b) in a neighborhood of the primary
manifold. Marked are the intersections with the curves J1 and J2 along which the plane folds.

We computed W s(p) with the SC algorithm and the built-in algorithm of DsTool (of
fundamental domain iteration) for comparison. Figure 10(a) shows the result of a fundamental
domain iteration with DsTool, where 10 uniformly distributed points on a fundamental domain
with δ = 10−6 were iterated backward 200 times with Newton’s method. Since DsTool uses
random seeds, the successive pre-images of p already give an idea of what the stable set looks
like. Also shown is the period-two repeller (red squares) that forms the endpoints of the
primary manifold of W s(p). Figure 10(b), by comparison, shows all points that map to the
saddle after 15 iterations, as in [24]. These pre-images were obtained with Maple [20] by
using the special structure of the map. The number of iterations needed to reach the saddle
is indicated by color, ranging from green (1 iterate) to blue (15 iterates). The color coding is
indicated in the color bar and is maintained throughout the other figures in this example.

Figure 10(c) shows, in blue, parts of the stable set computed using the SC algorithm. Note
that the computations are done using Λ2 to preserve the orientation. The unstable manifold
is shown in red and was computed using the algorithm in [17]; it is the line {x = 0}. The
primary manifold of W s(p) ends at a period-two repeller and contains a number of pre-images
that map directly onto the saddle point. The disjoint parts of the stable set are also computed
using the SC algorithm. Indeed, they are grown by starting at pre-images of p indicated by
the green crosses in Figure 10(c). The curves J0 and J1 are shown in gray. The primary
manifold intersects the dovetail formed by the curve J1; hence, W s(p) consists of both points
with four pre-images and points with two pre-images.

In Figure 11 we illustrate schematically how the plane near W s(p) folds under Λ. When
considering a local neighborhood of W s(p), the folding of the phase space is what we call type
(Z1+1–Z3+1–Z1+1), which is a double fold with another piece of the plane underneath. Since
we work with Λ2 to compute W s(p), we also illustrate how W s(p) folds under Λ2. Now we
also have folding along the curve J2 = Λ(J1) because the critical set of curves along which the
plane folds is J1(Λ

2) = J1 ∪ J2, which is the image of J0(Λ
2) = J−1 ∪ J0, where Λ(J−1) = J0;

see section 2.1.
Figure 12(a) shows W s(p) and the curves J−1, J0, J1, and J2. Figure 12(b) gives a

schematic representation of W s(p) and its image under Λ2. The primary manifold with the
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Figure 12. Panel (a) shows the primary manifold along with the the curves J−1, J0, J1, and J2. The
pre-images of p are also indicated by crosses. The color of the crosses is, as in Figure 10, indicated by the
number of iterations needed for the point to map to the saddle point. Panel (b) is a schematic illustration of
how the image of W s(p) under Λ2 covers itself. The red squares indicate a period-two repeller. Segments of
a particular color map to similarly colored segments, whereby points marked 3 and 4 are mapped to 1 and 2,
respectively, and 1 and 2 map to the saddle p.

period-two repellers as its endpoints is shown as a straight line. The saddle point p is the cross
in the center. The pre-images of p are marked in the figure by the number of iterations of Λ
that it takes to map to p, up to Λ4. Also marked are the intersections with the curves J−1, J0,
J1, and J2. Consecutive sections on the primary manifold are indicated by alternating colors,
green for the left branch and blue for the right branch. Correspondingly colored pieces of the
Λ2-image of the primary manifold are shown above and below the primary manifold.

To help interpret this figure, let us start by examining the right-hand side of W s(p), as
was done in section 4.3. The SC algorithm again grows the primary manifold starting from
an initial segment with δ = 10−3. The part of the primary manifold from p up to the first
intersection with J−1 is mapped one-to-one to the segment up to the intersection with J1,
which is indicated by the dark blue piece shown immediately above the branch of the primary
manifold. The next segment from the intersection with J−1 to the point marked 2, indicated
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by the light blue, is then mapped back to the piece of branch that traverses back from J1 to
the saddle point p.

The segment between the point marked 2 up until the next point marked 2 maps to the
other side of the saddle. Our algorithm stops because we have not yet found this piece of
the primary manifold, and so we cannot check if points map onto it. We would have to
calculate the branch of the primary manifold on the other side of the fixed point and swap
back between the two sides to grow the primary manifold further. For the map Λ, we get
around this problem by using the following trick: we try one further iteration of the points
to see if they map back to the branch of the primary manifold that was already computed.
We can see from Figure 12 that the segment between the two points marked 2 on the branch
maps to segments of the branch on the other side of the saddle under Λ2. The section would
map back to the right side of the primary manifold under Λ3, which is a segment we have
already computed.

The segment containing the two points marked 4 maps to the entire right branch under
Λ2. The image of the left branch folds similarly, covering part of the right branch up to
J2 = Λ(J1). Notice how the images of newly found points trace the folded plane under Λ2, as
shown in Figure 11.

In [24] it was observed that the set of pre-images appears to contain teardrop-shaped
clusters that are mapped onto each other. We compute other disjoint pieces of W s(p) by
selecting pre-images of the saddle point that lie on these teardrop-shaped pieces. These points
are shown in Figure 10(c) as green crosses (color coded relative to the number of iterations
it takes to map to p). As in the previous example, we apply the SC algorithm to find a new
point that maps to the primary manifold. It is sometimes necessary to change the number of
iterates of Λ that are used to map back onto W s(p).

In Figure 13 we zoom into the primary manifold and a pre-image of it. Figures 13(a)
and 13(c) show W s(p) and a pre-image of W s(p), computed using Newton’s method with the
built-in algorithm of DsTool (again, only 10 points on a fundamental domain were iterated
backward 200 times). Figures 13(b) and 13(d) show the same pieces of the stable set computed
using the SC method. Overlaid on the pieces are pre-images of the fixed point indicated by a
colored cross and labeled according to the number of iterations it takes to map back to p. The
endpoints of these pieces are pre-images of the period-two repeller, but in themselves they
are not period-two points. We can see how pre-images of p on the secondary piece map to
pre-images on W s(p). The disjoint pieces of the stable set are due to pre-images associated
with the extra sheet of the plane that lies underneath the folded sheet, as shown in Figure 11.

In Figure 13(d) we labeled the pre-images of the J0 and J1 curves as follows. We define
J−1

0 ⊇ J−1 such that Λ(J−1
0 ) = J0, and J−1

1 ⊇ J0 such that Λ(J−1
1 ) = J1. This clearly reveals

the repetitive structure of the stable set’s interaction with the critical curves. Note that there
certainly exists a pre-image of the unstable manifold in Figures 13(c) and 13(d), but this
pre-image is not part of W u(p) because the unstable manifold is only forward invariant and
is connected to the saddle point.

4.5. The highly interrupted cutting map. We consider a piecewise-smooth map that
models a cutting tool. This map was considered in [4, 5, 33] to study the properties of high-
speed low immersion milling. The tool oscillates with a fixed frequency of period τ . This
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Figure 13. Two pieces of the stable set of the map Λ defined in (4.3) with µ = a = b = ε = 0.1 and
ν = −1.9. Panels (a) and (b) show W s(p) computed using the built-in method of DsTool and the SC algorithm,
respectively. Panels (c) and (d) show a pre-image of W s(p) computed in the same way. The color of the crosses
is, as in Figure 10, indicated by the number of iterations needed for the point to map to p.

period is made up of two parts, τ1 + τ2 = τ . The tool oscillates freely for time τ1 when the
tool is not in contact with the workpiece and the machine re-adjusts its position depending
on the thickness of the previous cut. The tool then cuts for time τ2, which is small compared
to τ . The map describes the changes in the height xj of the cutting tool and its velocity vj
at the moment just after the cutting time τ2. The map is defined, as given in [33], by

{
x (tj+1) = A11x (tj) +A12v (tj) ,
v (tj+1) = A21x (tj) +A22v (tj) + F (x(tj), (v(tj)) ,

(4.4)

where A11, A12, A21 and A22 are functions of the period τ and the relative damping factor ζ,
namely,
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A11 = e−ζτ

(1−ζ2)

(
cos

(√
(1 − ζ2)τ

)
+ ζ sin

(√
(1 − ζ2)τ

))
,

A12 = e−ζτ

(1−ζ2)
sin
(√

(1 − ζ2)τ
)
,

A21 = − e−ζτ

(1−ζ2)
sin
(√

(1 − ζ2)τ
)
,

A22 = e−ζτ

(1−ζ2)

(
cos

(√
(1 − ζ2)τ

)
− ζ sin

(√
(1 − ζ2)τ

))
.

The function F in the equation for v(tj+1) is defined as

F (x(tj), v(tj)) =

{
τ2

mωs
n
Fc (h) if h = h0 + x (tj) −A11x (tj) −A12v (tj) > 0 ,

0 otherwise.

Here, m is the mass of the tool, h0 is the feed during one cutting period, and ωn is the
natural damping frequency. The cutting force Fc(h) is estimated by the three-quarters rule,
an empirical formula, giving Fc(h) = Kwh3/4 for some parameter K, where w is the chip
width and h defines the cutting depth. This term is only included for h = h0 − A11x (tj) −
A12v(tj) + x (tj) > 0, that is, when the tool cuts the material, and is zero otherwise; see
[4, 5, 33] for more details on the derivation of this model. We combine the constants τ2,
m, ωn, w and the parameter K, giving a new parameter K2. The equation h = 0 defines a
straight line in the (x, v)-space along which the system is not differentiable. The map (4.4) is
complicated and finding an explicit inverse is impractical.

The fixed point is not on the smoothness boundary {h = 0}, so in a neighborhood of the
saddle the map is smooth and local manifolds exist. Globally, the system is piecewise smooth
and we refer to the global manifolds as piecewise-smooth manifolds.

Figure 14 shows the piecewise-smooth manifolds of the map defined in (4.4). For our
computation we chose ζ = 0.01, τ = 2, and h0 = 1. For K2 = 0.87 there is a saddle point p at
xe = 0.27932, ve = 0.43835, with two negative eigenvalues. This is indicated by a green cross
in the figure. Figure 14(a) shows the two branches of the stable manifold in blue computed
up to arclength 400 using the SC method for the second iterate of the map. The unstable
manifold, shown in red, is computed up to arclength 10 using the algorithm from [17].

The branches of the stable manifold spiral outward with obvious nonsmooth corners. The
branches of the unstable manifold also have nonsmooth corners as they approach the period-
two repeller; see the enlargement in Figure 14(b). The gray line is the smoothness boundary
(switching manifold) along which h = 0.

The global stable manifold is nonsmooth at the point where it intersects the smooth-
ness boundary, but there are also nonsmooth points that are not on this boundary. These
nonsmooth points are pre-images of intersections with the smoothness boundary, so the non-
smoothness propagates backward along the manifold. Hence, the stable manifold is smooth
until it arrives at the smoothness boundary or a pre-image of the smoothness boundary. To
illustrate this, some of the intersections with the boundary are marked by a colored cross and
a zero in Figure 14. Points that map to these intersection points are indicated by similarly
colored crosses labeled with a number indicating the number of iterations it takes to map to
the first intersection point.

Figure 14(b) shows a close-up of the piecewise-smooth unstable manifold. The unstable
manifold was computed with the algorithm in [17] and accumulates on a period-two attractor.
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Figure 14. Panel (a) shows the stable (blue) and unstable (red) piecewise-smooth manifolds of the saddle
p of the map defined in (4.4) for ζ = 0.01, τ = 2, h0 = 1, K2 = 0.87. We computed the stable manifold up
to arclength 400 and the unstable manifold until it converged to the period-two points. The gray line indicates
the smoothness boundary. Crosses with the same color are part of the same orbit on the stable manifold,
which indicates how sharp corners on the manifold map to intersections with the smoothness boundary. An
enlargement of W u(p) is shown in panel (b); the black crosses on the unstable manifold are images of the
intersection point with the smoothness boundary. This clearly shows how sharp corners emanate from the
smoothness boundary.
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We see that the intersection of the unstable manifold with the smoothness boundary is smooth,
but sharp corners propagate forward along the manifold from this intersection point.

In [33] the authors perform a bifurcation analysis on the parameter K. We can similarly
vary the parameter K2. For K∗

2 = 0.856468 there is a subcritical period-doubling bifurcation.
Here, the fixed point becomes stable and a period-two saddle emerges between the fixed
point and the period-two attractor. In contrast to the period-two attractor, both points on
the period-two saddle lie on the same side of the smoothness boundary. In Figure 15 we
computed the stable manifolds (blue) and the unstable manifolds (red) of the two period-two
saddle points for K2 = 0.85. The period-two saddles are indicated by the green crosses and
the attractors by blue triangles. The piecewise-smooth stable manifolds produced using the
SC algorithm in this case define the boundaries of the basins of attraction between the period-
two attractor and the attracting fixed point. Points in the white region tend to the attracting
fixed point, whereas points in the shaded regions oscillate between the blue and gray regions
while tending to the period-two attractor.

5. Conclusions and discussion. Many real-life systems are very hard to invert, and thus
the inverse is not known explicitly, or is truly noninvertible with several branches of inverses.
The SC algorithm described in this paper computes the one-dimensional global stable man-
ifold, or stable set, for a planar map without requiring knowledge of the inverse map or the
Jacobian matrix. Even if the inverse map is known explicitly, the SC algorithm can still be
used to compute the stable manifold.

Until now, stable sets of systems with multiple pre-images could not be easily computed
past points where the Jacobian is singular. We have shown that the SC algorithm is not
affected by this problem. Furthermore, the SC algorithm can also be used to compute disjoint
pieces of the stable set, as soon as one point on it is found. Such a point is a pre-image of
an arbitrary point on the already computed manifold, for example, the fixed point. Finally,
we have shown that our algorithm also works for maps in which the derivative of the system
is not continuous. To our knowledge, manifolds of such piecewise-smooth systems have not
previously been computed. We believe that these properties of the algorithm are very useful
when one is exploring real-life systems.

The SC algorithm has been implemented to compute one-dimensional stable manifolds and
stable sets of planar maps. Although planar maps (already) display many types of dynamical
behavior, including chaos, interesting dynamics can also be investigated in higher dimensions.
Let us discuss the implications of generalizing the SC algorithm to higher dimensions. To
compute a two-dimensional stable manifold in a three-dimensional phase space, we could use
a direct combination of [18] and the SC algorithm. In fact, any system with codimension-
one stable manifolds can be computed by generalizing the method in [18] and using it in
combination with the SC algorithm. The complexity of the algorithm is of the same order as
the method in [18] for dimensions greater than two.

As mentioned in the introduction, the PIM-triple procedure of [25], designed for finding
chaotic saddles, can be used to calculate stable sets of saddle points. The PIM-simplex method
in [23] is an extension of the PIM-triple method in [25] for computing chaotic saddles having
an unstable dimension of two or higher. This method uses a nondegenerate simplex to probe
the space replacing the line segment; see also [32]. Our algorithm could be generalized in a
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Figure 15. The stable (blue) and unstable (red) manifolds (a) of a period-two saddle of the map defined in
(4.4) for ζ = 0.01, τ = 2, h0 = 1, K2 = 0.85. Again, the stable manifolds are computed up to arclength 400 and
the unstable manifolds up to arclength 10. The gray line indicates the smoothness boundary. An enlargement
of W u(p) is shown in panel (b).
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similar way. Instead of searching over a segment of a circle in two dimensions for the next
point, we could search over the surface of an n-dimensional hypersphere in n dimensions.
However, computing only one-dimensional manifolds of an n-dimensional system would lead
to an increased complexity that is not reflected in the dimension of the manifold. For these
cases, knowledge of the inverse would dramatically speed up the computation time.

We expect the SC algorithm to be useful in helping to understand the dynamics of many
real-life noninvertible and/or nonsmooth systems. The great advantage of this method is that
only a minimal amount of knowledge of the system is required to compute the stable manifold
or the stable set.
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[30] C. Simó, On the analytical and numerical approximation of invariant manifolds, in Les Méthodes Mod-
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Abstract. A bifurcation analysis of a simplified model for excitatory and inhibitory dynamics is presented.
Excitatory cells are endowed with a slow negative feedback and inhibitory cells are assumed to act
instantly. This results in a generalization of the Hansel–Sompolinsky model for orientation selectiv-
ity. Normal forms are computed for the Turing–Hopf instability, where a new class of solutions is
found. The transition from stationary patterns to traveling waves is analyzed by deriving the normal
form for a Takens–Bogdanov bifurcation. Comparisons between the normal forms and numerical
solutions of the full model are presented.

Key words. pattern formation, neural networks, normal forms, Takens–Bogdanov

AMS subject classifications. 34C15, 34C23, 34C25, 37G15, 37N25, 92C20

DOI. 10.1137/030600503

1. Introduction. Many areas of the brain have a sheet-like architecture in which neurons
interact horizontally through some spatial distribution. This is useful since it provides a sub-
strate for topographic connectivity in sensory areas such as vision and touch. For example,
in vision, nearby areas in the retina project to nearby areas in the visual cortex [16]. Spa-
tial coding is not the only organizing principle in cortical networks. Neurons that respond
preferentially to similar stimuli are more strongly linked than those responding to different
stimuli. A classic example of this is orientation preference in the visual cortex [15]. Neu-
rons in parts of the visual cortex respond to oriented bars of light and many of these cells
have a preferred angle. Thus, topologically, we can regard the network as lying on a ring
of length π corresponding to all possible orientations. Similar organizing principles based on
angular preference are also seen in the head-direction system of rodents [25]. Experiments in
which slices are removed from the cortex and pharmacologically manipulated (to make them
more excited) support propagating waves [2]. This shows that the “wiring” between neurons
is spatially organized.

In the simplest sense, cortical neurons can be divided into excitatory and inhibitory cells.
Most excitatory, or regular-spiking, neurons have some form of spike-frequency adaptation
(SFA). That is, there is a slow intrinsic negative feedback term which lowers the firing rate
of the neuron when a constant current is applied. In contrast, inhibitory, or fast-spiking,
neurons generally do not have a similar rate adaptation. In the classic models of Wilson and
Cowan [24], excitatory and inhibitory cells are treated the same with a single scalar number
(the firing rate) associated with each neuron. In a recent model for feature selectivity, Hansel
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and Sompolinsky [15] introduce a rate model in which the excitatory cells are endowed with
SFA. The domain of their model is a circle corresponding to orientation preference. Because
the model is piecewise-linear they are able to analyze a number of interesting patterns. The
motivation for the model is to shed light on the importance of recurrent (nonlinear feedback)
connections in setting the orientation selectivity to broadly tuned inputs. (That is, they
present an input with a small local maximum in orientation and ask if the network can
amplify the difference between the peak and the background.) They find that, even in the
absence of input, their network is able to support local peaks of activity; the inputs serve
to position the peak by breaking the rotational symmetry of the model. Interestingly, they
show that the presence of SFA causes the local peak to rotate around the circle in the form
of a traveling wave. They exploit the piecewise linear nature of their model to determine
parameter regimes where traveling waves exist as a function of the adaptation.

Our goal in this paper is to generalize the nonlinearity used in their model and then use
methods from dynamical systems to study and characterize the nonlinear behavior. We first
state the model equations and simplify it so that it becomes a two-variable model (neural firing
rate and degree of adaptation). The spatial interactions are of the lateral-inhibition type; there
is local excitation of nearby spatial points (or features) and inhibition at distant points. With
weak or rapidly decaying adaptation, we show that there is a bifurcation to stationary spatial
patterns. These correspond to the peaked patterns computed in the Hansel–Sompolinsky (HS)
model. Moreover, with strong or slowly decaying adaptation, there is a Hopf bifurcation to
spatially varying patterns. Under some circumstances, these correspond to the traveling waves
in the HS model; however, depending on the nonlinearity, there are also standing oscillations.
Finally, we look at the point of transition between stationary and oscillating patterns. This
occurs at a Takens–Bogdanov bifurcation and leads to some interesting and complex behavior.
This latter part occupies the bulk of the paper.

While normal forms have been computed generally for systems undergoing a Hopf bifur-
cation or Takens–Bogdanov bifurcation in the presence of O(2) symmetry, there are many
qualitatively different normal forms. Thus, in order to apply these methods to a specific prob-
lem, it is necessary to actually compute the coefficients. Thus, we describe the highlights of
the calculation in the main text and leave the details to Appendix A. One of the main reasons
for computing the coefficients is so that we can find regions in parameter space, where new
types of behavior occur. In particular, we have found conditions on the nonlinearity such that
standing waves occur. These are not found in the original HS model, where the nonlinearity
was piecewise-linear.

1.1. HS model. Hansel and Sompolinsky [15] introduced a simple rate-model for the
study of feature selectivity in local cortical circuits. In that context the network of neurons
was assumed to code for a sensory or movement scalar feature x (for example, the angle a
bar is rotated in the subject receptor field so that x can be taken in the interval [−π

2 ,
π
2 ]).

The local cortical network consists of ensembles of neurons that respond (are tuned) to a
particular feature of an external stimulus, and so are called “feature columns,” and that
are interconnected by recurrent synaptic connections. In other words, each neuron in the
network is selective, firing maximally when a feature (“preferred feature” of the neuron) with
a particular value is present. The synaptic interactions between a presynaptic neuron y from
the β-population and a postsynaptic neuron x from the α-population are denoted by a function
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Jαβ(x− y) = jαβ0 + jαβ2 cos(2(x− y)), where α and β indices stand for E (excitatory) and/or
I (inhibitory) populations of neurons, depending on the context. We take jαE0 ≥ jαE2 ≥ 0 for
input coming from the excitatory population and jαI0 ≤ jαI2 ≤ 0 for input coming from the
inhibitory population.

Hansel and Sompolinsky collapsed both excitatory and inhibitory populations into a single
equivalent population. In this case the synaptic connectivity function J is defined as J(x−y) =
j0 + j2 cos(2(x − y)) with no restrictions on the sign of coefficients, and the rate-model has
a single rate variable m(x, t) that represents the activity of the population of neurons in the
column x at time t. Moreover, the population is assumed to display adaptation. The resulting
model [15] is

τ0
∂m

∂t
(x, t) = −m(x, t) + F

(
1

π

∫ π
2

−π
2

J(x− y)m(y, t)dy + I0(x− x0) − Ia(x, t) − T

)
,

τa
∂Ia
∂t

(x, t) = −Ia(x, t) + Jam(x, t) .(1.1)

I0 stands for the synaptic currents from the external neurons, T is the neuronal threshold,
Ia is the adaptation current, τa > τ0 is its time constant, and Ja measures the strength of
adaptation.

An additional assumption for (1.1) is that the stable state of the network is such that
all the neurons are far from their saturation level, allowing the gain function F to be in a
semilinear form F (I) = I for I > 0, and zero otherwise.

The model we analyze in this paper is based on the above HS model but includes a more
general nonlinear gain function F . It also can be used in a more general context of synaptically
coupled populations of excitatory and inhibitory neurons with adaptation.

1.1.1. A more general class of models. More generally, the problem we are interested in
concerns the possible patterns that can be obtained in a neuronal network consisting of both
excitatory and inhibitory cells, and in the presence of adaptation. The network model consists
of two homogeneous populations of neurons, one excitatory (E), displaying adaptation, and
the other one inhibitory (I), without adaptation. This is a reasonable assumption, for example,
for cortical neurons, since experimental studies report that in the cortex most of the inhibitory
neurons do not display spike adaptation [3], [4], [14].

The spatial connectivity is assumed to be all-to-all from E to E, E to I, and I to E cells,
and in all cases the strength of the interactions decreases with the distance between neurons
according to a Gaussian distribution with zero mean, say JEE , JIE , and JEI , respectively.
For simplicity, no I to I interactions are included. In addition, the network is considered
one-dimensional in space.

We assume in the following a linear adaptation and describe the neuronal activity by a
rate-model. That is, we have

τE
duE
dt

= −uE + FE(JEE ∗ uE − JEI ∗ uI − gA) ,

τI
duI
dt

= −uI + FI(JIE ∗ uE) ,

τA
dA

dt
= −A+ uE ,(1.2)
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where τE , τI , τA are the time constants for the excitatory and inhibitory neurons, and for
adaptation, respectively; A is the variable that defines the adaptation; g is the strength of
adaptation; FE and FI are the firing-rate functions; and Jij ∗ uj , with i, j ∈ {E, I}, is the
convolution Jij ∗ uj(x, t) =

∫∞
−∞ Jij(x − y)uj(y, t) dy. Pinto and Ermentrout [20] analyzed a

model like this, without the inhibitory interactions, in order to study propagating waves.
One simplification is to assume that the inhibition is much faster than the excitation,

and that the firing rate for the inhibitory population is linear. That allows us to replace the
equation for I cells with its steady state, i.e., to take uI ≈ FI(JIE ∗ uE) = JIE ∗ uE . Then,
since a convolution of two Gaussians with zero mean is still a Gaussian with zero mean, we
have (JEE ∗uE −JEI ∗uI)(x, t) = (JEE −JEI ∗JIE ) ∗uE(x, t) = J ∗uE(x, t), where J(x) is a
difference of two Gaussians. Therefore system (1.2) can be reduced to a rate-model for only
one variable u, in which we include the neuronal activity for both excitatory and inhibitory
populations, and with the synaptic coupling defined by a function J as in Figure 1(a) (the
“Mexican hat”).

In [10] one of us showed the existence of traveling waves in a two-population model without
adaptation. In this work, in order to get a Hopf bifurcation at a nonzero wavenumber, it was
necessary to assume that the inhibition was slow and that the range of inhibitory-inhibitory
interactions exceeded that of the excitatory-excitatory interactions. This is not a realistic
assumption for the sensory cortex, where the inhibition is more localized and acts rapidly.
In this older work, excitatory cells were treated the same as inhibitory cells. However, it is
now known that excitatory cells exhibit pronounced adaptation; thus we have included this
in the model. Below, we describe conditions under which both Hopf and Takens–Bogdanov
bifurcations occur in the more general problem, where the inhibitory cells are treated as a
separate population.

1.1.2. Mathematical model. Under the assumptions considered in the previous section,
the mathematical model equivalent to (1.2) is

∂u

∂t
= −u(x, t) + F (αJ ∗ u (x, t) − g v(x, t)) ,

τ
∂v

∂t
= −v(x, t) + u(x, t)(1.3)

with x ∈ R the one-dimensional spatial coordinate, and α, g, and τ positive parameters.
The variables u and v represent the neuronal activity and adaptation, respectively, τ and g

correspond to the time constant and the strength of adaptation, and α is a parameter that
controls the strength of the synaptic coupling J .

Synaptic coupling. J is a continuous and even function, J(−x) = J(x) ∀x ∈ R, and is
absolutely integrable on the interval [−l, l], where l ∈ R+ ∪ {∞}. If l = ∞, we ask that
limx→−∞ J(x) = limx→∞ J(x) = 0. Otherwise, J is assumed to be periodic of period 2l.
Then the operator J ∗ u is defined as

J ∗ u (x, t) =

∫ l

−l
J(x− y)u(y, t) dy .(1.4)
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c = 2. (b) The function Ĵ .

There is an operator associated to J , which is defined on the frequency space, and that is

Ĵ(k) =

∫ l

−l
J(x) eikx dx .(1.5)

Remark 1. If we consider an infinite neural network, we take l = ∞ and the function J is
typically as in Figure 1(a). For example, we can define J as

J(x) =
1√
π

[
A
√
a e−ax2 −B

√
b e−bx2

]
, x ∈ R ,(1.6)

where A ≥ B > 0, a > b > 0. Then Ĵ(k) = Ae−k2/4a − B e−k2/4b, k ∈ R, and Ĵ has the
graph as in Figure 1(b). Nevertheless, in numerical simulations we cannot consider an infinite
domain. Therefore we have to restrict ourselves to a finite domain [−l, l] with l ∈ R+ and work
with periodic boundary conditions. In order to maintain the assumptions of local excitation
and long range inhibition, J is typically as in Figure 2(a). For example, we can take J as

J(x) =
1

2l

[
a+ b cos

(πx
l

)
+ c cos

(
2πx

l

)]
, x ∈ R ,(1.7)
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Figure 3. The firing rate (1.8) for r = 3 and θ = 0.3.

where a, b, c are real parameters. Therefore Ĵ (see Figure 2(b)) is

Ĵ(0) = a , Ĵ(±π/l) = b/2 , Ĵ(±2π/l) = c/2 , Ĵ(±jπ/l) = 0 (j ∈ N \ {0, 1, 2}) ,

Ĵ(k) =
sin(lk) [(a− b+ c)(lk/π)4 + (−5a+ 4b− c)(lk/π)2 + 4a]

lk [ (lk/π)2 − 1 ][ (lk/π)2 − 4 ]
, k /∈ ±(π/l)N .

Firing rate. F in (1.3) is a sigmoid function (Figure 3) assumed to satisfy

F (0) = 0 , F ′(0) = 1 .

The first condition translates the steady state to the origin ū = 0, v̄ = 0. The second condition
brings additional simplifications to our calculations. A typical expression for F is then F (u) =
K
[

1
1+e−r(u−θ) − 1

1+erθ

]
, with r and θ positive parameters, and K = (1 + erθ)2 e−rθ/r, i.e.,

F (u) =
1 + erθ

r
· 1 − e−ru

1 + e−r(u−θ)
.(1.8)

Remark 2. The condition F ′(0) = 1 is not essential. As long as F ′(0) is nonzero and
positive, the results proved in the following sections remain valid. To see this, let us assume
that F ′(0) 
= 1. Then, by the change of variables unew = u/F ′(0), vnew = v/F ′(0), the change
of parameters αnew = F ′(0)α, gnew = F ′(0) g, and the change of function Fnew = F/F ′(0),
we obtain a system topologically equivalent to (1.3), where Fnew satisfies the constraints
Fnew(0) = 0 and F

′
new(0) = 1.

Remark 3. The shape of F is also not crucial since we need only local properties of F , such
as its first few derivatives. Thus, all we need for the analysis is that F have continuous third
derivatives at the origin. However, most neural models use some sort of sigmoidal nonlinearity.
The piecewise-linear model is dangerous since solutions can grow without bound under some
circumstances.

2. Linear stability analysis and pattern initiation mechanism. Previous studies on re-
action diffusion pattern generation mechanisms (see [19] for a review) and neural models of
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pattern generation (such as a mechanism for stripe formation in the visual cortex [22], a model
for the brain mechanism underlying visual hallucination patterns [10], [12], or a neural activ-
ity model for shell patterns [11]) indicate that in one-dimensional structures the linear theory
turns out to be a good predictor of the ultimate steady state of the full nonlinear system.
There is very good agreement between the theoretical solutions obtained from the linearized
problem, and the numerical simulations of the original nonlinear system with initial conditions
taken to be small random perturbations about the steady state.

Nevertheless, in order to find the solution of the linearized problem that corresponds to
the stable spatial or spatio-temporal pattern that appears when the zero steady state loses
stability, nonlinear terms of the original system must be taken into account, and a singular
perturbation analysis around a bifurcation point must be pursued.

In the following we investigate the possible spatial and spatio-temporal patterns that can
occur in the neuronal system with adaptation (1.3), as we vary the parameters α, g, τ , and θ.

Based on the hypotheses F (0) = 0, F ′(0) = 1, the expansion of (1.3) in linear and higher
order terms becomes

∂u

∂t
= −u+ (αJ ∗ u− gv) +

F ′′(0)

2
(αJ ∗ u− gv)2 +

F ′′′(0)

6
(αJ ∗ u− gv)3 + · · · ,

∂v

∂t
= (−v + u)/τ ,(2.1)

and then the linear operator is

L0U =
∂

∂t
U −

(
−1 + αJ ∗ (·) −g

1/τ −1/τ

)
U ,(2.2)

where U = (u, v)T . We look for solutions of L0U = 0 that are bounded and have the form
ξ(t) eikx with k ∈ R.

Let us assume first that l = ∞. Then, according to (1.4) and (1.5), equation (2.2) can be
written as

[dξ
dt − L̂(k)ξ(t)

]
eikx = 0, where

L̂(k) =

(
−1 + αĴ(k) −g

1/τ −1/τ

)
.(2.3)

Since we work on an infinite domain (l = ∞) and J is symmetric, this statement is true for
all values of k ∈ R. Moreover, we have Ĵ(−k) = Ĵ(k).

The equation to be solved now is the ODE dξ
dt = L̂(k)ξ, which has two independent

solutions ξ1k e
λ1kt, ξ2k e

λ2kt, where ξ1,2 k are two-dimensional complex vectors. Therefore the

eigenfunctions of L0 have the form ξ1,2 k e
λ1,2 kt± ikx and ξ1,2 k e

λ1,2 kt∓ ikx, where λ1,2 k are the
eigenvalues defined by

λ1,2 k =
1

2

[
Tr(L̂(k)) ±

√
Tr(L̂(k))2 − 4 det(L̂(k))

]
.

If det(L̂(k)) > 0 and Tr(L̂(k)) < 0 for all k, i.e., α Ĵ(k) < g + 1 and α Ĵ(k) < 1/τ + 1,
then all eigenfunctions of L0 lie on the stable manifold and decay exponentially in time to
zero. The trivial solution is asymptotically stable.
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Remark 4. The eigenvalues k represent a measure of the wave-like pattern that can occur
in the system. That is why k are called wavenumbers, or modes, of the system, and 2π/k are
called wavelengths.

We consider k0 to be the most unstable mode, defined as

Ĵ(k0) = maxk≥0Ĵ(k) = maxk≥0

(∫ ∞

−∞
J(x) eikx dx

)
,(2.4)

and assume that

k0 
= 0 and Ĵ(k0) > 0 ,(2.5)

Ĵ(k0) 
= Ĵ(k) ∀k 
= ±k0 .(2.6)

This is true for functions J as in Figure 1.
There are only two ways the trivial solution can lose its stability: either when the deter-

minant becomes zero or when the trace becomes zero. We notice that (2.4), with additional
conditions (2.5), (2.6), implies that Tr(L̂(k)) < Tr(L̂(k0)) and det(L̂(k)) > det(L̂(k0)) for
k 
= ±k0. Therefore k0 is the first eigenvalue in which the system may lose its stability; that
is, k0 is the most unstable mode of system (1.3). For all k 
= ±k0 the eigenfunctions belong to
the stable manifold. On the other hand, the eigenfunctions with ±k0 wavenumber may form
a basis for the center manifold that becomes our point of interest.

The wavenumber k0 determines then the mechanism that generates the emerged pattern.
There are basically two possible cases. At α Ĵ(k0) = g+1, g < 1/τ , the determinant becomes

zero and a spatial pattern (steady state (SS)) bifurcates. At α Ĵ(k0) = 1 + 1/τ , g > 1/τ , the
trace becomes zero and a spatio-temporal pattern (traveling wave (TW)/standing wave (SW))
bifurcates.

Let us assume now that l is finite. There is a considerable difference between working with
finite domains as the interval [−l, l] and periodic boundary conditions. The difference comes
from the fact that in this case there is only a discrete set of possible wavenumbers. The
wavenumbers k must satisfy the condition k ∈

(
±π

l N
)

in order for the integral
∫ l
−l J(x −

y) eik(x−y) dy to be independent of x and so equal to Ĵ(k) =
∫ l
−l J(y) eiky dy.

This allows us to use the matrix L̂(k) from (2.3) and construct the eigenvalues and eigen-
functions of the linear operator, as in the case of infinite domain. Moreover, the discussion
from the previous paragraph remains valid here with the observation that in the case of l finite
we consider only those values of k belonging to the set

(
±π

l N
)
.

The most unstable mode k0 is then defined as

Ĵ(k0) = Ĵ
(πn0

l

)
= maxk∈ πN

l

(∫ l

−l
J(x) eikx dx

)
(2.7)

and we assume again that k0 
= 0 and Ĵ(k0) > 0, Ĵ(k0) 
= Ĵ(k) ∀k = ±πn/l, n ∈ N, such that
n 
= n0. This is true for functions J as in Figure 2.

Remark 5. In the following sections we analyze the case of spatial and spatio-temporal
patterns that occur in the system when, at the most unstable mode k0 
= 0, either the trace
Tr(L̂(k0)) becomes zero, the determinant det(L̂(k0)) becomes zero, or both the trace Tr(L̂(k0))
and the determinant det(L̂(k0)) become zero at the same value of α.
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2.1. Two-population model with adaptation. Here we show that the linearization of the
full two-population model does not differ substantially from our fast-inhibition simplification.
Reconsider (1.2). Rescale time so that τE = 1 and the linearized equations are

duE
dt

= −uE + αE(JEE ∗ uE − JEI ∗ uI − gA) ,

τI
duI
dt

= −uI + αIJIE ∗ uE ,

τA
dA

dt
= −A+ uE .

Here αE,I are the derivatives of FE,I at the constant steady state. As above, the stability is
determined by analyzing the eigenvalues of the matrix:

M(k) =

⎛
⎝ −1 + ĴEE(k) −ĴEI(k) −g

ĴIE(k)/τI −1/τI 0
1/τA 0 −1/τA

⎞
⎠ ,

where we have absorbed the parameters αE,I into the Ĵ ’s and the parameter g. The eigenvalues
of this satisfy a cubic polynomial, P (λ) = λ3+c2λ

2+c1λ+c0. There is a zero eigenvalue when
c0 = 0 and there is an imaginary eigenvalue when c1c2 − c0 = 0. For example, the condition
for a zero eigenvalue is

g = gcrit ≡ −1 + (ĴEE(k) − ĴEI(k)ĴIE(k)) .

Note that if we define Ĵ(k) = ĴEE(k) − ĴEI(k)ĴIE(k), then this is the same condition we
obtained in the simpler model. The double zero eigenvalue occurs when both c0 = 0 and
c1 = 0, which yields the following condition on the time-constant of adaptation:

τA =
1 − τI [ĴIE(k)ĴEI(k)]

gcrit
,

which, if τI = 0, is the same as our earlier condition. The condition for a Hopf bifurcation is
more complicated but depends linearly on the degree of adaptation. For small τI , it reduces
to the conditions above. Thus, for the simple zero and the Takens–Bogdanov bifurcation, the
full three-variable model leads to nearly identical conditions on the parameters. The condition
for a Hopf bifurcation is more complicated; the following must hold:

(Ĵ(k) − 1 − g)τIτA = [τA + τI − τAτI(1 − ĴEE(k))]

× [τAĴ(k) − 1 − τA + τI(ĴEE(k) − 1 − g)] .

Note that, like the conditions for the Takens–Bogdanov bifurcation, the quantities depend only
on ĴEE and Ĵ , the effective steady-state kernel. As τI → 0, this leads to −1 + Ĵ(k) = 1/τA,
which was the condition for the reduced model. Since the linearized behavior of the full three-
variable model is similar to that of the simplified system, we compute the normal form only
for the simpler system. We expect that there will be little difference in the behavior of the
full system.
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3. Spatio-temporal patterns obtained by a loss of stability at a purely imaginary pair of
eigenvalues. In the case of Tr(L̂(k0)) = 0 and det(L̂(k0)) > 0, at the most unstable mode k0

defined by (2.4), or (2.7), with conditions (2.5), (2.6), the eigenvalues of the associated ODE
dξ
dt = L̂(k0)ξ are complex with zero real part. This happens when the parameters of system
(1.3) satisfy

g > 1/τ and α∗ =
1 + 1/τ

Ĵ(k0)
.(3.1)

Remark 6. In the following we fix the values of τ and g as above and take α as the
bifurcation parameter. The bifurcation value around which we will consider the singular
perturbation analysis is α∗. Therefore in the entire section 3, the operator L0 defined by
(2.2), and the matrix L̂(k) defined by (2.3) for all k, where it makes sense, will be evaluated
at α = α∗.

The matrix L̂(k0) has purely imaginary eigenvalues ±iω0 with corresponding eigenvectors
Φ0 and Φ0 such that

ω0 =
1

τ

√
gτ − 1 ,(3.2)

L̂(k0)Φ0 = iω0Φ0 with Φ0 =

(
φ ,

φ

1 + i
√
gτ − 1

)T

.(3.3)

Based on the general theory [10], in the case of a pair of purely imaginary eigenvalues
that arises at the most unstable mode k0, the solution U of nonlinear system (1.3) can be
approximated by

U(x, t) ≈ 2Re
[
z(t) Φ0 e

i(ω0t+k0x) + w(t) Φ0 e
i(ω0t−k0x)

]
,(3.4)

where z, w are time-dependent functions that satisfy the ODE system

{
z′ = z(a+ bzz + cww) ,

w′ = w(a+ bww + czz)
(3.5)

called the normal form for the Turing–Hopf bifurcation in the time-and-space-variable case,
with a = a1 + ia2, b = b1 + ib2, and c = c1 + ic2 complex coefficients.

The importance of the normal form becomes apparent when we write it in polar coordi-
nates. It provide us with essential information about the existence and stability of the (new)
bifurcating solutions. We notice that actually only the signs and values of the real parts
a1, b1, c1 of the coefficients a, b, and c play a role in the matter.

In that sense let us define z(t) = reiθ1 and w(t) = Reiθ2 . Then (3.5) is equivalent to
the system r′ = r[a1 + b1r

2 + c1R
2], R′ = R[a1 + b1R

2 + c1r
2], θ′1 = a2 + b2r

2 + c2R
2,
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θ′2 = a2 + b2R
2 + c2r

2, and the normal form is basically reduced to

r′ = r [ a1 + b1r
2 + c1R

2 ] , R′ = R [ a1 + b1R
2 + c1r

2 ] .(3.6)

There are two distinct qualitative pictures of small amplitude bifurcating patterns in a
system with normal form (3.5), and so (3.6), as long as −a1/b1 > 0 and −a1/(b1 + c1) > 0
(see Ermentrout [10]).

One corresponds to the solution r̃ = 0, R̃ =
√
−a1/b1 of (3.6) (or R̃ = 0, r̃ =

√
−a1/b1)

and it represents a traveling periodic wave train with velocity c = ±ω0/k0 (“traveling wave”).
This can be understood easily by using formula (3.4): Up to a translation in time, an approx-
imation of the solution U(x, t) is then

2
√

−a1/b1Re
[
Φ0 e

i(ω0t±k0x)
]

= 2
√
−a1/b1Re

[
Φ0 e

∓ik0(ct−x)
]
.(3.7)

Therefore the pattern will change with time and position in space, according to the traveling
wave coordinate ξ = ct− x (for an example, see Figure 6).

The other case corresponds to the solution r̃ = R̃ =
√
−a1/(b1 + c1), and it represents

a standing oscillation, periodic in space with spatial frequency k0, and periodic in time with
temporal frequency ω0 (“standing wave”). The approximating solution of U(x, t) (up to a
translation in time) is now

4
√
−a1/(b1 + c1)Re

[
Φ0 e

iω0t
]
cos(k0x) ,(3.8)

and the pattern consists of oscillations with respect to the position x in space for any fixed
time t or in oscillations with respect to time at any fixed position x (for an example, see
Figure 5).

They cannot be simultaneously stable; therefore, physically, only one of these patterns
is selected [10], [9], [12]. The traveling wave solution TW has the corresponding eigenvalues

λ1 = −2a1, λ2 = −a1(c1−b1)
b1

with eigenvectors (1, 0)T , (0, 1)T . Therefore the traveling wave
exists and it is stable if and only if a1 > 0, b1 < 0, and c1 − b1 < 0. The standing wave
solution SW has the corresponding eigenvalues λ1 = −2a1, λ2 = −2a1(b1−c1)

b1+c1
with eigenvectors

(1, 1)T and (1,−1)T . Therefore the standing wave exists and it is stable if and only if a1 > 0,
b1 + c1 < 0, and c1 − b1 > 0.

We summarize the above observations into the following two theorems.
Theorem 3.1 (existence and stability of traveling and standing waves through a Turing–Hopf

bifurcation. See [10]). Let us consider the normal form (3.5) for the Turing–Hopf bifurcation
of a nonlinear (time- and one-dimensional-space-dependent) system, and define a1 = Re(a),
b1 = Re(b), and c1 = Re(c).

(i) System (3.5) has a TW solution if and only if (−a1)/b1 > 0. Moreover, the TW exists
and it is stable if and only if

a1 > 0 , b1 < 0 , c1 − b1 < 0 .
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(ii) System (3.5) has an SW solution if and only if (−a1)/(b1 + c1) > 0. Moreover, the
SW exists and it is stable if and only if

a1 > 0 , b1 + c1 < 0 , c1 − b1 > 0 .

Theorem 3.2 (see [10]). Let us assume that a nonlinear (time- and one-dimensional-space-
dependent) system passes at the most unstable mode k0 through a Turing–Hopf bifurcation,
with eigenvalues ±iω0 and eigenvectors Φ0,Φ0. The associated normal form is (3.5). Then

(i) the linear approximation of the TW solution is (3.7). The velocity of the TW is ±ω0/k0.
(ii) The linear approximation of the SW solution is (3.8).
Since the goal of our study is to investigate the existence of stable TW and/or SW patterns

in the neural network (1.3), we have to construct the normal form for the Hopf bifurcation
case. More precisely, according to the general theory summarized above, we have to determine
the coefficients a, b, and c in (3.5) and then determine their real parts.

3.1. Traveling wave and standing wave patterns in the neural system. The construction
of the normal form uses a singular perturbation approach with a proper scaling of the vari-
ables, parameters, and time with respect to ε, the small pertubation quantity. The Fredholm
alternative method is then used to identify solutions for the functional equations obtained
from the ε-power series expansion.

We include in this section only the main results obtained as a consequence of the con-
struction of the Turing–Hopf bifurcation normal form. A summary of the basic steps of
perturbation calculations is then included in Appendix A.

Therefore we are able to compute the expression of the coefficients of the normal form
as a dependence on the original parameters of the nonlinear system (1.3). That allows us
to identify the regions in the parameter space where stable traveling wave or stable standing
wave patterns occur in system (1.3).

We should mention that the numerical simulations of the full nonlinear model around a
Hopf bifurcation point indeed showed the presence of stable traveling waves. Nevertheless it
was a difficult task to find in simulations the region in the parameter space corresponding to
stable standing waves. Therefore in this case the analysis is a must. The computed coefficients
of the normal form help us to prove the existence of stable standing waves as solutions of the
neural system (1.3), and to visualize them numerically.

We state below the results obtained from the normal form calculation.
Theorem 3.3. If g > 1/τ , in the neighborhood of the bifurcation value α∗ = 1+1/τ

Ĵ(k0)
, system

(1.3) has the normal form (3.5) with

a1 = Re(a) =
1

2

[
α Ĵ(k0) −

(
1 +

1

τ

)]
,

and b1 = Re(b), c1 = Re(c) satisfying the equations

b1 =
τ + 1

4τ
|A|2

⎡
⎢⎣F ′′′(0) + F ′′(0)2 ·

⎛
⎜⎝−3 +

2

g + 1 − (1+1/τ)Ĵ(0)

Ĵ(k0)

+
MB

NB

⎞
⎟⎠
⎤
⎥⎦ ,(3.9)



PATTERN FORMATION IN A NEURAL NET 203

c1 + b1 =
τ + 1

4τ
|A|2 ·

⎡
⎢⎣ 3
[
F ′′′(0) − 3F ′′(0)2

]

+ F ′′(0)2 ·

⎛
⎜⎝ 2

g + 1 − (1+1/τ)Ĵ(2k0)

Ĵ(k0)

+
4

g + 1 − (1+1/τ)Ĵ(0)

Ĵ(k0)

+ 2
MC

NC
+
MB

NB

⎞
⎟⎠
⎤
⎥⎦ ,(3.10)

c1 − b1 =
τ + 1

4τ
|A|2 ·

⎡
⎢⎣ [F ′′′(0) − 3F ′′(0)2

]

+ F ′′(0)2 ·

⎛
⎜⎝ 2

g + 1 − (1+1/τ)Ĵ(2k0)

Ĵ(k0)

+ 2
MC

NC
− MB

NB

⎞
⎟⎠
⎤
⎥⎦ .(3.11)

Here we have MB = M
( Ĵ(2k0)

Ĵ(k0)

)
, MC = M

( Ĵ(0)

Ĵ(k0)

)
, NB = N

( Ĵ(2k0)

Ĵ(k0)

)
, NC = N

( Ĵ(0)

Ĵ(k0)

)
, where

M and N are functions defined as

M(X) = (4gτ − 3)[2gτ − (τ + 1)(τ + 2)]X + 4(gτ − 1)(τ + 1)2 + (3gτ − 4 − τ)2 + gτ(gτ + τ − 2)

and

N(X) = (4gτ − 3)(τ + 1)2X2 + 2τ(τ + 1)(3 − g − 4gτ)X + [4(gτ − 1)(τ + 1)2 + (3gτ − 4 − τ)2] .

Based on formulas (3.9), (3.10), (3.11) from Theorem 3.3, we obtain the first important
result regarding the type of patterns that can be selected by neural system (1.3).

Theorem 3.4. Let us assume that the most unstable mode k0 of system (1.3) satisfies con-
ditions (2.5), (2.6), and at k0 a pair of purely imaginary eigenvalues appears.

If the firing-rate function F is such that F (0) = 0, F ′(0) > 0, F ′′(0) = 0, and F ′′′(0) < 0,
then system (1.3) has a TW and an SW solution for α > α∗, α close to α∗. The SW solution
is unstable. The TW solution is stable.

Proof. First we notice that there exist sigmoid functions F that satisfy the theorem hy-
potheses. For example, if θ = 0, we have from (1.8) F (u) = 2

r tanh
(
ru
2

)
, and thus F (0) = 0,

F ′(0) = 1, F ′′(0) = 0, F ′′′(0) = − r2

2 < 0.
In this case b1 = τ+1

4τ |A|2F ′′′(0) < 0, c1 = 2b1, and therefore c1 + b1 < 0 and c1 − b1 < 0.
By Theorem 3.1, both SWs and TWs bifurcate from the trivial solution at α = α∗, but only
the TWs are stable.

Remark 7. Condition F ′′(0) = 0 on the firing-rate function is quite restrictive. We are
interested in seeing what happens in the general case of F ′′(0) 
= 0 (then the firing-rate

function F as in (1.8) has the second and third derivatives F ′′(0) = r 1−e−rθ

1+e−rθ , F ′′′(0) =
r2(e−2rθ−4e−rθ+1)

(1+e−rθ)2
). In that sense, the coefficients of the normal form (3.5) computed in the

previous section provide us with some useful information. They have indeed a complicated
expression that does not allow us to give a general, theoretical prediction. Nevertheless we
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can use (3.9), (3.10), (3.11) in Matlab, for example, to search for possible parameter values
of g, τ , r, θ, plus coupling J , such that the stable pattern selected in the bifurcation at α∗ is
an SW. The importance of the construction of the normal form (3.5) becomes clear since this
allows us to show that both TW and SW patterns can be found in the neural system (1.3).

Theorem 3.5. Let us assume that the hypotheses in Theorem 3.3 are true.
(i) If b1 < 0 and c1 − b1 < 0, then for α > α∗, sufficiently close to α∗, system (1.3) has

a TW solution that is stable. The velocity of the TW is approximately
(
±

√
gτ−1
τk0

)
, and the

solution can be approximated by

U(x, t) ≈

√
2Ĵ(k0)(α− α∗)

(−b1)
Re
[
Φ0e

i(ω0t±k0x)
]

with Φ0 and ω0 defined by (3.2) and (3.3).
(ii) If c1 + b1 < 0 and c1 − b1 > 0, then for α > α∗, sufficiently close to α∗, system (1.3)

has an SW solution that is stable. The solution can be approximated by

U(x, t) ≈ 2 cos(k0x)

√
2Ĵ(k0)(α− α∗)

(−b1 − c1)
Re
[
Φ0e

iω0t
]
.

Proof. The proof follows immediately from Theorems 3.2 and 3.3.
Example. If we consider an infinite domain (l = ∞), the synaptic coupling J is defined

by (1.6) with a graph, as in Figure 1. For example, for A = 5, B = 4, a = 1, b = 0.3 we have
k0 = 1.2967, Ĵ(0) = 1, Ĵ(k0) = 2.2988, Ĵ(2k0) = 0.9158, and at τ = 4 we obtain α∗ = 0.5438.
We choose the function F as in (1.8) with r = 3 and θ = 0.3. The theory predicts that there
exist values of g such that the stable pattern in neural network (1.3) that occurs through the
Hopf bifurcation is the TW, and there exist values of g such that the SW pattern is stable.
For example, at g = 0.34 both TW and SW bifurcate, but only SW is stable (b1 = −0.0651,
c1 + b1 = −0.0955, c1 − b1 = 0.0347). On the other hand, at g = 0.35 both TW and SW
bifurcate, but only TW is stable (b1 = −0.1283, c1 + b1 = −0.2873, c1 − b1 = −0.0306).

Remark 8. For the infinite domain problem, the normal form is often formally supple-
mented with long wave modulation equations. This is a consequence of the fact that, when
the bifurcation parameter crosses criticality, an entire band of values of the wavenumber k
becomes unstable. Formally, a spatial variable X = εx is introduced and the normal form
variables w, z are functions of both the slow time and the slow space scale. The normal form
becomes

z′ = z(a+ bzz̄ + cww̄) + dzXX + ewXX ,

w′ = w(a+ bww̄ + czz̄) + dwXX + ezXX ,

where d, e are complex parameters which depend on the second derivative of the function Ĵ(k)
at the critical wavenumber [17]. These modulation equations are not relevant in the finite size
domain since the wavenumbers k take only discrete values.

3.2. Numerical results. A good agreement is obtained between the theoretical prediction
(based on the normal form construction) and the numerical simulation of the full nonlinear
system (1.3).
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For numerical simulations we need to consider a finite domain together with periodic
boundary conditions. The synaptic coupling J is defined by (1.7) with a graph as in Figure 2,
and there is only a discrete set of wavenumbers. We choose the gain function F as in (1.8)
with r = 3 and θ = 0.3, or θ = 0, and l = π and a = −0.2, b = 2.5, c = 2 in J . Then k0 = 1,
Ĵ(0) = −0.2, Ĵ(k0) = 1.25, Ĵ(2k0) = 1, and at τ = 4 we obtain α∗ = 1. The simulations
for system (1.3) were run in Xppaut [7] on a network of 100 neurons, with the method of
integration Runge–Kutta RK4 and step size dt = 0.25.

At θ = 0.3, the theory predicts that, for example, at g = 0.45, both TW and SW bifurcate,
but only SW is stable (b1 = −3.4412, c1+b1 = −5.1928, c1−b1 = 1.6895). At g = 0.7, both TW
and SW bifurcate, but only TW is stable (b1 = −3.1939, c1+b1 = −7.7540, c1−b1 = −1.3661).

At θ = 0, for any g > 1/τ = 0.25, we can obtain both SW and TW solutions, but the
stable pattern is always TW.

These results are confirmed by the numerical simulations of the full model (1.3).
Remark 9. In the figures below we represent the space x on the horizontal axis, the time t

on the vertical axis, and the value of the variable u(x, t) by the level of color. The upper
left corner corresponds to the minimum value of x that increases to the right. The value of
time increases in the up-to-down direction. In general, the time is represented after t = 3000
transients. We choose two different sets of initial conditions to illustrate the possible behaviors
in system (1.3).

Let us consider first the case θ = 0.3.
For different values of the parameter g, e.g., g = 0.45 and g = 0.7, before the bifurcation

point, at α = 0.99, by choosing random initial conditions around the origin, the solution
decays in time to zero. After the bifurcation point, at α = 1.01, both TW and SW patterns
can be obtained, depending on the choice of the initial conditions. In order to test which
pattern is stable, we have also run the simulations of system (1.3) in the presence of white
noise added to the first equation and scaled by a factor of 0.001 (see Figures 4(b)–7(b)).

As a consequence we notice that at g = 0.45, the stable pattern is SW (see Figures 4
and 5), and at g = 0.7 the stable pattern is TW (see Figures 6 and 7). This means that for
both sets of initial conditions—that in the absence of noise might produce different patterns—
we obtain the same pattern in the presence of noise, that is, SW at g = 0.45, respectively,
TW at g = 0.7.

At θ = 0 the stable pattern obtained as a result of added noise is always TW. We present
the numerical results in Figures 8 and 9 for g = 0.45, and in Figures 10 and 11, respectively,
for g = 0.7.

3.3. Summary. We have shown that with strong adaptation, gτ > 1, spatio-temporal
patterns bifurcate from the uniform resting state. Depending on the position of the rest state
relative to the inflection point of the sigmoid nonlinearity, we can get either TWs or standing
oscillations. The latter were not found in the model of Hansel and Sompolinsky (or at least
they were not discussed). Ermentrout [10] found both TWs and SWs in the Wilson–Cowan
equations but did not compute the normal forms needed to specify which were stable.

The biological interpretation of the TWs is fairly clear. There are many examples of
such TWs in experimental preparations. These are reviewed and their possible functional role
is discussed in [13]. SWs are more difficult to find in experimental preparations. However,
suppose that we view the model in the manner of Hansel and Sompolinsky, where the spatial
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Figure 4. (a) SW is the pattern obtained at g = 0.45, θ = 0.3, and set 1 of initial conditions. (b) In the
presence of noise, SW is preserved.

Figure 5. (a) SW is the pattern obtained at g = 0.45, θ = 0.3, and set 2 of initial conditions. (b) It is
stable since in the presence of noise, SW is preserved.

variable x represents the orientation tuning of a cell. Suppose that the critical wavenumber
is 1 so that the SW solution has the form cosωt cos 2πx/L. This represents two groups of cells
whose preferred orientations are mutually orthogonal; when one group is at its maximum,
the other is at its minimum. Solutions of this form have been posited as neural analogues of
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Figure 6. (a) TW is the pattern obtained at g = 0.7, θ = 0.3, and set 1 of initial conditions. (b) In the
presence of noise, TW is preserved.

Figure 7. (a) SW is the pattern obtained at g = 0.7, θ = 0.3, and set 2 of initial conditions. (b) It is
unstable since in the presence of noise, SW is replaced by TW.

perceptual reversals [23] and binocular rivalry [18].

4. Spatial patterns obtained by a loss of stability at zero eigenvalue. The case when
the determinant vanishes first and the trace is still negative is analyzed in this section. It
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Figure 8. TW is the pattern obtained at g = 0.45, θ = 0, and set 1 of initial conditions.

Figure 9. (a) SW is the pattern obtained at g = 0.45, θ = 0, and set 2 of initial conditions. (b) It is
unstable since in the presence of noise, SW is replaced by TW.

corresponds to a choice of parameters of system (1.3) satisfying the following conditions:

g < 1/τ and α∗ =
g + 1

Ĵ(k0)
.(4.1)

At the most unstable mode k0 we have det(L̂(k0)) = 0 and Tr(L̂(k0)) < 0; therefore the
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Figure 10. TW is the pattern obtained at g = 0.7, θ = 0, and set 1 of initial conditions.

Figure 11. (a) SW is the pattern obtained at g = 0.7, θ = 0, and set 2 of initial conditions. (b) It is
unstable since in the presence of noise, SW is replaced by TW.

associated ODE system dξ
dt = L̂(k0)ξ has a simple zero eigenvalue with eigenvector Φ0 defined

by L̂(k0)Φ0 = 0, that is, for example, Φ0 = (1, 1)T . Let us consider also the eigenvector Ψ0 of
the adjoint equation L̂(k0)

TΨ0 = 0 such that Φ0 ·Ψ0 = 1. Then we have Ψ0 = 1
1−gτ (1,−gτ)T .

The pattern that results through the bifurcation at a simple zero eigenvalue oscillates
with respect to space position due to the unstable mode k0, but it is independent of time (the
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details of the construction of the normal form are given in Appendix A). We call this pattern
steady state or stationary pattern.

Theorem 4.1. If g < 1/τ , in the neighborhood of the bifurcation value α∗ = g+1

Ĵ(k0)
, system

(1.3) has the normal form

z′ = η1z + Λ|z|2z(4.2)

with η1 = α Ĵ(k0)−(g+1)
1−gτ and coefficient

Λ =
1

2(1 − gτ)

[
F ′′′(0) − 3F ′′(0)2

]

+
F ′′(0)2

(1 − gτ)(g + 1)
·
[

Ĵ(k0)

Ĵ(k0) − Ĵ(0)
+

Ĵ(k0)

2[Ĵ(k0) − Ĵ(2k0)]

]
.(4.3)

Theorem 4.2. In the hypotheses of Theorem 4.1, the SS solution that occurs about the
bifurcation point α∗ = g+1

Ĵ(k0)
has the following first order approximation:

SS : u(x, t) = v(x, t) ≈ 2 cos(k0x)

√
α Ĵ(k0) − (g + 1)

(1 − gτ)(−Λ)
.(4.4)

SS is stable if and only if Λ < 0 and α > α∗.
Proof. In polar coordinates z = r eiθ1 , the normal form equivalent to (4.2) is r′ =

r(η1 + Λr2), θ′1 = 0. A nonzero solution exists only in the case η1Λ < 0 and it is r̃ =
√

η1

−Λ
and θ1 a constant.

The first order approximation of the nontrivial solution U(x, t) is then

U(x, t) ≈ z(t)Φ0e
ik0x + z(t)Φ0e

−ik0x = 2Φ0Re
[
z(t) eik0x

]
= 2

√
η1

−Λ
Φ0 cos(k0x+ θ1) .

Since Φ0 = (1, 1)T , we obtain exactly (4.4) up to a translation in space.
The stability condition comes from h′(r̃) = −2η1 < 0, where h(r) = r(η1 + Λr2), together

with the existence condition η1Λ < 0.
We note that if the parameter θ in the firing-rate function F from (1.8) is θ = 0, we obtain

F ′′(0) = 0, F ′′′(0) < 0. Then Λ < 0 and the pitchfork bifurcation is supercritical: a (stable)
stationary pattern occurs for α > g+1

Ĵ(k0)
.

5. Spatio-temporal patterns obtained by a loss of stability at a double-zero eigenvalue.
In the previous sections, we analyzed bifurcation to TWs and SWs when gτ > 1 (strong
adaptation) and to stationary patterns when gτ < 1 (weak adaptation). The former (resp.,
latter) patterns occur when the trace becomes positive at a lower (resp., higher) value of α
than at which the determinant becomes negative. We note that, in both cases, the normal
form is no longer defined in the limit as gτ → 1; for the Hopf case, ω0 → 0; and in the simple
zero eigenvalue case, the coefficients of the normal form become unbounded.

An obvious question is how these possible patterns in system (1.3) interact, that is, how
the system’s behavior changes from TW or SW to a stationary pattern or vice versa. The
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transition between spatio-temporal and only spatial patterns can be analyzed by a study of the
case when the trace and the determinant of the linearized system vanish simultaneously. Then
at the most unstable mode we obtain a double-zero eigenvalue. The double-zero eigenvalue
case is approached from two different directions: one in which we already have a zero eigenvalue
and now obtain another (that is, coming from the domain of spatial/stationary patterns), and
another in which we have a pair of purely imaginary eigenvalues ±iω0 that collide (that is,
coming from the domain of spatio-temporal patterns).

As a result of the above remarks, the aim of the present section is to study behavior in
system (1.3) at the transition between stationary states and TWs/SWs. Therefore we assume
that at the most unstable mode k0 we have Tr(L̂(k0)) = det(L̂(k0)) = 0. This is true when
the parameters satisfy the conditions

g∗ = 1/τ and α∗ =
1 + 1/τ

Ĵ(k0)
.(5.1)

Remark 10. In the following we fix the value of τ and take α and g as bifurcation parame-
ters. The bifurcation values around which we will consider the singular perturbation analysis
are α∗ and g∗. Therefore in the entire section 5, the operator L0 defined by (2.2), and the
matrix L̂(k) defined by (2.3) for all k, where it makes sense, will be evaluated at α = α∗ and
g = g∗.

At ±k0 the associated ODE dξ
dt = L̂(k0)ξ has a double-zero eigenvalue. For all other values

k 
= ±k0 we have Tr(L̂(k)) < 0 and det(L̂(k)) > 0, and the corresponding eigenvalues have
negative real part.

Let us construct the (generalized) eigenvectors of L̂(k0) and L̂(k0)
T as follows:

Φ0 =
1√
τ

(
1
1

)
, Ψ1 =

1√
τ

(
1
−1

)
, Φ1 =

√
τ

(
1
0

)
, Ψ0 =

√
τ

(
0
1

)
,(5.2)

according to the conditions

{
L̂(k0)Φ0 = 0 , L̂(k0)Φ1 = Φ0 , L̂(k0)

TΨ1 = 0 , L̂(k0)
TΨ0 = Ψ1 ,

Φ0 · Ψ0 = Φ1 · Ψ1 = 1 , Φ0 · Ψ1 = Φ1 · Ψ0 = 0 .
(5.3)

Around the double-zero bifurcation point, the first order approximation of the solution of
nonlinear system (1.3) is given by its projection on the generalized eigenspace. That means
U can be approximated by

U(x, t) ≈ 2Re
[
z(t) Φ0 e

ik0x + w(t) Φ1 e
ik0x
]
,(5.4)

where z, w are time-dependent functions that satisfy the ODE system with real coefficients
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{
z′ = w ,

w′ = ζ1z + ζ2w +A|z|2z + Cz[ z w + z w ] +D|z|2w ,
(5.5)

called the normal form for the double-zero (Takens–Bogdanov) bifurcation with O(2)-symmetry
[6].

Indeed the linear part of system (5.5) has two zero eigenvalues when the parameters
ζ1 = 0 and ζ2 = 0. That is why we call this type of bifurcation “double-zero” or “Takens–
Bogdanov.” The additional name of “O(2)-symmetry” comes from the fact that system (5.5)
exhibits symmetry under both rotations and reflections. This means that the vector field
G(z, w) (the right-hand side of (5.5)) commutes with the rotation z → eiθz for any angle
θ ∈ R, i.e., we have G(eiθz, eiθw) = eiθG(z, w), and it also commutes with reflection z → z,
i.e., G(z, w) = G(z, w). Therefore the system shows no directional preference and we say that
it is isotropic. The technical terminology is that the vector field G, and therefore system (5.5),
is covariant (or equivariant) with respect to the group O(2) of rotations and reflections.

Recall that for (1.3) we seek spatially periodic solutions of the form ψk e
ikx + cc, where cc

stands for the complex conjugate of the previous term.
Since

[
ψk e

ik(x+d) + cc = eikdψk e
ikx + cc

]
, a translation in space [x → x+d] will be associ-

ated with a rotation of the time-dependent vector ψk. Furthermore, a reflection in space [x →
(−x)] is associated with a reflection of the vector ψk since

[
ψk e

ik(−x) + cc = ψk e
ikx + cc

]
. We

note that the vector field of original system (1.3) satisfies properties G(u(x+d, t), v(x+d, t) ) =
G(u, v)(x + d, t) and G(u(−x, t), v(−x, t) ) = G(u, v)(−x, t), so we say that system (1.3) is
isotropic.

System (1.3) has at least one solution that preserves the symmetry with respect to both
rotations, u(x + d, t) = eikdu(x, t), v(x + d, t) = eikdv(x, t), and reflection u(−x, t) = u(x, t),
v(−x, t) = v(x, t), and this is the trivial solution u(x, t) = v(x, t) ≡ 0. For different values of
parameters, other solutions may exist which do not necessarily preserve the symmetry. We
say that the symmetry in the system is broken and call the phenomenon that leads to this
situation symmetry breaking bifurcation. The above-mentioned correspondence between (1.3)
and (5.5), together with formula (5.4), allows us to work with system (5.5) and detect the
solutions that break its symmetry, rather than working with (1.3).

Dangelmayr and Knobloch present in [6] a detailed analysis of the existence and stability
properties for five types of possible solutions of system (5.5). These are the trivial solution/T,
steady state/SS, traveling wave/TW, standing wave/SW, and modulated wave/MW. De-
pending on the sign of the coefficient A, and then the signs of D and M = 2C +D, together
with some nondegeneracy conditions based on the value of the ratio D/M , different regions
in the parameter plane (ζ1, ζ2) were identified, and the corresponding bifurcation diagrams
were drawn. That is, as a dependence on the values of parameters, all possible qualitatively
different behaviors in the system are described.

As an example, TWs break the symmetry with respect to reflection and keep the symmetry
to rotations. On the other hand, SWs break the symmetry with respect to rotations but keep
the symmetry to reflection (see below).

We summarize in the following the basic ideas followed by Dangelmayr and Knobloch [6] in
their analysis. Moreover, in a similar approach to section 3 we give a geometric interpretation
of the solutions SS, TW, SW, and MW.
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First we write z and w in polar coordinates and transform system (5.5) accordingly. Since
w = z′ we need only the polar representation of z, say z(t) = r eiφ. Then by the separation of
the real and imaginary parts, system (5.5) is equivalent to{

r′′ − r(φ′)2 − r(ζ1 +Ar2) − r′ (ζ2 +Mr2) = 0 ,

r φ′′ + 2r′φ′ − r φ′ (ζ2 +Dr2) = 0 .
(5.6)

The trivial solution T corresponds to the solution r = 0 and exists for all parameter values.
Therefore z(t) = w(t) = 0 and from (5.4) we have U(x, t) ≡ 0. The solution is independent of
time and position in space.

The linearization of (5.6) around r = 0, φ′ = 0, e.g., take r = 0 + ξ, φ′ = 0 + η with ξ, η
small, is the equation ξ′′− ζ2 ξ′− ζ1 ξ = 0. The eigenvalues have negative real part if and only
if ζ1 < 0 and ζ2 < 0. The stability of the trivial solution T is lost at ζ1 = 0 through a zero
eigenvalue when other constant solutions r0 appear (with φ′ still zero) (we denote the line
ζ1 = 0 in the parameter space (ζ1, ζ2) by L0; see Figure 12), or at ζ2 = 0 and ζ1 < 0 (see the
half-line H0 in Figure 12) through a pair of purely imaginary eigenvalues ±iω0, when a small
amplitude periodic solution r = r(t) appears with φ′ still zero. This case will correspond to
an SW solution. We mention that the O(2)-symmetry of the system forces both TW and SW
solutions to appear simultaneously from the trivial solution.

The SS corresponds to solution of (5.6) constant on the radial direction, r(t) = r0, and
with no orbital motion φ′ = 0. This means that r0 must satisfy the condition ζ1 + Ar20 = 0
and that, obviously, it does not exist for all parameter values. In order to get an SS we need
Aζ1 < 0 so that r0 =

√
−ζ1/A. Moreover, φ′ = 0 implies φ(t) = ω, constant, and z(t) = r0 e

iω,
w(t) = z′(t) = 0. The approximating formula (5.4) implies U(x, t) = 2r0Φ0 cos(k0x + ω) =

2
√
− ζ1

A Φ0 cos(k0x+ ω), or up to a translation in space,

U(x, t) ≈ 2

√
−ζ1
A

cos(k0x) Φ0 .(5.7)

The SS pattern consists of oscillations with respect to the position in space x, and it is
independent of time; therefore it forms stationary stripes (see Figure 19 for an example).

The linearization of (5.6) around r = r0, φ
′ = 0, e.g., take r = r0 + ξ, φ′ = 0 + η with

ξ, η small, is the system of equations ξ′′ − (ζ2 +Mr20) ξ
′ − 2Ar20 ξ = 0, η′ − (ζ2 +Dr20)η = 0,

i.e., ξ′′ − (ζ2 − M
A ζ1)ξ

′ + 2ζ1ξ = 0 and η′ − (ζ2 − D
A ζ1)η = 0. The only possible bifurcations

that result in appearance/disappearance of time-independent solutions correspond to a zero
eigenvalue. That can happen for ζ1 = 0 (we have already mentioned this case of a new SS
branch solution) or for Aζ2 = Dζ1, Aζ1 < 0 (see the half-line Lm in Figure 12) when a new
φ′ constant and nonzero solution is created, say φ′ = ω0 (see the TW case).

The TW corresponds to a solution of (5.6) constant on the radial direction, r(t) = r0,
but with orbital motion with constant angular frequency φ′ = ω0. This means that r0 and ω0

must satisfy the conditions ζ2 + Dr20 = 0 and ω2
0 = −(ζ1 + Ar20) and TW exists only in the

parametric regime Dζ2 < 0, A
Dζ2 − ζ1 > 0. We have r0 =

√
−ζ2/D and ω0 = ±

√
Aζ2/D − ζ1;

then z(t) = r0 e
i(ω0t+ω), w(t) = z′(t) = ir0ω0 e

i(ω0t+ω) and from formula (5.4), the TW
equation, up to a translation in space, is

U(x, t) ≈ 2

√
−ζ2
D

Re
[
(Φ0 + iω0Φ1) e

i(ω0t+k0x)
]
,(5.8)
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with

ω0 = ±
√
A

D
ζ2 − ζ1 .(5.9)

The TW solution changes with respect to time and position in space according to the TW
coordinate ξ = ct − x, where c = ω0/k0 is the wave velocity; therefore the pattern is formed
by nonstationary stripes, i.e., stripes with finite slope (see Figure 16 for an example). Equa-
tion (5.8) shows that TW solutions break reflection symmetry but respect the symmetry to
rotations.

The MW corresponds to a periodic solution r(t) of (5.6) and a nonzero angular velocity φ′.
This means that we have oscillations in the radial direction and orbital motion as well. The
MWs bifurcate from a TW through another Hopf bifurcation that introduces a new frequency
in the solution. Therefore the MW pattern is characterized by two different frequencies, one
corresponding to the orbital motion and the other to radial oscillations (not shown in this
paper).

The SW corresponds to a periodic solution r(t) of (5.6) and φ′ = 0. This means that
we have oscillations in the radial direction and no orbital motion. SWs can occur as os-
cillations about the trivial solution or about an SS. From (5.6), r(t) satisfies the equa-
tion r′′ − r′ (ζ2 + Mr2) − r(ζ1 + Ar2) = 0 and φ = ω is constant. Then z(t) = r(t) eiω,
w(t) = z′(t) = r′(t) eiω, and (5.4) implies, up to a translation in space,

U(x, t) ≈ 2
[
r(t) Φ0 + r′(t) Φ1

]
cos(k0x) ,(5.10)

where r(t) is the periodic solution of period, say, 2π/ω0 of the ODE

r′′ − r′ (ζ2 +Mr2) − r(ζ1 +Ar2) = 0 .(5.11)

The SW solution oscillates with respect to time with frequency ω0 for any fixed position in
space and oscillates with respect to space with frequency k0 for any fixed t (see Figure 17
for an example of the SW pattern). Equation (5.10) shows that SW solutions break rotation
symmetry but respect the symmetry to reflection.

Remark 11. We summarized above the properties of possible patterns in a system with
O(2)-symmetry. Let us describe now the type of bifurcation diagram [6] that we will need
later in our study. It corresponds to A < 0 with D < 0, M < 0, and 0 < D/M < 1

2 . The
parameter plane (ζ1, ζ2) is divided into seven regions (see Figure 12) by the following curves:
L0 : ζ1 = 0, H0 : [ζ2 = 0, ζ1 < 0], LM : [Aζ2 = Mζ1, ζ1 > 0], SLS : [5Aζ2 = 4Mζ1, ζ1 > 0],
SNS2 : [Aζ2 ≈ 0.74Mζ1, ζ1 > 0], Lm : [Aζ2 = Dζ1, ζ1 > 0]. A bifurcation producing SS
solutions occurs along L0, and a Hopf bifurcation, from the trivial solution T , of a TW and
SW1 occurs along H0. By crossing LM , SLS , SNS2, and Lm secondary bifurcations occur:
along SNS2 we have a saddle-node for two SWs, SW1 and SW2; along LM an SW oscillation
SW3 about a nontrivial SS bifurcates; then SW3 and SW2 undergo a global bifurcation and
join smoothly to each other along SLS ; and TW bifurcates from an SS along Lm.

Since our goal is to study how the SS, TW, and SW solutions occur in the neural system
(1.3) and how they interact, that is, how the patterns change as the parameters α and g vary
about α∗ and g∗, the next necessary step in the analysis is to construct the normal form for
the double-zero bifurcation and determine its coefficients. That is the aim of the next section.
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Figure 12. The bifurcation diagram corresponding to system (5.5) with A < 0, D < 0, M < 0, and
0 < D/M < 1/2.

5.1. Double-zero bifurcation with O(2)-symmetry and pattern formation. In this sec-
tion we construct the normal form for the double-zero bifurcation with O(2)-symmetry for
neural system (1.3) (see Appendix A for details) and delineate the regions in the parameter
space that corresponds to different possible scenarios.

We obtain the following results.
Theorem 5.1. For any positive τ , in the neighborhood of the bifurcation values α∗ = 1+1/τ

Ĵ(k0)

and g∗ = 1/τ , system (1.3) has the normal form (5.5) with ζ1 = α Ĵ(k0)−(g+1)
τ , ζ2 = α Ĵ(k0)−

(1 + 1
τ ), and the coefficients

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
A = 1

2τ2 [F ′′′(0) − 3F ′′(0)2] + F ′′(0)2

τ(τ+1) ·
[

Ĵ(k0)

Ĵ(k0)−Ĵ(0)
+ Ĵ(k0)

2 [ Ĵ(k0)−Ĵ(2k0) ]

]
,

C = (τ + 1)A+ F ′′(0)2

τ(τ+1) ·
Ĵ(k0)

Ĵ(k0)−Ĵ(0)
,

D = (τ + 1)A+ F ′′(0)2

τ(τ+1) ·
Ĵ(k0)

Ĵ(k0)−Ĵ(2k0)
.

Theorem 5.2. In the hypotheses of Theorem 5.1, the SS, TW, and SW solutions that occur
about the bifurcation point α∗ = 1+1/τ

Ĵ(k0)
and g∗ = 1/τ are approximated by the following

expressions:

SS : u(x, t) = v(x, t) ≈ 2

τ
cos(k0x)

√
α Ĵ(k0) − (g + 1)

(−A)
,

TW :

⎧⎪⎪⎨
⎪⎪⎩
u(x, t) ≈ [ cos(ω0t+ k0x) − τ ω0 sin(ω0t+ k0x) ]

√
2[α Ĵ(k0)−(1+1/τ)]

(−D) τ ,

v(x, t) ≈ cos(ω0t+ k0x)

√
2[α Ĵ(k0)−(1+1/τ)]

(−D) τ ,

SW :

{
u(x, t) ≈ 2√

τ
[ r(t) + τ r′(t) ] cos(k0x) ,

v(x, t) ≈ 2√
τ
r(t) cos(k0x) ,
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Figure 13. The bifurcation diagram corresponding to system (1.3) about (α∗, g∗) when θ = 0 in F .

where r(t) is the periodic solution of

r′′ − r′
[
[α Ĵ(k0) − (1 + 1/τ)] + (2C +D)r2

]
− r

[
α Ĵ(k0) − (g + 1)

τ
+Ar2

]
= 0

and

ω0 = ±
√
A

D
[α Ĵ(k0) − (1 + 1/τ)] − 1

τ
[α Ĵ(k0) − (g + 1)] .

Proof. The above formulas result directly from (5.7), (5.8), and (5.10) with Φ0 and Φ1

defined by (5.2) and ζ1, ζ2 as in Theorem 5.1.
Theorem 5.3. Let us assume that the most unstable mode k0 of system (1.3) satisfies con-

ditions (2.5), (2.6), and at k0 a double-zero eigenvalue occurs.
If the firing-rate function F is such that F (0) = 0, F ′(0) > 0, F ′′(0) = 0, and F ′′′(0) < 0,

then about α∗ = 1+1/τ

Ĵ(k0)
, g∗ = 1/τ , system (1.3) has the bifurcation diagram from Figure 13

(equivalent to Figure 12). The curves that divide the parametric plane (α, g) into seven regions
have the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L0 : α Ĵ(k0) = g + 1 ,

H0 : α Ĵ(k0) = 1 + 1/τ , g > 1/τ ,

LM : α Ĵ(k0) = τ+1
2τ+3(3g + 2) , g > 1/τ ,

SLS : α Ĵ(k0) = τ+1
7τ+12(12g + 7) , g > 1/τ ,

SNS2 : α Ĵ(k0) ≈ τ+1
61τ+111(111g + 61) , g > 1/τ ,

Lm : α Ĵ(k0) = (τ + 1)g , g > 1/τ .

(5.12)

Proof. Since F ′′(0) = 0 and F ′′′(0) < 0, we have A < 0, C = D = (τ + 1)A < 0 and then
M < 0, D/M = 1

3 
= 1
2 ,

3
5 , 0.7, 0.74, 3

4 ,
4
5 , 1 (the nondegeneracy conditions). This is exactly

the case described by Figure 12. With the formulas provided by Theorem 5.1 we obtain
immediately (5.12).
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Figure 14. Along the bifurcation line L0 we have (a) the trivial solution T in region (1), at α = 0.95,
g = 0.2, and (b) SS in region (2), at α = 0.98, g = 0.2. The same set of initial conditions Ic1 is used.

5.2. Numerical results. We run the numerical simulations for the same hypotheses as
in section 3.2. The full system (1.3) is simulated with synaptic coupling (1.7) that has the
coefficients a = −0.2, b = 2.5, c = 2; the gain function F is chosen with r = 3 and θ = 0, and
the parameter τ is fixed at τ = 4. The horizontal axis represents space, x, the vertical axis
corresponds to time, t, and the variable u(x, t) is plotted by the change in the level of color.

Therefore we have F ′′(0) = 0, k0 = 1, Ĵ(0) = −0.2, Ĵ(k0) = 1.25, Ĵ(2k0) = 1, and
α∗ = 1, g∗ = 0.25. The coefficients in the normal form are A = −0.1406, C = D = −0.7031,
and then M = −2.1094, D/M = 1

3 . From Theorem 5.3 we obtain L0 : α = 4
5(g + 1),

H0 : [α = 1, g > 0.25], LM : [α = 12
11(g + 2

3), g > 0.25], SLS : [α = 6
5(g + 7

12), g > 0.25],
SNS2 : [α = 444

355(g + 61
111), g > 0.25], Lm : [α = 4g, g > 0.25].

We choose parameters in different regions.
Along the bifurcation line L0 we take α = 0.95, g = 0.2 in region (1) and obtain the trivial

solution T, and take α = 0.98, g = 0.2 in region (2) and obtain the SS pattern (Figure 14).
The same set of initial conditions, say Ic1, is considered in both cases. This set of initial
conditions will be used later for other parameter values.

Along the bifurcation line H0 let us take α = 0.98, g = 0.26 in region (1) (Figure 15), and
α = 1.004, g = 0.26 in region (7). We consider two distinct sets of initial conditions, Ic1, the
same as above, and Ic2. By crossing H0 the patterns that bifurcate from T are different: TW
for Ic1 (Figure 16), and SW for Ic2, but this is unstable (see Figures 17 and 18).

Along the bifurcation line Lm we consider α = 1.08, g = 0.26 in region (2) with different
initial conditions Ic1 and Ic2. An SS pattern is selected (Figure 19). At α = 1.03, g = 0.26
in region (3) we obtain a TW pattern for Ic1, and an SS pattern for Ic2 (Figure 20). The SS
pattern is unstable, as we see when we introduce in the system white noise scaled by a factor
nz = 0.001 (Figure 21).
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Figure 15. At α = 0.98, g = 0.26 in region (1), close to the bifurcation line H0, we obtain T for different
sets of initial conditions. (a) Ic1 will give rise in region (7) to a TW. (b) Ic2 will give rise in region (7) to an
unstable SW.

Figure 16. The TW pattern obtained for Ic1, at α = 1.004, g = 0.26 in region (7).

We consider α = 1.0122, g = 0.26 in region (4), between SNS2 and SLS , and α = 1.01122,
g = 0.26 in region (5), between SLS and LM . For different initial conditions Ic1, Ic2, and Ic3,
patterns such as TW, SW, and SS, respectively, can occur, but the last two are destabilized
in time to a TW. We present, for example, the numerical results for α = 1.0122, g = 0.26.
Starting with initial condition Ic1 we obtain a TW pattern (Figure 22); starting with Ic2, an
SW pattern is formed, but it destabilizes in time to a TW (Figure 23); starting with Ic3, an
SS pattern is formed, but it destabilizes in time to a TW (Figure 24).

Similar pictures are obtained for α = 1.01122, g = 0.26 in region (5).
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Figure 17. The SW pattern obtained for Ic2, at α = 1.004, g = 0.26 in region (7). This pattern is unstable.

Figure 18. The SW pattern obtained at α = 1.004, g = 0.26 for Ic2 is destabilized to TW in the presence
of noise.

At α = 1.009, g = 0.26 in region (6) the patterns that might occur are TW and SW, but
always SW is destabilized in time to a TW (Figure 25).

Remark 12. There is a nice agreement between the theoretical and numerical results.
Numerically it is impossible to detect a pattern that has all the corresponding eigenvalues
positive, i.e., it is completely unstable (as one of the SWs in regions (4) and (5) in the
bifurcation diagram, or the SS in region (6)). Nevertheless the other patterns that present
stability at least in one direction can be visualized in the numerical simulation. Of course,
eventually they will approach the only stable solution, i.e., TW.

Remark 13. We did not complete the analysis of system (1.3). A direction for future
research is to investigate other possible cases (bifurcation diagrams) that might occur for
different values of the parameter θ in the function F . We are especially interested in the case
when the SW pattern is stable, and furthermore in the case that can give rise to an additional
pattern not studied here, the MW pattern. These situations correspond to different kinds of



220 RODICA CURTU AND BARD ERMENTROUT

Figure 19. The SS pattern obtained at α = 1.08, g = 0.26 in region (2), close to the bifurcation line Lm

for initial conditions (a) Ic1 and (b) Ic2.

Figure 20. At α = 1.03, g = 0.26 in region (3) we obtain (a) TW for Ic1 and (b) SS for Ic2 (this pattern
is unstable).

bifurcation diagrams listed in [6]. Nevertheless, we have seen how to effect the transition from
stationary patterns to TWs by varying the degree of adaptation.

6. Conclusions. We have analyzed a rate model with nonlinear sigma-shaped gain func-
tion for two homogeneous populations of neurons, one excitatory that displays adaptation,
and one inhibitory. The coupling is characterized by local excitation and long range (lateral)
inhibition, and the adaptation is assumed to be linear. When the strength of adaptation is
sufficiently large (or the adaptation is slow enough) temporal oscillations occur in the system.
In general they form TWs, but we were able to show that it is possible, when the threshold
is sufficiently high, to obtain also SWs. These are spatial oscillations with frequency k0 and
temporal oscillations with frequency ω0 that can be computed as functions of parameters τ ,
g, and the strength of the coupling α. Numerical simulations indicate that for a fixed adap-
tation time constant τ , the SW pattern occurs for an intermediate value of the strength g of
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Figure 21. The SS pattern obtained at α = 1.03, g = 0.26 for Ic2 is destabilized to TW in the presence of
noise.

Figure 22. At α = 1.0122, g = 0.26 in region (4), starting with Ic1 initial conditions a TW pattern is formed.

adaptation, in a relatively small regime. When g is increased, the local activity is disrupted
and starts to travel along the network, resulting in a TW pattern. Our condition for delin-
eating the onset of stationary versus time-dependent patterns is identical to that in Hansel
and Sompolinsky; they distinguish the strong and weak adaptation cases in their equations
(13.80), (13.81).

We have also investigated the transition between stationary patterns and spatio-temporal
patterns in the neural network, therefore explaining the patterns found in the numerical simu-
lations of the full model. We did not complete the analysis of system (1.3). The general theory
predicts, under certain conditions, the existence of a different spatio-temporal pattern, MWs
characterized by two different temporal frequencies in addition to the spatial frequency k0.
The question of whether or not there are parameters regimes in the neural models in which
there are MWs remains open.

We have made an assumption that there is slow negative feedback in the form of additive
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Figure 23. At α = 1.0122, g = 0.26 in region (4), starting with Ic2 initial conditions, an SW pattern is
formed. Nevertheless it is destabilized in time to a TW.

adaptation. However, this is not the only way to get slow modulation of excitation. Indeed,
an alternate model could use synaptic depression. If we assume that such depression occurs
for excitatory-excitatory and excitatory-inhibitory synapses, then in (1.3) we delete the −gv
term and replace α by αv. The v equation has the form

τ
dv

dt
= q(u) − v,

where q(u) is a monotone decreasing function of u. Thus, if u goes up, then v tends to zero
corresponding to the depression of the synaptic activation. For low values of u, q(u) tends
to 1 so that the network is fully poised to fire. The linear stability analysis will be more
complicated as will the computation of the normal forms, but we expect little change in
the qualitative behavior. Other slow negative feedback mechanisms such as accumulation of
intracellular sodium (leading to a reduction in the excitability) could also be modeled and
would result in qualitatively similar behavior and the same basic bifurcation picture.
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Figure 24. At α = 1.0122, g = 0.26 in region (4), starting with Ic3 initial conditions, an SS pattern is
formed. Nevertheless it is destabilized in time to a TW.
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Figure 25. At α = 1.009, g = 0.26 in region (6), an SW pattern may form, but it destabilizes in time to a
TW.
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We close with some speculations on the possible functional implications of the coalescence
of the Hopf bifurcation and the SS bifurcation (that is, the Takens–Bogdanov bifurcation).
We first point out that the original motivation of the HS model was to explain nonlinear
amplification of orientation tuning. Assume that the domain is the circle so that a point x
represents a specific orientation. Suppose that the time constant τ of the adaptation is small
so that adaptation works quickly. Then, as we saw above, the only bifurcation is to stationary
spatial patterns. As in section 3.3, let k = 1 be the critical wavenumber. This means that
there will be a local peak at a point xm; weak inputs will move that peak [8] so that it is
pinned at a specific orientation. Thus, the network amplifies weak inputs to produce a large
nonlinear response to a specific orientation. This is the normal state of the network. In
various pathological situations, however, the network can be damaged so that this behavior
is disrupted. In a recent paper, Prole, Lima, and Marrion showed that acidosis (increased
pH) that occurs during epilepsy or stroke increased the time constant of both activation and
inactivation of the slow voltage-dependent potassium current Km [21]. This current is one of
several that are responsible for frequency adaptation in cortical neurons. In the context of
our simple model, this is equivalent to increasing τA, the time constant of adaptation. As we
have shown, increasing τA leads to a transition from the zero eigenvalue stationary-state case
to the oscillatory Hopf case. Waves have been associated with epileptic behavior in previous
models (see, e.g., [20]).

The present model is for either a ring or a line of one-dimensional cortex. The actual cortex
is better represented as a sheet. In this case, the dimensions of the null-space of the resulting
linearized system can be much larger than studied here. For example, in the stationary
pattern case, there can be stripe patterns and square patterns which bifurcate from rest. The
selection between these patterns depends on the nonlinear terms in much the same way as the
selection between SWs and TWs in the present paper. Two-dimensional models of cortical
networks were used to explain the patterns observed during visual hallucinations [12]. Recently
Bressloff and his collaborators [1] have extended the two-dimensional models to incorporate
spatial connectivity and orientation selectivity in these models. Bifurcation methods should
remain an important technique for the analysis of patterns in increasingly more realistic neural
models.

Appendix A.

Hopf bifurcation and pattern formation. In the case of a pair of purely imaginary eigen-
values, system (2.1) can be written in the equivalent form

L0U = (α− α∗) (J ∗ u , 0)T +B(U,U) + C(U,U,U) + · · ·(A.1)

with

B(U,U) =

(
F ′′(0)

2
(αJ ∗ u− gv)2, 0

)T

, C(U,U,U) =

(
F ′′′(0)

6
(αJ ∗ u− gv)3, 0

)T

.

A good scaling for the bifurcation parameter α and the solution U we are seeking is α−α∗ =
ε2 γ, γ ∈ R, and
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U(x, t) = ε U0(x, t) + ε2 U1(x, t) + ε3 U2(x, t) + · · ·

= ε

(
u0

v0

)
+ ε2

(
u1

v1

)
+ ε3

(
u2

v2

)
+ · · · .(A.2)

With the notation E = (1, 0)T , (A.1) and (A.2) imply

εL0U0 + ε2L0U1 + ε3L0U2 + O(ε4) = ε2E
F ′′(0)

2
[α∗ J ∗ u0 − gv0]

2

+ ε3E

[
γ (J ∗ u0) + F ′′(0)[α∗ J ∗ u0 − gv0][α

∗ J ∗ u1 − gv1] +
F ′′′(0)

6
[α∗ J ∗ u0 − gv0]

3

]
+ O(ε4);

(A.3)

therefore the first equation to be solved is L0U0 = 0.
The nullspace of L0 corresponding to the center manifold is four-dimensional with the

basis
{
Φ0 e

i(ω0t±k0x),Φ0 e
−i(ω0t±k0x)

}
, and U0 can be written as

U0 = z1 Φ0 e
i(ω0t+k0x) + w1 Φ0 e

i(ω0t−k0x) + z1 Φ0 e
−i(ω0t+k0x) + w1 Φ0 e

−i(ω0t−k0x) .

Since in (A.3), L0U0 = O(ε), z1 and w1 are ε-dependent and we can write them as z1 = z1(T )
and w1 = w1(T ) with T = ε2t a slow time. These imply the singular perturbation expansions

z1(T ) = z1(T )|ε=0 + z′1(T )|ε=0 ε
2t+

1

2
z′′1 (T )|ε=0 (ε2t)2 + · · · ,

w1(T ) = w1(T )|ε=0 + w′
1(T )|ε=0 ε

2t+
1

2
w′′

1(T )|ε=0 (ε2t)2 + · · · .

For simplicity we introduce the notation z2 = z1(T )|ε=0, ż2 = z′1(T )|ε=0, w2 = w1(T )|ε=0,
ẇ2 = w′

1(T )|ε=0. The dot shows the derivation of z2 and w2 with respect to the slow time T .
We obtain then z1 = z2 + ż2 ε

2t+ O(ε4), w1 = w2 + ẇ2 ε
2t+ O(ε4), and

U0 =

[
z2 Φ0 e

i(ω0t+k0x) + w2 Φ0 e
i(ω0t−k0x)

+ z2 Φ0 e
−i(ω0t+k0x) + w2 Φ0 e

−i(ω0t−k0x)

]
+ O(ε2) .

Remark 14. The calculation of the normal form is cumbersome (see [5] for details of
proofs). The normal form results by solving for U1 and U2 in the corresponding functional
equations implied by (A.3), and it is

{
ż2 = z2 ( ã+ b z2 z2 + cw2w2 ) ,

ẇ2 = w2 ( ã+ bw2w2 + c z2 z2 ) ,
(A.4)

with ã = a/ε2, a = Ĵ(k0)(α − α∗)
(

1
2 − i 1

2
√
gτ−1

)
, and b, c constants [5]. We notice that, as a

result of the scaling z(t) = ε z2(T ), w(t) = εw2(T ) with T = ε2t (therefore z′ = dz/dt = ε3ż2
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and w′ = dw/dt = ε3ẇ2), system (A.4) takes exactly the form (3.5) and, indeed, the linear
approximation of U(x, t) is (3.4).

Normal form for the pitchfork bifurcation. We fix the values of τ and g such that g < 1/τ
and take α as the bifurcation parameter. The bifurcation value around which we will consider
the singular perturbation analysis is α∗ from (4.1), and, in the following, the operator L0 and
the matrix L̂(k) are evaluated at α = α∗.

The singular perturbation expansion for the parameter α and solution U(x, t) follows
exactly the same steps as in (A.1), (A.2), and (A.3). The nullspace of L0 corresponding to
the center manifold is now only two-dimensional and has the basis

{
Φ0 e

±ik0x
}
, so U0 can be

written as

U0 = z1 Φ0 e
ik0x + z1 Φ0 e

−ik0x

with z1 depending on the slow time T = ε2t, that is, z1 = z1(T ).
As in the previous subsection, we can write the singular perturbation expansion of z1 as

z1 = z2 + ż2 ε
2t+ O(ε4). Then the equation that defines U1 becomes

L0U1 =
F ′′(0)

2
E
[
z2
2 e

2ik0x + z2
2 e

−2ik0x + 2z2 z2

]
.

Therefore U1 takes the form

U1 = ξ1 z
2
1 e

2ik0x + ξ1 z
2
1 e

−2ik0x + 2ξ2 z1 z1

= ξ1 z
2
2 e

2ik0x + ξ1 z
2
2 e

−2ik0x + 2ξ2 z2 z2 + O(ε2)

with ξ1, ξ2 defined by
[
−L̂(2k0)ξ1

]
= F ′′(0)

2 E,
[
−L̂(0)ξ2

]
= F ′′(0)

2 E. The normal form corre-
sponding to a zero eigenvalue results by solving the functional equation for U2, and it is

ż2 = z2( η̃1 + Λz2 z2 )(A.5)

with η̃1 = η1/ε
2, η1 = Ĵ(k0)(α−α∗)

1−gτ , and Λ defined by (4.3).

We notice that U = εU0 + O(ε2) = ε z2 Φ0 e
ik0x + ε z2 Φ0 e

−ik0x + O(ε2). With the choice
of z(t) = ε z2(T ), T = ε2t, (A.5) is equivalent to

z′ =
Ĵ(k0)

1 − gτ
(α− α∗)z + Λ|z|2z ,

which is the normal form at zero eigenvalue written in the original parameters.

Normal form for the double-zero bifurcation with O(2)-symmetry. In the case of a
double-zero eigenvalue, we choose the singular perturbation expansion for α, g and the solu-
tion U as α− α∗ = ε2 γ, g − g∗ = ε2 η, γ, η ∈ R,

U(x, t) = ε U0(x, t) + ε2 U1(x, t) + ε3 U2(x, t) + ε4 U3(x, t) + · · · .(A.6)
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The system equivalent to (2.1) is then

L0U = (α− α∗)L1U + (g − g∗)L2U +B(U,U) + C(U,U,U) +Q(U,U,U, U) + · · · ,(A.7)

where B(U,U), C(U,U,U), Q(U,U,U, U) represent the quadratic, cubic, and fourth order
terms, L0 is defined according to Remark 10, and

L1 =

(
J ∗ (·) 0

0 0

)
, L2 =

(
0 −1
0 0

)
.

With the notation E for the unit vector (1, 0)T , (A.7) becomes

εL0U0 + ε2
[
L0U1 −

F ′′(0)

2
[α∗ J ∗ u0 − g∗v0]2E

]
+ ε3[L0U2 − γ L1U0 − η L2U0 ]

+ ε4[L0U3 − γ L1U1 − η L2U1 ]

= ε3
[
F ′′(0)[α∗ J ∗ u0 − g∗v0][α∗ J ∗ u1 − g∗v1] +

F ′′′(0)

6
[α∗ J ∗ u0 − gv0]

3

]
E

+ ε4

[
F ′′(0)

2
[α∗ J ∗ u1 − g∗v1]2 + F ′′(0)[α∗ J ∗ u0 − g∗v0][α∗ J ∗ u2 − g∗v2

+ γ J ∗ u0 − η v0] +
F ′′′(0)

2
[α∗ J ∗ u0 − gv0]

2[α∗ J ∗ u1 − gv1]

+
F (4)(0)

24
[α∗ J ∗ u0 − gv0]

4

]
E + O(ε5) .(A.8)

In order to construct the normal form we need to identify the functional equations that
U0, U1, U2, and U3 satisfy and then solve for them [5].

The nullspace of L0 corresponding to the center manifold is now only two-dimensional
with the basis

{
Φ0 e

±ik0x
}
, where Φ0 is the real vector defined in (5.2). As a consequence, U0

can be written as

U0 =
(
z1 e

ik0x + z1 e
−ik0x

)
Φ0

with z1 = z1(T ), where T = εt is the appropriate slow time. Then

z1(T ) = z1(T )|ε=0 + z′1(T )|ε=0 εt+
1

2
z′′1 (T )|ε=0 (εt)2 +

1

6
z′′′1 (T )|ε=0 (εt)3 + O(ε4)

or, with notation z2 = z1(T )|ε=0, ż2 = z′1(T )|ε=0,

z1 = z2 + ż2 εt+
1

2
z̈2 (εt)2 +

1

6

...
z 2 (εt)3 + O(ε4) .

Therefore U0 =
(
z2 e

ik0x + z2 e
−ik0x

)
Φ0 + O(ε).

The equation that defines U1 reads as

L0U1 = −
[
ż2 e

ik0x + ż2 e
−ik0x

]
Φ0 +

F ′′(0)

2τ
E
[
z2
2 e

2ik0x + z2
2 e

−2ik0x + 2z2 z2

]
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and U1 can be constructed as

U1 =
[
w1 e

ik0x + w1 e
−ik0x

]
Φ1 + z2

1ξ1 e
2ik0x + z2

1ξ1 e
−2ik0x + 2z1 z1ξ2

with ξ1, ξ2 real vectors and w1 = w1(T ), or, similar to the singular perturbation expansion
of z1,

w1 = w2 + ẇ2 εt+
1

2
ẅ2 ε

2t2 + O(ε3) .

The first equation of the normal form is obtained by solving for U1 and it is ż2 = w2.
The next two steps consist of finding U2 as

U2 =
[
z1w1e

2ik0x + z1w1e
−2ik0x

]
β1 + [z1w1 + z1w1]β2 +

[
z3
1e

3ik0x + z3
1e

−3ik0x
]
β3

with β1, β2, β3 real vectors to be computed. Then we need to solve for U3 [5].
As a consequence we obtain the normal form⎧⎪⎨

⎪⎩
ż2 = w2 ,

ẇ2 = γĴ(k0)−η
τ z2 +A|z2|2z2

+ ε{γĴ(k0)w2 + Cz2[z2w2 + z2w2] +D|z2|2w2} + O(ε2) ,

(A.9)

where γ = (α− α∗)/ε2 and η = (g − g∗)/ε2.
With the proper scaling z(t) = εz2(T ), w(t) = ε2w2(T ), we have z′ = ε2ż2, w

′ = ε3ẇ2, and
(A.9) is equivalent to the normal form (5.5).

Remark 15. If we consider the solution U of the nonlinear system approximated only by
its projection on the generalized eigenspace, we have

U(x, t) ≈ 2εΦ0 Re
[
z2(T ) eik0x

]
+ 2ε2 Φ1 Re

[
w2(T ) eik0x

]
≈ 2 Φ0 Re

[
z(t) eik0x

]
+ 2 Φ1 Re

[
w(t) eik0x

]
and this is exactly the formula (5.4).

Appendix B. Additional material. The transitions from an unstable to a new stable
pattern as a parameter is changed are shown in the following files. In each case, a pattern
that was stable for one set of parameters is used as an initial condition for the new parameter.
Often the patterns go through several intermediate transient states before settling into a final
stable state. The main parameter that is varied is the threshold since this has no effect on
the linear stability but rather affects the selection between patterns.
Animation 1. The initial data and parameter values are as in Figure 4. We start with θ = 0.3

and initial conditions close to a TW which is stable for θ = 0.0. The pattern evolves
and stabilizes to an SW.

Animation 2. The last conditions in Animation 1 are chosen as initial conditions in Anima-
tion 2 and the value of parameter θ is changed to θ = 0. The resulting stable pattern
is now a TW.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60050_01.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60050_02.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60050_01.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60050_02.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60050_02.gif


230 RODICA CURTU AND BARD ERMENTROUT

Animation 4. This pattern is taken from the results of section 5.2 (Figure 24). An SW
pattern is selected and then destabilized to a TW. Note the initial transition to a
stationary pattern before switching to a TW.

Animation 5. The results presented in Figure 25 are shown here. An SW pattern is selected
and destabilized to a TW.
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Abstract. The task of constructing higher-dimensional invariant manifolds for dynamical systems can be com-
putationally expensive. We demonstrate that this problem can be locally reduced to solving a system
of quasi-linear PDEs, which can be efficiently solved in an Eulerian framework. We construct a fast
numerical method for solving the resulting system of discretized nonlinear equations. The efficiency
stems from decoupling the system and ordering the computations to take advantage of the direction
of information flow. We illustrate our approach by constructing two-dimensional invariant manifolds
of hyperbolic equilibria in R3 and R4.
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1. Introduction. Invariant manifolds are important in many application areas. In the
context of dynamical systems theory, stable and unstable manifolds are fundamental geomet-
ric structures. They partition phase-spaces into sets of points with the same forward and
backward limit sets. We cite the following three ways in which problems involving stable and
unstable manifolds of equilibria arise:

1. Stable and unstable manifolds play a role in global bifurcation. Homoclinic and
heteroclinic bifurcations occur at nontransverse intersections of stable and unstable
manifolds. For example, a particular global bifurcation of the Kuramoto–Sivashinsky
equation is examined in [19] using the method for approximating invariant manifolds
developed in [18].

2. In studying the structure of weak shock waves for hyperbolic systems of conservation
laws, the admissibility of a traveling-wave ansatz depends on the existence of a het-
eroclinic orbit connecting the left-state/right-state equilibria; see, for example, [35].
Such an orbit exists if the stable manifold of ur intersects the unstable manifold of ul.

3. For systems with multiple attractors whose basins cover all but the set of measure
zero, a basin boundary can often be obtained from the stable manifolds of equilibria
with a single unstable direction. Such delineation of basins is an important practical
task. For example, transient stability analysis of power systems deals with the stability
properties after an event disturbance modeled as a time-localized (fault-on) change in
the vector field. The key test is to determine if a fault-on trajectory ends up inside the
desired stability region of the postfault system [2]. On the other hand, in designing
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hierarchical controls, a high-bandwidth part of the control-structure might be turned
off once the system reaches a desired basin of attraction [1].

This paper presents a fast numerical method for approximating stable and unstable man-
ifolds of equilibrium points of a vector field. Given a smooth vector field f in Rn and a
hyperbolic saddle point y0, the corresponding invariant manifolds are defined as

W s(y0) =

{
y ∈ Rn | lim

t→+∞φtf (y) = y0

}
,

W u(y0) =

{
y ∈ Rn | lim

t→−∞φtf (y) = y0

}
,

where φtf is the time flow of the vector field f . In the vicinity of y0, the original dynamical
system

y′ = f(y)(1)

is well approximated by its linearization

y′ = Df(y0)y.(2)

Moreover, by the stable manifold theorem [14], the invariant manifolds of y0 are tangent to
the corresponding manifolds for the linearized system (2), i.e., tangent to the respective stable
(Es(y0)) and unstable (Eu(y0)) eigenspaces of the matrix Df(y0).

If the invariant manifold W u(y0) is only one-dimensional, its approximation can be easily
obtained by choosing an initial point in the unstable subspace of (2) and by integrating forward
in time.1 However, for higher-dimensional cases, the manifold consists of an infinite number
of trajectories, making the task of approximating the manifold much more challenging. This
problem has attracted a considerable amount of attention. In section 2 we discuss several
previously available approximation methods.

We note that dynamical systems with multiple time-scales present an additional degree
of complexity: for such systems, obtaining a “geometrically satisfactory” representation of
the manifold is often very expensive computationally. Indeed, the most natural idea (i.e., to
approximate the manifold by following a finite number of trajectories in W u for some fixed
time T ) will not work very well in this case. For a simple example, consider the linear vector
field

y′ =

⎡
⎢⎣ 1 0 0

0 10 0
0 0 −1

⎤
⎥⎦y(3)

with a saddle point at the origin and W u(0) coinciding with the x-y plane.
Observation 1.1. In Figure 1 we show some typical trajectories in this plane and the

images of a small circle around the origin under the flow φtf . The following two well-known
problems with this approach will be even more pronounced for the nonlinear case:

1 In the rest of the paper we will mainly refer to the problem of constructing the unstable invariant manifold.
The stable manifold can be constructed similarly by a time reversal (i.e., by considering the vector field −f).
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Figure 1. A simple linear multiple-time-scale example. Trajectories are chosen to be equidistributed on a
circle of radius Rinit = 2.

• If one starts with a number of points equidistributed on a small circle around y0 in
Eu(y0), the speed of those points varies significantly even for relatively tame problems.

• The respective trajectories (Figure 1A) and the φtf -images of the initial circle (Figure
1B) do not provide for a good mesh-representation of the manifold object.

The latter reflects an inherent conflict between the objectives of respecting the flow direction
(which, after all, defines the manifold) and stressing the geometric properties of the manifold
in a mesh-representation.

Our approach reconciles the two objectives: To approximate an invariant manifold of co-
dimension k, we formulate a system of k quasi-linear PDEs satisfied by the manifold’s local
parameterization (section 3); we then solve that system locally in an Eulerian framework
(section 4), thus limiting possible distortions of the mesh due to a variance of speeds for
different directions inside the manifold.

The resulting discretized equations are solved very efficiently by decoupling them and
ordering the computation of simplex-patches (added to the earlier computed manifold repre-
sentation) to take advantage of the direction of information flow (section 6). Our algorithm can
be viewed as an extension of the ordered upwind methods (OUMs) introduced in [32, 33] for
static Hamilton–Jacobi PDEs. These methods solve a boundary value problem in O(N logN)
operations, where N is the total number of mesh-points (section 5). The resulting triangulated
mesh approximates a compact subset

Wu
Σ(y0) = {y ∈W u(y0) | σ(y) ≤ Σ},

where σ(y) is defined as a distance-along-the-trajectory from y to y0, and Σ is a prespecified
stopping criterion. For a desired mesh-scale ∆, the compactness of Wu

Σ(y0) and the non-
degeneracy of simplex-patches ensure that N = O(∆−k).

In section 7 we use our method to construct a two-dimensional stable manifold of the origin
for the Lorenz system. In section 8 we consider a dynamical system describing two pendula
coupled by a torsional spring and compute two-dimensional unstable and stable manifolds for
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one of its saddle equilibria. Though the rate of convergence of the method is not proven, in
section 9 we provide numerical evidence to confirm the first-order global accuracy. This is
consistent with the local truncation error of order O(∆2) analytically derived in section 4.1.
We conclude by discussing the limitations of our approach and possible future extensions in
section 10.

2. Prior methods. A number of previously available techniques for computing invariant
manifolds all follow the same general principle, which is that an invariant k-dimensional
manifold is grown as a one-parameter family {Mi} of topological (k − 1)-spheres, where M0

is taken to be a small (k − 1)-sphere around y0 in Eu(y0). However, the resulting methods
are quite diverse as a result of different choices for

• the family-parameter of {Mi} (e.g., integration time, distance along the trajectory to
y0, geodesic distance to y0, etc.),

• data structures used to store the Mi’s, and
• the algorithm for producing Mi+1 given Mi.

The simplest implementation of this idea was illustrated in section 1 as follows: M0 is
approximated by a finite number of equidistant markers, the family-parameter is chosen to
be the integration time, and Mi+1 is approximated by the position of markers approximating
Mi after some time ∆t. As shown in Figure 1A, initially equidistributed markers quickly
converge and/or drift apart due to the geometric stiffness2 of the vector field f ; thus, an
additional step of redistributing markers along Mi+1 is required. Moreover, since the size of
the Mi’s varies, additional markers might be needed to ensure the quality of approximation
(e.g., the maximum distance ∆x between adjacent markers in Mi+1). As a result, an accurate
approximation will require that small ∆t be used even if marker-trajectories are computed
with infinite precision.

Another problem with this approach is a highly nonuniform distance between Mi and
Mi+1 (see Figure 1B), resulting in a poor geometric approximation of the manifold even if
each (k − 1)-sphere in the family is known perfectly. A method for alleviating this difficulty
was introduced by Johnson, Jolly, and Kevrekidis in [18]. Their method uses a rescaling
of the vector field (“reparameterizing to integrate with respect to arclength in space-time”),
which ensures the same speed along all the trajectories; i.e., the family-parameter becomes
a distance-from-y0-along-the-trajectory. Unfortunately, the produced mesh still need not be
the best geometric representation of the manifold since the local distance between Mi and
Mi+1 is now determined by the ratio of “Mi-normal” and “Mi-tangential” components of the
rescaled vector field. We note that the computationally expensive marker-redistribution is
still required at each step due to the geometric stiffness (since the rescaling of the vector field
does not change the trajectories).

A method ensuring the constant distance between Mi and Mi+1 was introduced by Guck-
enheimer and Worfolk in [15]. The family-parameter is chosen to be the geodesic distance from
y0. The markers on Mi are moved with a unit speed for a time ∆t in the direction outwards-
normal to Mi within the locally determined tangent k-plane. The approximation resulting
for Mi+1 might still require marker addition/redistribution, but only due to the different size

2 Here and throughout the paper, by geometric stiffness we mean the highly nonuniform rates of separation
for nearby trajectories on different parts of the manifold.
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of Mi+1 and not due to the geometric stiffness. A tangent k-plane is locally determined for
each marker in Mi using the adjacent markers and the direction of the vector field. Thus, this
procedure becomes very sensitive wherever f is nearly tangential to Mi, leading to excessively
expensive restrictions for the ratio of ∆t/∆x.

Another method also using the geodesic distance as a family-parameter was introduced by
Krauskopf and Osinga in [20, 21, 22]. For a given marker y ∈Mi, a locally normal (n−k+1)-
plane Fy is determined using the adjacent nodes in Mi. Then a shooting method is used to
solve the following boundary value problem: Find a point (not necessarily a marker!) z ∈Mi

such that its trajectory intersects Fy at some point z̃ and ‖z̃−y‖ = ∆t. A collection of z̃’s is
used as an approximation of Mi+1; as before, some new markers might be required due to the
bigger size of Mi+1. An explicit bound on the overall computational error is available, and the
quality of the resulting mesh is ensured by adding/removing the markers on Mi, depending
on the manifold’s local geometry [21]. We note that the above procedure is robust even if
the vector field f is locally tangential to Mi, but the shooting method becomes much more
computationally expensive in that case. In addition, solving the boundary value problem for
each marker becomes even more challenging for k > 2 because the search space for z is no
longer one-dimensional.

Remark 2.1. All of the above methods are explicit in the sense that only the representation
of Mi is used to produce Mi+1 and the order of computation of the markers on Mi+1 is
unimportant. Thus, these methods’ computational complexity is generally proportional to
the total number (across all of the Mi’s) of used mesh-points N . However, N will depend not
only on the required accuracy in manifold-approximation but also on the choice of family-
parameter. Moreover, the proportionality constants involved can be quite large, depending
on k (e.g., for the marker-redistribution) and on the orientation of f relative to the Mi’s.

Several other numerical techniques are not based on growing a family of Mi’s.

A method introduced by Doedel [11] uses a single computed trajectory in W u(y0) as an
input for the boundary value solver of AUTO [10] to perform continuation in the ray-angle
parameter. The manifold is approximated between Minit = M0 and Mfinal by a sequence
of trajectories {zj} such that zj(0) ∈ M0, z

j(τj) ∈ Mfinal, and ‖zj(τj) − zj+1(τj+1)‖ = ∆.
Starting with the initial trajectory z0, the collocation methods are repeatedly used to produce
zj+1 based on zj . If Pj is a hyperplane transversal to f at zj(τj), then zj+1 is sought with
one end point on M0 and the other lying on Pj distance ∆ away from zj(τj). The resulting
sequence {zj} is well spaced near Mfinal but may not be uniformly spaced near M0.

A new method by Henderson [16] is based on integrating an individual trajectory to-
gether with a second-order approximation to the manifold along that trajectory. The surface
is constructed as a collection of k-dimensional strips centered at such trajectories; the use
of these (nonintersecting) strips provides uniform bounds on the spacing of the trajectories.
The implementation heavily relies on the efficient data structures developed earlier for ap-
proximating implicitly defined manifolds [17]. This method is the first to directly model the
curvature information in the direction transversal to the trajectories.

An algorithm introduced by Dellnitz and Hohmann in [6, 7] uses subdivision and cell-
mapping-continuation techniques to produce an n-dimensional covering of the k-dimensional
unstable manifold. A simplified version of this algorithm can be summarized as follows. The
computational domain Q is subdivided into a number of small, nonintersecting n-dimensional
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“boxes.” The initial covering is determined as a collection of those boxes covering W u
loc(y0)—

a small neighborhood of y0 in W u(y0). The iteratively repeated continuation stage adds
new boxes to the collection if they are intersected by a φ∆t

f -image of some box(es) already in
the collection. The process stops when no more boxes within Q can be added. The use of
efficient (hierarchical) data structures allows storing only those boxes actually needed for the
covering. The covering’s growth reflects the anisotropy due to multiple time-scales present in
the system; i.e., the more strongly unstable directions are covered first. The accuracy of the
approximation depends upon the size of boxes in the resulting covering and upon the level of
refinement of the initial covering (the relative sizes of the boxes compared to W u

loc(y0)); hence
the algorithm can be quite memory intensive and may converge relatively slowly, especially for
k = n−1. The efficiency of this algorithm also strongly depends on the contraction transversal
to the manifold: weaker contraction will require a much finer initial covering—otherwise, the
cell mapping will produce a coarse n-dimensional covering of W u.

We note that the method in [6, 7] is currently the only one implemented for k > 2. Several
other methods briefly described above were formulated for the general case, but, to the best
of our knowledge, the current implementations rely on k = 2.

3. PDE approach to manifold-approximation. In contrast to the methods discussed
in the previous section, we compute an invariant manifold as a collection of adjacent k-
dimensional simplex-patches. The (k − 1)-dimensional boundary of the current collection is
used to attach new tentative simplexes, whose exact position in Rn is computed using a PDE
for the local parameterization of that manifold.

We begin by considering a relatively simple case of a two-dimensional manifold in R3. If
(x1, x2, g(x1, x2)) = (x, g(x)) = y is a local parameterization of an invariant manifold, then
the vector field evaluated on it should be tangential to the graph of g(x1, x2), i.e.,

f (x1, x2, g(x1, x2))

⎡
⎢⎢⎣

∂
∂x1

g(x1, x2)

∂
∂x2

g(x1, x2)

−1

⎤
⎥⎥⎦ = 0,(4)

should hold wherever this parameterization is valid. Our general method can be outlined as
follows:

• The above first-order quasi-linear PDE can be solved to “continue” the manifold since
the boundary condition for g is specified on the last previously computed manifold
“boundary.”

• The initial “boundary” is approximated by a discretized small circle around y0 in
Eu(y0).

• Once a new triangle-patch of the manifold is computed and Accepted, the compu-
tational “boundary” (AcceptedFront) is modified to include it, new tentative (or
Considered) patches are added to the computational domain, and the PDE is solved
on them using the new (local) coordinates.

This process is discussed in detail in section 6 and illustrated in section 7. Here, we simply
note that, unlike a general quasi-linear PDE, equation (4) always has a smooth solution as
long as the chosen parameterization remains valid. Thus, switching to local coordinates when
solving the PDE allows us to avoid checking the continued validity of the parameterization.
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The above derivation can be repeated to obtain a single PDE defining an invariant mani-
fold of codimension 1 in Rn: the number of equations corresponds to the number of linearly
independent vectors orthogonal to the manifold’s tangent space, i.e., to the manifold’s codi-
mension.

In this spirit, we now consider the general problem of constructing a k-dimensional
invariant manifold of a vector field f : Rn → Rn. Switching to a suitable coordinate system,
we assume that the manifold’s local parameterization is (x1, . . . , xk, g1(x1, . . . , xk), . . . ,
gn−k(x1, . . . , xk)) = (x, g(x)) = y ∈ Rn, where x ∈ Rk and g : Rk �→ Rn−k. As in
the codimension 1 case, the PDE is derived from the condition that the vector field evaluated
on the manifold should lie in its tangent space. Therefore, for every j ∈ {1, . . . , (n− k)},

k∑
i=1

∂gj
∂xi

(x1, . . . , xk)fi(x, g(x)) = fj+k(x, g(x))(5)

should locally hold as long as the above parameterization is valid. This coupled system of
(n − k) quasi-linear PDEs can again be used to “continue” the manifold since the boundary
conditions for the gj ’s are specified on the last-previously-computed-manifold-“boundary.”
In this case, the initial “boundary” is approximated by a discretized (k − 1)-sphere around
y0 in Eu(y0) and the manifold grows as new k-dimensional simplexes are Accepted. The
construction of manifolds of codimension 2 is illustrated in section 8.

Remark 3.1 (a historical note).The PDE approach for characterizing invariant surfaces goes
back to at least the 1960s. In particular, the existence and smoothness of solutions for equa-
tions equivalent to (5) are the subjects of Sacker’s analytical perturbation theory [30, 25].
Previous numerical techniques based on this formulation included time-marching finite differ-
ence schemes in “special coordinates” [9], iterative methods [8] based on a discrete version of
Fenichel’s graph transform [13], collocation methods [12], and spectral methods [24]. How-
ever, all this work was done for invariant tori computations, resulting in the following two
very important distinctions from our method:

1. These prior methods assume the existence of a coordinate system in which the invari-
ant torus is indeed globally a graph of the function. Such a coordinate system may
be defined explicitly [9] or implicitly [8]. In the latter case it can be defined using
normal/tangent bundles of a (previously constructed) invariant torus of a slightly per-
turbed vector field. This implies availability of a global mesh on which the PDE can
be solved.
For invariant manifolds of hyperbolic equilibria, such a mesh is not available a priori
and has to be constructed in the process of “growing” the manifold (section 6.5).

2. For the invariant tori computations, the solution function g has periodic boundary
conditions; hence, the discretized equations are inherently coupled and have to be
solved simultaneously.
For approximation of W u(y0), all characteristics of the PDE start at the initial bound-
ary (chosen in Eu(y0)) and run “outward.” Knowledge of the direction of information
flow can be used to decouple the discretized system, resulting in a much faster com-
putational method (section 5).
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4. Eulerian discretization. Not surprisingly, the characteristics of (4) are exactly the
(projections of the) trajectories of the original vector field. Thus, any attempt to solve it in
the Lagrangian framework (i.e., by the method of characteristics or ray shooting) would bring
us back to all the problems discussed in section 1. On the other hand, it was demonstrated
in [33] that the discretized (semi-Lagrangian and Eulerian) equations resulting from certain
nonlinear first-order PDEs can be solved very efficiently. This was our motivation for locally
recasting this problem in a fully Eulerian framework.

For a two-dimensional invariant manifold in R3 (as formulated in (4)), let G(x1, x2) be
a piecewise-linear numerical approximation of the solution g(x1, x2). Consider a simplex
yy1y2, where yi =

(
xi1, x

i
2, G(xi1, x

i
2)
)

=
(
xi, G(xi)

)
and y = (x1, x2, G(x1, x2)) = (x, G(x)).

We assume that the vertices y1 and y2 are two adjacent mesh-points on the AcceptedFront
(the discretization of the current manifold “boundary”). Thus, G(xi)’s are known and can
be used in computing G(x). Define the unit vectors Pi = (x − xi)/‖x− xi‖ and let P be a
matrix with Pi’s as its rows. This square matrix is invertible since x is chosen some distance
away from the AcceptedFront. We note that a directional derivative for G in the direction
Pi can be computed as

vi(x) =
G(x) −G(xi)

‖x− xi‖
.(6)

Therefore, if v is a column vector of vi’s, then ∇g(x) ≈ ∇G(x) = P−1v, yielding the dis-
cretized version of (4):[

P−1v(x)
]
1
f1(x, G(x)) +

[
P−1v(x)

]
2
f2(x, G(x)) = f3(x, G(x)).(7)

This nonlinear equation can be solved for G(x) by the Newton–Raphson method or any other
robust zero-solver. In addition, it has an especially simple geometric interpretation if the local
coordinates are chosen so that G(x1) = G(x2) = 0. Setting ŷ = (x, 0), we reduce the problem
to finding the correct “tilt” for a simplex yy1y2. If u is a unit vector normal to ŷy1y2, then
solving (7) is equivalent to finding a number α ∈ R such that f(ŷ + αu) lies in the plane
defined by y1, y2, and y = ŷ + αu. (See Figure 2.)

This geometric interpretation can be extended to the general case3 of a k-dimensional
invariant manifold in Rn. In this case, the AcceptedFront is a (k− 1)-dimensional mesh dis-
cretizing the currently computed manifold “boundary” and we consider a k-dimensional sim-
plex yy1 . . .yk, where y1, . . . ,yk ∈ Rn form a (k− 1)-dimensional simplex in AcceptedFront
and y is a Considered point near it. A local parameterization g(x) satisfying system (5) is nu-
merically approximated by G(x); i.e., we assume yi =

(
xi,G(xi)

)
and y = (x,G(x)), where

x,xi ∈ Rk and G : Rk → Rn−k. We choose the parameterization so that G(xi) = 0 and let
ŷ = (x,0). Let

{
u1, . . . ,u(n−k)

}
form an orthonormal basis for the orthogonal complement

of the k-plane ŷy1 . . .yk. Then the task of linearly approximating system (5) is equivalent
to finding the real numbers α1, . . . , α(n−k) such that, for y = ŷ +

∑n−k
i=1 αiu

i, the vector f(y)

lies in the k-plane defined by y,y1, . . . , yk.

3 Of course, the explicit discretization formula is also available. We omit it here for the sake of brevity and
notational clarity.
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y 

Figure 2. Geometric interpretation of (7). The one-dimensional search-space corresponds to the manifold’s
codimension.

The described discretization procedure is similar in spirit to an implicit Euler method
for solving initial value problems since yi’s are assumed to be known and the vector field is
computed at a yet-to-be-determined point y.

4.1. Local truncation error and upwinding condition. Let L be the Lipschitz constant
of f and let ν be the upper bound of ‖∇g‖ on a ∆-neighborhood of x. For k = 2, suppose
that y1 =

(
x1, G(x1)

)
and y2 =

(
x2, G(x2)

)
lie on the manifold and that y = (x, G(x))

solves (7). This means that f(y) lies in the plane of yy1y2 and can be expressed as a linear
combination

f(y) = β1(y − y1) + β2(y − y2),(8)

where the real coefficients β1 and β2 satisfy the equation

P T

[
β1‖x− x1‖
β2‖x− x2‖

]
=

[
f1(y)
f2(y)

]
.(9)

If f(y) is not parallel to y1y2, then β1 +β2 �= 0, and a linear approximation of y’s trajectory
(i.e., the straight line through y in the direction f(y)) will intersect the line y1y2 at the point
ỹ = (β1y

1 + β2y
2)/(β1 + β2). We note that

‖y − ỹ‖ =
‖f(y)‖
|β1 + β2|

.(10)

Since, away from equilibria, ‖f(y)‖ is bounded from below, (10) implies |β1 +β2|−1 = O(‖y−
ỹ‖).

Using the above notation, we can rewrite (7) in the form

G(x) =
β1

β1 + β2
G(x1) +

β2

β1 + β2
G(x2) +

f3(x, G(x))

β1 + β2
.(11)
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For x̃ = (β1x
1 + β2x

2)/(β1 + β2) we can now express

‖y − ỹ‖2 = ‖x− x̃‖2 +

(
f3(x, G(x))

β1 + β2

)2

= ‖x− x̃‖2 +

(
f3(y) ‖y − ỹ‖

‖f(y)‖

)2

.

Therefore,

‖y − ỹ‖2 = ‖x− x̃‖2 ‖f(y)‖2

‖f(y)‖2 − (f3(y))2
.

Thus, O(‖y − ỹ‖) = O(‖x − x̃‖), provided |f3| 	 ‖f‖. This condition can be satisfied by a
suitable choice of the coordinate system, e.g., if the point x is chosen so that f3(x̃) = 0. In
that case, the “correction term” f3(y)/(β1 + β2) in formula (11) is of the order O(‖x− x̃‖2).

For the solution g(x) of PDE (4),

g(x) = g(x̃) + ∇g(x) · (x− x̃) +O(‖x− x̃‖2)

= g(x̃) + ∇g(x) · β1(x− x1) + β2(x− x2)

β1 + β2
+O(‖x− x̃‖2).

Combining the above with (8), we obtain

g(x) = g(x̃) +
f1(x, G(x)) ∂

∂x1
g(x) + f2(x, G(x)) ∂

∂x2
g(x)

β1 + β2
+O(‖x− x̃‖2)

and

|g(x) −G(x)| ≤
∣∣∣∣∣g(x̃) +

f1(x, G(x)) ∂
∂x1

g(x) + f2(x, G(x)) ∂
∂x2

g(x)

β1 + β2
−G(x)

∣∣∣∣∣+O(‖x− x̃‖2)

≤
∣∣∣∣∣g(x̃) +

f1(x, g(x)) ∂
∂x1

g(x) + f2(x, g(x)) ∂
∂x2

g(x)

β1 + β2
−G(x)

∣∣∣∣∣
+

2Lν

|β1 + β2|
|g(x) −G(x)| +O(‖x− x̃‖2).

Since g solves the PDE, we obtain

|g(x) −G(x)| ≤
∣∣∣∣g(x̃) +

f3(x, g(x))

β1 + β2
−G(x)

∣∣∣∣+ 2Lν

|β1 + β2|
|g(x) −G(x)| +O(‖x− x̃‖2)

≤
∣∣∣∣g(x̃) +

f3(x, G(x))

β1 + β2
−G(x)

∣∣∣∣+ L(2ν + 1)

|β1 + β2|
|g(x) −G(x)| +O(‖x− x̃‖2).

Setting C = L(2ν + 1)/‖f(y)‖ and recalling (10), (11) gives

(1 − C‖y − ỹ‖) |g(x) −G(x)| ≤
∣∣∣∣g(x̃) +

f3(x, G(x))

β1 + β2
−G(x)

∣∣∣∣+O(‖x− x̃‖2)

=

∣∣∣∣g(x̃) − β1

β1 + β2
G(x1) − β2

β1 + β2
G(x2)

∣∣∣∣+O(‖x− x̃‖2).



242 JOHN GUCKENHEIMER AND ALEXANDER VLADIMIRSKY

Let xm = (x1 + x2)/2. Since x̃ is on the line x1x2 and it was assumed that G(xi) = g(xi),
the linear approximation yields

g(x̃) = (β1G(x1) + β2G(x2))/(β1 + β2) +O(‖x̃− xm‖2) +O(‖x1 − x2‖2).

Thus,

|g(x) −G(x)| ≤ O
(
‖x̃− xm‖2

)
+O

(
‖x1 − x2‖2

)
+O(‖x− x̃‖2)

(1 − C‖y − ỹ‖) .(12)

If x̃ lies in between x1 and x2, and if the triangle xx1x2 has sides of length ≤ ∆, then
formula (12) yields a local truncation error of order O(∆2). Correspondingly, we expect the
global approximation error of order O(∆) for the entire mesh. The rigorous analysis of the
global error is outside the scope of this paper, but in section 9 we provide numerical evidence
to confirm the first-order accuracy.

The requirement that x̃ should lie in between x1 and x2 ensures that interpolation (rather
than extrapolation) is used for G(x̃). Moreover, it corresponds to the fundamental stability
condition for solving first-order PDEs: the mathematical domain of dependence should be
included in the numerical domain of dependence. For our problem this means that G(x)
should be computed using the correct triangle—the triangle through which the correspond-
ing (approximate) trajectory runs. Thus, having computed y = (x, G(x)) by (7) using two
adjacent mesh-points yi and yj , we need to verify the following additional upwinding condi-
tion: the linear approximation to y’s trajectory should intersect the line yiyj at the point
ỹ = (x̃, G(x̃)) lying between yi and yj (see Figure 3) or, equivalently, f(y) should point from
the newly computed simplex yyiyj . If the upwinding criterion is satisfied (i.e., β1, β2 ≥ 0),
formula (10) provides the length of the linear approximation of y’s trajectory inside yyiyj .
Both the upwinding condition and formula (10) can be similarly extended for k > 2.

f(y)

~y

f(y)

~yyi yi

y y

yj yj

Figure 3. Examples of acceptable (left) and unacceptable (right) approximations of f (y). The range of
upwindings directions is shown by dotted lines; the local linear approximation to the trajectory is shown by
dashed line; ỹ is its intersection with the line yiyj . In the second case the upwinding criterion is not satisfied
and the update for y should be computed using another segment of AcceptedFront.
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5. Ordered upwind methods. OUMs were originally introduced by Sethian and
Vladimirsky to solve a class of problems in anisotropic control theory and anisotropic front
propagation described by static Hamilton–Jacobi–Bellman PDEs [32, 33]. A finite-difference
discretization of a nonlinear boundary value problem normally leads to a system ofN nonlinear
coupled discretized equations, where N is the total number of mesh-points in the computa-
tional domain. The solution to that system is usually obtained iteratively, while each iteration
involves recomputing the values at all of the mesh-points. Such iterative schemes can be quite
slow even in conjunction with Gauss–Seidel relaxation techniques. OUMs provide an alter-
native by using the partial information about the direction of information flow to essentially
decouple the system and to solve the equations one by one. Several extensions of these meth-
ods were introduced for hybrid control problems [34] and for phase-space multiple-arrivals
computations [31].

The decoupling introduced in [32] hinges on the notion of “optimality” and the variational
properties of the PDEs arising in the control-theoretic context. This formulation was heavily
used in proving convergence to the viscosity solution of the Hamilton–Jacobi–Bellman PDE
[33]. However, the more general idea behind the methods was to allow space-marching for
the boundary value problems—not unlike explicit forward-time marching for initial-boundary
value problems. In essence, the solution can be “marched” (on the mesh) from the bound-
ary using the characteristic information, and a new (smaller) boundary value problem can
be posed using the newly computed “boundary”—the current divide between the already-
computed (Accepted) and not-yet-touched (Far) mesh-points. The mesh discretization of
that “new boundary” is referred to as AcceptedFront; the not-yet-Accepted mesh-points,
which are adjacent to the AcceptedFront, are designated Considered. A tentative value can
be computed for each Considered mesh-point x under the assumption that its characteristic
intersects the AcceptedFront in some vicinity of that mesh-point (designated NF (x)). All
Considered points are sorted based on the SortV alue (usually defined as the time-to-travel
to x from the boundary along its characteristic). A typical step of the algorithm consists
of choosing the Considered x̄ with the smallest SortV alue and making it Accepted. This
operation modifies the AcceptedFront (x̄ in; other mesh-points possibly out), and causes a
possible recomputation of all the not-yet-Accepted mesh-points near x̄.

This “space-marching” is based on the principle of “local” solution reconstruction from
characteristics and on some notion of an entropy-like condition (i.e., no characteristics emerg-
ing from shocks). Both of these are applicable for a much wider class of first-order PDEs. In
[31] OUMs were successfully used to treat the linear Liouville PDE. The applicability of OUMs
to general quasi-linear first-order PDEs is still an open question [36]. However, the particular
computational problem considered in this paper has an additional simplifying property: the
PDEs (4) and (5) are solved only locally, and hence the solution remains smooth at every point.
On the other hand, unlike in the previous OUMs, the mesh is not known in advance and is
built in the process of computation. In adding a tentative simplex-patch (with a Considered
vertex) we attempt to provide for “good” geometric properties of the mesh (e.g., simplex
aspect ratio) and to ensure that the parameterization is locally well-conditioned (e.g., ‖∇g‖
should be small on that simplex). The vector field near AcceptedFront determines the order
in which the correct “tilts” for tentative simplex-patches are computed and the Considered
mesh-points are Accepted. This ordering has the effect of reducing the approximation error
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(a mesh-point y first computed from a relatively far part of NF (y) is likely to be recomputed
before it gets Accepted). Below we outline the general structure of the algorithm and provide
a detailed description of individual components in section 6. As in the original OUMs, the
computational complexity of the algorithm is O(N logN), where the (logN) factor results
from the necessity of maintaining a sorted list of Considered mesh-points.

Ordered upwind method for building invariant manifolds.

1. Use the linearization (Eu(y0)) to initialize AcceptedFront and one “layer” of
Considereds.

2. Evaluate the tentative coordinates for Considereds.
3. Find the Considered mesh-point ȳ which is the closest (in the sense of trajectory

distances) to AcceptedFront.
4. Move ȳ to Accepted and update the AcceptedFront.
5. Remove/add the Considered mesh-points to reflect changes to AcceptedFront.
6. Recompute the coordinates for all the Considered y such that ȳ ∈ NF (y).
7. If Considered is not empty (and “stopping criteria” are not met) then go to 3.

6. Implementation details. The current implementation is specifically geared toward
two-dimensional manifolds in Rn, even though a generalization of most of the following is
straightforward (except for section 6.3 and parts of section 6.5 which explicitly rely on k = 2).
Our goal is to construct a simplicial complex approximating the manifold with the preferred
triangle side of length ∆ (but definitely less than 2∆). Throughout this section we call a
mesh-triangle s adjacent to y if y is one of the vertices of s; we also refer to mesh-points yi

and yj as adjacent (or connected) if both of them are vertices of the same triangle.

6.1. Initialization. The algorithm is initialized using the linearization of the vector field.
Eu(y0) is determined as a span of eigenvectors of Df(y0) corresponding to the eigenvalues
with positive real part.

Any simple closed curve around y0 in Eu(y0) can be used as an initial boundary I,
provided that curve is transversal to the linearized vector field. In the examples considered in
the following sections, I was chosen to be a circle of radius Rinit centered at y0. More generally,
the transversality condition can always be satisfied by choosing an ellipse corresponding to
the relevant eigenvectors.

The initial boundary I is then approximated using N0 Accepted mesh-points so that the
distance between all adjacent mesh-points y1 and y2 is at most ∆. For each such adjacent pair,
the segment y1y2 is placed onto the AcceptedFront and an equilateral triangle is constructed
with the vertices at y1, y2, and ŷ, where the new Considered mesh-point ŷ lies in Eu(y0)
and ‖y0 − ŷ‖ = Rinit + ∆

√
3/2. (See Figure 4.)

6.2. Computing coordinates for Considereds. Once the correct “tilt” is computed,
each Considered mesh point y is a vertex of a triangle with the other vertices y1, y2 on
the AcceptedFront. Initially, however, that triangle is built to be locally tangential to the
manifold; i.e., only ŷ is known at first instead of y (see Figure 2). If y1 and y2 are on I, then
ŷ is chosen in Eu(y0), as described above; otherwise, the position of ŷ is selected in the plane
of the previously Accepted triangle adjacent to y1 and y2 (as described in section 6.5). Given
ŷ, the discretized version of the PDE(s) is solved to obtain the “normal component(s)” of y.
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y
0

Accepted mesh points
Considered mesh points
AcceptedFront
Tentative Simplexes

Figure 4. Initialization of AcceptedFront in Eu(y0) (left) and changes to AcceptedFront once the first
of Considered points is Accepted (right). The newly added/accepted triangle generally does not lie in Eu(y0);
once Accepted, it defines the plane in which the new tentative triangles are initially chosen.

As described in section 4, the newly computed y is a valid Considered point if it satisfies
the “upwinding condition.” If that condition is not satisfied, we recompute y using other
segments on AcceptedFront near ŷ. In general, given two adjacent mesh-points yi and yj on
AcceptedFront, we can form a “virtual simplex” ŷyiyj which is then used to compute the
value for y even if it is not directly adjacent to yi or yj . A NearFront NF (ŷ) is defined as
a collection of segments on AcceptedFront within the distance RNF from ŷ.

NF (ŷ) is used to restrict the set of virtual simplexes, which will be potentially checked
to find the one satisfying the upwinding criterion—the vector f(y) should be pointing out of
the simplex used to compute y (Figure 5 illustrates this for a simplified case ŷ = y).

y1 y2 y3 y4 y5

y

f(y)

R
NF

 = 1.4 ∆

Figure 5. Use of NF (ŷ) to build virtual simplexes for evaluating y. The first evaluation is performed
using y2 and y3 as the Accepted mesh-points adjacent to ŷ; the resulting approximation for f(y) shows that
the upwinding condition is not satisfied and that a virtual simplex using y3y4 should be considered next.

Remark 6.1. Generally, one needs to select the value for RNF based on the behavior of the
vector field near AcceptedFront—if the locally tangential components dominate the locally
normal components, it will not be possible to satisfy the upwinding criterion unless RNF is
sufficiently large. (Note that this will also increase the local truncation error of section 4.1 by
a factor of RNF .)
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On the other hand, this truly becomes a problem only if this local-tangentiality holds
everywhere along the AcceptedFront: the fact that Consideredmesh-points are ordered based
on SortV alue allows for a subsequent recomputation of coordinates of y once the position of
AcceptedFront changes. (See Figure 6.)

y1 y2 y3 y4

z1 z2 z3

AcceptedFront
Tentative Simplexes
Approximate Trajectories

Figure 6. Ordering acceptance of Considered based on SortV alue decreases the computational stencil;
this reduces both the minimum sufficient RNF and the local truncation error. Even though all three zi’s can
be computed using y1y2, this is not really necessary. Once z1 becomes Accepted, both z2 and z3 can be
computed from z1y2; once z2 becomes Accepted, z3 can be recomputed using z2y3. Thus, in this example,
valid coordinate updates will be eventually computed even if RNF = ∆.

6.3. Relaxing the upwinding condition. The AcceptedFront is a one-dimensional object,
and the very first evaluation of y’s coordinates will indicate the correct search-direction to
satisfy the upwinding condition (Figure 5).

Unfortunately, f(y) gives only an approximation of the direction of information flow since
the “normal” components (i.e., y− ŷ) are computed numerically from the first-order accurate
discretization of the PDE. As a result, when the adjacent segments in NF (ŷ) do not lie on
the same line, it is possible that the upwinding condition will not be satisfied by any virtual
simplex. (See Figure 7).

y3

f(y2)

y2,3

y2

ŷ

f(y2,3)

y1,2

f(y1,2)

y1

f(y1)

Figure 7. Deadlock situation: according to f(y1,2), y’s trajectory should intersect y2y3; according to
f(y2,3), the trajectory should intersect y1y2. Thus, neither virtual simplex satisfies the strict upwinding con-
dition and the relaxation of the criteria is needed. The directions of f(y1) and f(y2) show that the update y1,2

satisfies the relaxed criterion.
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Remark 6.2. Thus, we use the following relaxation of the upwinding criterion: Let ŷ be
a Considered point and let yi,j be its new coordinates computed from a virtual simplex
s = ŷyiyj . The relaxed upwinding condition is satisfied if there exists a point ỹ on an
AcceptedFront segment yiyj such that the projection of f(ỹ) onto s is collinear with ỹŷ. In
practice, an alternative version of this condition is easier to verify: it suffices to check that
the projections of f(yi) and f(yj) onto the plane of s lie outside of that simplex.

Remark 6.3. As formulated in section 4.1, the upwinding criterion is implicit: it cannot be
verified until the tentative value yi,j is computed. In contrast, the above relaxed upwinding
criterion is explicit in nature since it concerns only the directions of the vector field on yiyj .

We note that, even when an explicit (relaxed) upwinding criterion is used, the “tilt”
(y − ŷ) is still computed from the implicit formula (7). Moreover, in such cases we still have
‖ỹ − y‖ = O(RNF∆) and the local truncation error derived in section 4.1 is still valid.

The above reasoning clearly uses the fact that k = 2. In general, the AcceptedFront will
be a (k − 1)-dimensional object and both the search in NF (ŷ) and the upwinding-relaxation
procedures will have to be more complicated.

In our implementation, the relaxed upwinding is only used to deal with the deadlocks at
Considered points tagged as Lagging (immediately adjacent to more than two segments of
AcceptedFront yet possessing no valid update). In all other cases, relaxation is postponed
since subsequent modifications to AcceptedFront may allow for the strict upwinding condition
to be satisfied. As a result, the relaxation is applied very infrequently (e.g., at 24 mesh-points
out of 77,500 in the example considered in section 8).

6.4. Computing the SortV alue and sorting Considereds. Our decoupling orders the
acceptance of Considered points based on their “distance-along-the-trajectory-to-y0.” That
distance σ(y) can be estimated as a sum of the “distance-along-the-trajectory-to-AcceptedFront”
and σ(ỹ), where ỹ is the intersection of y’s trajectory with a segment yiyj on theAcceptedFront
(see Figure 3).

Once the new coordinates for a Considered point y are computed and the upwinding
criterion is satisfied, we obtain a linear approximation to y’s trajectory and can estimate its
SortV alue: ‖y − ỹ‖ can be computed by formula (10) and σ(ỹ) can be approximated by
linearly interpolating σ(·) on yiyj . Since y is computed from yiyj , we recall that f(y) =
β1(y − yi) + β2(y − yj) for some β1, β2 ≥ 0 and

SortV alue(y) = σ(y) ≈ ‖y − ỹ‖ + σ(ỹ) ≈ ‖f(y)‖ + β1σ(yi) + β2σ(yj)

β1 + β2
.(13)

If the (relaxed) upwinding criterion for y cannot be satisfied by any segment in NF (y), then
we leave y = ŷ and assume SortV alue(y) = +∞. Such a Considered point will never get
Accepted unless the upwinding criterion is later satisfied in the subsequent recomputations
(triggered by changes to AcceptedFront near y).

We use a heap-sort data structure to maintain the sorting of the Considered points based
on their SortV alues. As a result, selecting ȳ (stage 3 of the algorithm) can be performed
in O(1) operations, but every time a Considered point’s SortV alue changes, its position in
the heap-sort should change as well. This resorting can be performed in O(logK) operations,
where K < N is the current number of Considered mesh-points.
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Remark 6.4. As noted in section 5, the general OUMs require using T (y), the time-to-
travel-along-the-characteristic, as a SortV alue. However, this choice is dictated by the neces-
sity of building the “correct” global (weak) solution to the PDE—any other ordering will risk
running through the shocks and/or violating the entropy conditions [36]. In our current work,
the characteristics are the trajectories of a smooth vector field and the solution is computed
only locally; hence shocks cannot occur if ∆ is sufficiently small. This smoothness of the solu-
tion enables us to use different sorting criteria, including σ(y) (as above), d(y) (the geodesic
distance-to-y0), and the geodesic (or along-the-trajectory) distance to AcceptedFront. Our
particular choice (SortV alue = σ(y)) is a result of an empirical trade-off: it requires a lesser
RNF than (SortV alue = d(y)) and generally decreases the length of AcceptedFront as com-
pared to (SortV alue = T (y)).

6.5. Changing AcceptedFront and extending the mesh. Every Considered point y is
a vertex of at least one tentative triangle yy1y2, where y1 and y2 are adjacent mesh-points on
the AcceptedFront. As a Considered mesh-point ȳ becomes Accepted, this tentative triangle
becomes fully accepted and the AcceptedFront has to be modified accordingly. (Note that
the newly added triangle will always use the segment y1y2 adjacent to ȳ—even if that point
was computed using some other segment yiyj in NF (ȳ).) The changes to AcceptedFront
proceed in two stages as follows:

1. Removal from AcceptedFront of each segment yiyj shared by two fully accepted
triangles (or used by just one such triangle if both yi and yj are on the initial boundary
I).

2. Adding to AcceptedFront segments ȳyj , for all AcceptedFront mesh-points yj adja-
cent to ȳ.

Once the AcceptedFront has been modified, it may be necessary to extend the mesh near
ȳ. The existing mesh includes Accepted points and a narrow band of Considered points near
AcceptedFront. If two mesh-points yk,yl �∈ I are adjacent, then we will refer to ykyl as a
perimeter segment if that segment is used as an edge by a unique triangle. The AcceptedFront
plays the role of an approximate boundary for (locally) solving the PDE. Correspondingly, if y
is Accepted but not on AcceptedFront, then there should be no perimeter segments adjacent
to y. Moreover, if ykyl is on AcceptedFront, then it should not be a perimeter segment
either. Yet if one of these points was just Accepted, the segment may be on the perimeter
of the existing mesh and some local mesh-building is required to create the second triangle
adjacent to ykyl. The following heuristic algorithm is similar to the “advancing front mesh
generation” method described in [27].

Local mesh-extension algorithm. Let L = ‖yk − yl‖ be the length of a perime-
ter segment ykyl. Let γ be the smallest outer angle formed by this segment, i.e., γ =
min(∠yjykyl, ∠ykylym), where yjyk and ylym are perimeter segments adjacent to ykyl.
Also, since yk,yl �∈ I, there already exists a unique fully accepted triangle skl with these two
vertices.

A second triangle adjacent to ykyl is created by one of the following three procedures:

1. If γ ≥ π, then we introduce a new mesh-point ŷ (in the plane defined by skl) to form
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an isosceles triangle with ykyl as its base and sides ykŷ, ylŷ of length L1, where

L1 =

⎧⎪⎪⎨
⎪⎪⎩

2L if L ≤ ∆
2 ;

∆ if ∆
2 < L ≤ ∆

0.55 ;

0.55L if ∆
0.55 < L.

(See Figure 8A.) The constants used above are purely heuristic and are intended to
balance our preference for nearly regular triangles against the desired mesh-scale ∆;
see [27] for further details.

2. If ∠yjykyl = γ is acute, then a triangle yjykyl is added to the mesh. If ‖yjyl‖ > 2∆,
then that triangle is split in two by adding a new Considered mesh-point ŷ. (See
Figure 8B.)

3. If γ ∈ [π2 , π), then we compute Rjkl and Rklm, the radii of circles passing through the
respective triples of points. (The radius is assumed +∞ if the corresponding outer
angle is ≥ π.) Without loss of generality, assume that Rjkl ≥ Rklm. If Rklm < L1,
then a triangle ykylym is added to the mesh without adding any new mesh-points.
(See Figure 8C.) Otherwise, we create a new isosceles triangle ŷykyl, as described
above (see procedure 1).

We note that if a new mesh-point is created, then the choice of ŷ merely fixes the local
coordinate system in which the “normal” components of y are next computed from NF (y)
(stage 6 of the algorithm) as described in section 6.2.

yj

yk yL

ym

y
^ yj

yk yL

ym

y
^

A B

yj

yk yL

ym

C

Figure 8. Local mesh generation: three different procedures for extending the mesh at ykyl. New segments
are shown by dashed lines. If created, the new mesh-point is labeled ŷ. In all examples, the mesh is assumed
preexistent below the polygonal perimeter.
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Remark 6.5. The local mesh-generation step above provides no provable guarantee for the
quality of the resulting triangles (aspect ratio, minimum angle, etc.). Nevertheless, we note
that

1. in practice, the generated mesh is fairly well behaved (e.g., in the example considered
in section 7, the minimum angle present in the mesh is > 18◦ and the vast majority
of triangles have minimum angles > 30◦.)

2. the aspect ratio of the constructed triangles does not directly affect the quality of
manifold-approximation. Every Considered mesh-point y is computed using all the
segments in NF (y), not only the immediately adjacent triangles.

3. additional postprocessing procedures (diagonal swapping and mesh smoothing) can be
used to improve the aspect ratios once the manifold is constructed. See [27] for further
details.

4. our mesh-generation method requires O(1) operations for each Accepted point. More
sophisticated (and more computationally expensive) mesh-generation procedures can
be used to obtain triangles with guaranteed minimum angles. For example, mesh-
quality guarantees can be obtained for Delaunay triangulation methods [5] and for
hybrid advancing-front/Delaunay triangulation methods [29].

5. our method clearly uses the fact that k = 2. For the general case k > 2, the mesh
extension step would require building a (local) simplicial complex in the manifold
tangent space compatible with the current polytope boundary (i.e., AcceptedFront).
This construction has to be performed only locally and no mesh-quality (aspect ratio)
guarantees are required. Thus, any hypersurface meshing method can be used (e.g.,
[4, 17]).

6.6. Stopping criteria. The stopping criterion used in our implementation is the unavail-
ability of any Considered points with σ(y) ≤ Σ, where Σ is a prespecified (max-distance-
along-the-trajectory) parameter. Using the heap-sort data structure, the criterion can be
checked by a single comparison: the algorithm stops as soon as SortV alue(ȳ) > Σ, where ȳ
is the current first element on the heap.

We note that other stopping criteria (Euclidean or geodesic distance, time-along-trajectory,
total number of simplexes, etc.) can be used independently of the chosen SortV alue.

6.7. Algorithm features and possible optimizations. The algorithm we have described
has the worst-case computational complexity of O(RNFN logK), where N is the total number
of mesh-points, RNF provides the maximum number of recomputations for a Considered
point, and K is the maximum number of mesh-points marked Considered at the same time
(typically, ≈

√
N). This is different from the O(N) complexity of the explicit methods of

section 2. Nevertheless, this additional cost is justified since it results in a reduction of
discretization errors; see, for example, Figure 6 and the discussion of local truncation errors
in section 4.1. In addition, the overall computational efficiency of our method is much better
since the “constant coefficients terms” in the computational cost are largely dependent on
the geometry of the manifold rather than on the geometric stiffness of the vector field (see
Remark 2.1).

Remark 6.6. For k > 2, a generalization of the algorithm described above will have the
same asymptotic complexity of O(RNFN logK). However, a (constant factor) increase in



A FAST METHOD FOR APPROXIMATING INVARIANT MANIFOLDS 251

cost appears for k < n − 1. In that case, a system of (n − k) PDEs has to be solved to
update each Considered point (section 3). The geometric argument in section 4 shows that
solving the discretization of that system requires an (n − k)-dimensional Newton–Raphson
method. This contrasts our method with the approaches introduced in [18, 21, 7], for which
the computational cost of updating a single marker increases with the manifold dimension.

Remark 6.7. Given our method of construction, the manifold-approximation always con-
tains the (approximate) trajectory of each already Accepted mesh-point. (This stems from the
upwinding criteria and is independent of our choices of SortV alue and/or stopping criteria.)
That property is similarly possessed by the methods introduced in [18] and [6], but not by
those in [15] and [20].

Remark 6.8. Our algorithm may terminate before Σ is actually reached: given the partic-
ular choices for the method-parameters (desired mesh-scale ∆, initialization radius Rinit, and
NearFront radius RNF ), it might be impossible to obtain an accurate (upwinding-condition-
satisfying) update for any of the current Considered points. Such Considered points will have
SortV alue = +∞ and, for the sake of efficiency, will not be placed onto the heap-sort. We
note that such “early termination” can be easily determined in O(K) operations by checking
if σ(yj)+∆ << Σ for any yj on the final AcceptedFront. For the examples in this paper, the
suitable parameter values were obtained empirically. A better implementation would address
this adaptively: RNF can be increased and/or ∆ can be decreased (by refining the current
AcceptedFront) whenever a possibility of early termination is detected. In addition, a valuable
extension would be to vary these parameters automatically based on the detected information
about the manifold geometry (e.g., curvature), the vector field’s tangency to AcceptedFront,
and on the current error estimate. We note that such adaptive versions are already available
for some of the prior methods mentioned in section 2 (see, e.g., [21]).

7. Example: The Lorenz system. We consider the classical example of the Lorenz system
[23]:

x′ = ς(y − x);

y′ = ρx− y − xz;

z′ = −βz + xy;(14)

with the canonical parameter values ς = 10, β = 8
3 , and ρ = 28.

In this case, the system has three fixed points: the origin and (±6
√

2,±6
√

2, 27). The
eigenvalues for the Jacobian at the origin are λ ≈ −22.8, −2.67, 11.8; thus, the origin has a
two-dimensional stable manifold. The ratio of the eigenvalues suggests (at least locally) the
geometric stiffness similar to that encountered in (3).

In addition, the stable manifold of the origin has complicated geometry: it spirals into
the famous “butterfly-like” chaotic attractor and also twists around the z-axis; see Figure 9.
As a result, it became a de facto standard for testing methods for the invariant manifold-
approximation (e.g., compare with [22, 15, 7, 16]).

We initialize the AcceptedFront by subdividing the circle of radius Rinit = 2 around the
origin in Es(0) into N0 = 21 segments (i.e., ∆ = 0.6). We start by placing 21 “hanging-
simplexes” into the list of Considereds and proceed as described in section 5. The calculation
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Figure 9. The invariant manifolds of the origin (two views; rotated around z-axis). The stable manifold
(displayed semitransparent) is computed up to Σ = 120 and the color indicates the trajectory-arc-length σ. The
unstable manifold (in black) is computed by integrating initial conditions in Eu(0) forward in time.

stops once we Accept everything with the trajectory-arc-length less than the specified Σ. For
the computation in Figure 10, RNF was set to 4∆; the resulting mesh contained 116,082
mesh-points and 230,011 simplexes.

Based on the visual and numerical evidence, the produced triangulated surfaces seem
to converge to Ws

Σ(0) as the accuracy parameters (Rinit and ∆) tend to zero. Aside from
comparing Figures 9 and 10 with those in [22], etc., we also note the indirect evidence of
two sample trajectories appearing to lie on the manifold in Figure 10. These trajectories are
obtained by integrating backward in time the initial conditions ±εe, where ε is small relative
to Rinit and e is a unit eigenvector corresponding to the eigenvalue λ ≈ −22.8. Animated
movies visualizing the growth and structure of this manifold are available at

http://www.math.cornell.edu/~vlad/manifold_movies/lorenz.html.

Based on a O(∆2) local truncation error of the discretized equation (7), we expect the
first-order convergence of the approximation to W s

Σ(0). Unfortunately, there is no known
closed-form parameterization for this manifold, which makes computing global approximation
errors difficult. Even computing the distance between two such triangulated surfaces (obtained
for different ∆’s) is not a trivial task. We rely on the examples of section 9 to numerically
test the order of convergence of our method.

http://www.math.cornell.edu/~vlad/manifold_movies/lorenz.html
http://www.math.cornell.edu/~vlad/manifold_movies/lorenz.html
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Figure 10. Stable manifold of the origin computed up to the trajectory-arc-length Σ = 120. The color
indicates σ. Two sample trajectories are shown for verification purposes.

8. Example: Pendula coupled by torsion. To demonstrate the applicability of our method
to constructing invariant manifolds of higher codimension, we consider here a test problem of
two simple pendula coupled by a torsional spring:

ψ′′
1(t) = − sin(ψ1(t)) + ε(ψ2(t) − ψ1(t)),

ψ′′
2(t) = − sin(ψ2(t)) + ε(ψ1(t) − ψ2(t)).(15)

This problem is discussed in detail in [3]; here, we reproduce only some basic properties of
the system.

In (15), ψi is the angular position of the ith pendulum, the full state of the system can be
recorded as (ψ1, ψ2, ψ

′
1, ψ

′
2), and the full phase-space is therefore four-dimensional. As written

above, the system is conservative, with the total energy given by

E =
(ψ′

1)
2

2
+

(ψ′
2)

2

2
− cos(ψ1) − cos(ψ2) +

ε (ψ1 − ψ2)
2

2
.(16)

The constant ε corresponds to a scaled Hooke’s law coefficient and we are interested in inves-
tigating the system for ε 	 1 (e.g., ε = 0.01, 0.05). We would like to construct the invariant
manifolds of the saddle point at z0 = (π, π, 0, 0) (i.e., both pendula standing upright with zero
angular velocity). The eigenvalues of the Jacobian matrix are ±

√
1 − 2ε and ±1; thus, both

stable and unstable manifolds are two-dimensional and there are no multiple time-scales in
the linearized system near z0. However, the energy level E = 2 corresponding to this saddle
is singular: it contains both stable and unstable manifolds of all the equilibria of the form
zm = ((2m+ 1)π, (2m+ 1)π, 0, 0). At the same time, for i �= j, this energy level does not
contain any points of the form ((2i+ 1)π, (2j + 1)π, ·, ·) —because of the torsional spring, the
potential energy at those points is higher than E(z0).

Figure 11 shows the projections of the entire energy level and of sample trajectories in
W u(z0) into the configuration plane (ψ1, ψ2) for different values of ε. The configuration space
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has a periodic structure (the behavior at (ψ1, ψ2) is the same as at (ψ1+2πm,ψ2+2πm)). The
uncoupled system (for ε = 0) is doubly periodic and, as a result, for small ε the configuration
plane clearly has a cellular structure. The cells are the squares whose vertices are at the
points ((2m+ 1)π, (2n+ 1)π) and whose boundaries correspond to the state where one of the
pendula is upright and the dynamics is especially sensitive.
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Figure 11. Projection into the configuration space: the energy level and a single (typical) orbit in Wu(z0)
for ε = 0.05 and ε = 0.01. The light green regions are unattainable due to the energy conservation.

Several types of connecting orbits inside the energy level can be determined and are very
useful in assessing the accuracy of the invariant manifold computations. For example, there
are heteroclinic trajectories connecting each zm with zm±1 (corresponding to the pendula
moving in unison) and homoclinic orbits lying along the “antidiagonals” ψ1 + ψ2 = (4m +
2)π (corresponding to the pendula departing from zm in opposite directions and moving in
symmetry until the spring pulls them back).

Here, we present several views of W u(z0) for ε = 0.01. Animated movies visualizing the
growth and structure of the manifold for ε = 0.1 are available at

http://www.math.cornell.edu/~vlad/manifold_movies/pendula.html.

In our computation, we initialized the AcceptedFront on a circle of radius Rinit = 0.5 in
Eu(z0), used ∆ = 0.1, and computed the manifold up to σmax = 15.5. We note several algo-
rithmic differences from the previous example. An energy conserving method could be built
to essentially reduce the search-space to a single dimension (i.e., except at zm, the energy
level is three-dimensional and the invariant manifolds have codimension 1 inside it). Instead,
we have chosen to implement the method in the full four-dimensional phase space, thus illus-
trating the construction of a manifold of codimension 2. A system of two quasi-linear PDEs is
solved to obtain each Considered point y (see (5)); the solution to the discretized nonlinear
system is obtained by a standard two-dimensional Newton–Raphson method (e.g., see [28]).
The resulting triangulated mesh approximates W u(z0). However, once the AcceptedFront
is sufficiently close to z±1, the numerical losses in energy result in “retracting” along the

http://www.math.cornell.edu/~vlad/manifold_movies/pendula.html
http://www.math.cornell.edu/~vlad/manifold_movies/pendula.html
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A B

Figure 12. Projection of Wu(z0) onto the (ψ1, ψ2) plane (Σ = 15.5; coloring indicates σ; a total of
77, 500 mesh-points) computed with (left) and without (right) “projection onto the energy level” procedure.
Black lines indicate the “cell” and homoclinic/heteroclinic trajectories. The light green “ink spots” indicate
regions unattainable due to the energy conservation (as in Figure 11). The right picture clearly shows the loss
of energy in the process of computation.

unstable manifolds W u(z1) and W u(z−1); see Figure 12B. This “folding onto itself” is a
numerical artifact rather than a feature of W u(z0).

To handle this problem, we implement an additional step of projection onto the energy
level: Immediately before a Considered mesh-point y is Accepted, we solve an initial value
problem

y′p(t) = sign (2 − E(y)) ∇E(yp(t)), yp(0) = y,

until the first intersection yp(τ) with the level set E = 2. If that point is within (∆/10)
from y, we set y = yp(τ) and continue as described in section 6; otherwise, the algorithm
terminates since the local energy loss after solving the PDE is considered too large.

This results in a much better approximation of W u(z0); see Figure 12A. Unfortunately,
this projection procedure becomes unstable near all zm’s since both W u(zm) and W s(zm) lie
in the same energy level E = 2, which becomes singular at each zm. Thus, our implementation
artificially stops the manifold from growing too close to those points; i.e., tentative triangles
are not added to segments of AcceptedFront which are within Rrestrict = 0.3 from zm.

Figure 13 shows two homoclinic orbits of z0 and two heteroclinic orbits connecting z0

to z1 and z−1. These trajectories appear to lie on the computed manifold-approximation,
indirectly confirming convergence to Wu

Σ(z0). However, a direct verification of convergence
for this example is hard due to the lack of analytic formulae for W u(z0).

9. Example: An egg carton surface. Finally, in order to test the rate of convergence
numerically, we consider a simple example for which the invariant manifold is a priori known.
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Figure 13. Two different (rotated) views of the projection of Wu(z0) into the (ψ1, ψ2, ψ
′
1) space. Conser-

vation of energy is enforced by the projection procedure. Coloring is used to indicate the fourth coordinate (ψ′
2)

ranging from −2.07 (blue) to 2.07 (red). The seeming self-intersection is a side effect of the three-dimensional
projection side effect. The thin black lines indicate the “cell.” The thick black lines indicate sample homoclinic
and heteroclinic trajectories.

Given a smooth function g(x, y), we consider a system

x′ = η1x;

y′ = η2y;

z′ = −µz + µg(x, y) + η1xgx(x, y) + η2ygy(x, y).(17)

If η1, η2, and µ are positive, then the point (0, 0, g(0, 0)) is a saddle and the graph of g(x, y) is
its unstable manifold. For testing purposes, we have chosen an “egg carton” function g(x, y) =
0.27 sin(2πx) sin(2πy); see Figure 14. Of course, the choice of (η1, η2, µ) also influences the
computational error; e.g., a bigger µ will obviously make this an easier problem since µ is the
rate at which all trajectories are pushed toward the manifold.

For every mesh-point (x, y, z), the approximation error E is the distance to the manifold
surface. An upper bound is readily available as E(x, y, z) ≤ |z − g(x, y)| and can be used to
compute the bound on L2 and L∞ errors for the entire mesh. In these tests we used Σ = 1.5
and two different values for µ (1 and 1/4). All computations were repeated for the “isotropic”
case η1 = η2 = 1 (see Figure 15) and for the “anisotropic” case η1 = η2/5 = 1 (see Figure 16).
As expected, we observe a quadratic growth of the number of mesh-points N and a linear
decay of the approximation error in all of the examples.

10. Conclusions. We have introduced a fast algorithm for approximating invariant man-
ifolds of saddle points of the vector fields in Rn. The chief advantage of this method is its
efficiency: all the examples presented in sections 7 and 8 take under 90 seconds to compute
on a Pentium III 850 MHz processor with 256Mb RAM. Our approach is new and many re-
lated issues remain open. Possible directions for future work include higher-order methods,
error bounds and estimates (possibly using an interval arithmetic implementation), adaptive
and parallel methods, exploration of robustness under parameter variation, and proofs of
convergence. The previously available methods described in section 2 are more developed
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Figure 14. An “egg carton” function g(x, y) = 0.27 sin(2πx) sin(2πy).

Parameters µ = 1

∆ Rinit N L2 Error L∞ Error

∆0 = 0.05 r0 = 0.2 3940 0.034316 0.103143

∆0 × 2−1 r0 × 2−1 14039 0.016671 0.056432

∆0 × 2−2 r0 × 2−2 53271 0.008582 0.028589

∆0 × 2−3 r0 × 2−3 208626 0.004168 0.015052

∆0 × 2−4 r0 × 2−4 829158 0.002086 0.007570

Parameters µ = 0.25

∆ Rinit N L2 Error L∞ Error

∆0 = 0.05 r0 = 0.2 3894 0.046520 0.152055

∆0 × 2−1 r0 × 2−1 13936 0.023853 0.081145

∆0 × 2−2 r0 × 2−2 53159 0.012685 0.043746

∆0 × 2−3 r0 × 2−3 208502 0.005986 0.021406

∆0 × 2−4 r0 × 2−4 828884 0.002969 0.011011

Figure 15. Isotropic case (η1 = 1, η2 = 1). The (x-y)-projection of the mesh (color indicates trajectory-
arc-length σ) and the table of error bounds.

(with many extensions available), but, to the best of our knowledge, are substantially more
time-consuming on the problems with multiple time-scales.

The perspective of building the manifold as a collection of simplexes, each of them satis-
fying a locally posed PDE, is quite general. For example, customized stopping criteria can be
used to treat manifolds converging to attracting limit sets. We are also planning to investigate
the applicability of our approach to approximating invariant manifolds of saddle-type cycles
(see [19] and [26] for the existing methods).

Our current implementation relies on k = 2 for the local mesh-generation procedure only.
We expect that a combination of our approach with robust techniques for higher-dimensional
mesh extension will yield fast methods for the general case (see Remark 6.5).

Finally, we note that some of the ideas illustrated above may be useful in the context
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Parameters µ = 1

∆ Rinit N L2 Error L∞ Error

∆0 = 0.05 r0 = 0.2 3629 0.038158 0.090629

∆0 × 2−1 r0 × 2−1 13429 0.018711 0.049707

∆0 × 2−2 r0 × 2−2 51466 0.009302 0.024855

∆0 × 2−3 r0 × 2−3 204446 0.004601 0.011553

∆0 × 2−4 r0 × 2−4 815410 0.002374 0.006496

Parameters µ = 0.25

∆ Rinit N L2 Error L∞ Error

∆0 = 0.05 r0 = 0.2 3621 0.040681 0.127953

∆0 × 2−1 r0 × 2−1 13425 0.020136 0.059774

∆0 × 2−2 r0 × 2−2 52066 0.010428 0.026192

∆0 × 2−3 r0 × 2−3 205321 0.005296 0.013102

∆0 × 2−4 r0 × 2−4 815905 0.002631 0.007336

Figure 16. Anisotropic case (η1 = 1, η2 = 5). The (x-y)-projection of the mesh (color indicates
trajectory-arc-length σ) and the table of error bounds.

of prior methods, which grow the manifold as a collection of (k − 1)-dimensional topological
spheres. In particular, we believe that the method defined in [20, 21] can be substantially
accelerated by using parts of Mi+1 as they become available (as opposed to using Mi only
and producing the entire Mi+1 at once). Further speedup can be attained by ordering the
computation of markers (first compute those whose trajectories are “the least tangential” to
Mi) and using a discretized system-solver instead of the time-consuming shooting methods.

Acknowledgments. The authors would like to thank S. Vavasis, K. Lin, O. Junge, H.
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Analysis of Rotation–Vibration Relative Equilibria
on the Example of a Tetrahedral Four Atom Molecule∗

K. Efstathiou†, D. A. Sadovskii†, and B. I. Zhilinskii†

Abstract. We study relative equilibria (RE) of a nonrigid molecule, which vibrates about a well-defined equi-
librium configuration and rotates as a whole. Our analysis unifies the theory of rotational and
vibrational RE. We rely on the detailed study of the symmetry group action on the initial and
reduced phase space of our system and consider the consequences of this action for the dynamics of
the system. We develop our approach on the concrete example of a four-atomic molecule A4 with
tetrahedral equilibrium configuration, a dynamical system with six vibrational degrees of freedom.
Further applications and illustrations of our results can be found in [van Hecke et al., Eur. Phys.
J. D At. Mol. Opt. Phys., 17 (2001), pp. 13–35].

Key words. small vibrations, vibration-rotation of molecules, spherical top, relative equilibria, 1:1:1 resonant
oscillator, normalization, reduction, bifurcations, orbit space, finite group action, reversing symme-
try, Molien generating function, integrity basis
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1. Introduction. This paper unifies modern methods of classical theory of symmetric
Hamiltonian dynamical systems and quantum theory of molecules (and other isolated finite-
particle systems). Considerable progress was achieved in both directions in the last decades
and deep relations between these seemingly distant theories became evident. Significant effort
by mathematicians and molecular physicists to converge the two fields resulted in the qual-
itative theory of highly excited quantum molecular systems based on recent mathematical
developments. We join the two approaches and demonstrate what kind of concrete results
can be immediately obtained in molecular systems [1, 2, 3, 4] by applying powerful meth-
ods of symmetric Hamiltonian systems [5, 6, 7, 8, 9, 10, 11]. We choose a concrete problem
of rotation–vibration of a four-atomic molecule with tetrahedral equilibrium configuration
[12, 13] in order to explain the details of our approach.

1.1. Vibrational relative equilibria or nonlinear normal modes. Montaldi, Roberts, and
Stewart [14, 15, 16] gave a general description of periodic solutions near equilibria of symmetric
Hamiltonian systems: the so-called nonlinear normal modes or relative equilibria (RE). They
related the number of RE to the symmetry group of the system and showed, on several
examples of bound systems of vibrating particles, that this number can be significantly larger
than the number of vibrational degrees of freedom. This mathematical result was not fully
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appreciated by molecular physicists until it was reproduced by an alternate technique [17,
18, 19] based on the analysis of the reduced system in the so-called polyad approximation,
a generalization of the approximation used for two-oscillator systems in [20, 21, 22, 23, 24,
25, 26, 27] and others. It was shown that fixed points of the symmetry group action on the
reduced phase space correspond to vibrational RE. Later work [28, 29, 30]1 uncovered more
fully the correspondence of both approaches and bridged the differences in their tools and
terminology.

1.2. Rotational RE or stationary axes of rotation. Similar analysis of stationary points
of the reduced rotational system [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43] was initiated
in molecular physics even before the analysis of vibrational RE. In terms of symmetric Ha-
miltonian systems [45, 46, 44], this analysis is equivalent to studying rotational RE [28, 29].
This was demonstrated in the recent study [12] of the rotational structure of the tetrahedral
molecule P4 [47],2 where the energy of rotational RE is derived from the parameters of the
internuclear potential. Our present analysis extends the method in [12] to rotation–vibration
systems.

1.3. Applications in molecular physics and spectroscopy. Classical analysis of different
kinds of RE is used for the description of molecular energy level spectra on the basis of
the classical quantum correspondence principle, which links the topological description of
the classical dynamical system to such qualitative aspects of quantum spectra as existence
of bands, polyads, clusters, and their persistence under small modifications of parameters.
Some of these qualitative characteristics are discussed in the present paper. Review articles
[48, 49, 50, 51, 52, 53]3 give more examples of molecular applications and initiation to formal
theory.

Much of the work in molecular spectroscopy is done using so-called effective model Hamil-
tonians Heff , which describe explicitly only a fraction of degrees of freedom of the system and
treat other degrees effectively. In other words, Heff describe reduced systems, where reduction
is based on a model assumption of approximate separability and/or approximate dynamical
symmetries. Equilibria (stationary points) of Heff are RE of the initial system.

In practice, reduction often remains only an abstract theoretical possibility because param-
eters in the full initial molecular Hamiltonian are unknown. So, parameters of Heff are simply
fitted to experimental data. Classical analogues of such phenomenological model Hamiltoni-
ans can be constructed if excitation is sufficiently high to validate the classical limit. When,
as it is often the case, only some degrees of freedom described by Heff (e.g., rotation) can
be meaningfully treated as classical, the rest (e.g., vibration) is kept quantum. The energies
of such hybrid “semiquantum” systems are eigenvalues that depend on the dynamical vari-
ables of the classical subsystem. The most well-known example of semiquantum energy is the
rotational energy surfaces of vibration-rotation systems [36, 35, 41].

1The approach of Montaldi and Roberts is less oriented to the reduced problem and thus can be potentially
extended to molecules in which separation of vibration and rotation and the introduction of the molecule-fixed
frame is problematic. For the relatively rigid molecules, we consider their approach as being equivalent to ours.

2Among the few different molecules of type A4, the phosphorus P4 is studied experimentally; see [47].
3Our approach follows closely the ideas in [48, 49, 50], which review group actions and their applications

in physics.
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The semiquantum approach turned out to be very fruitful, and numerous vibration-
rotation systems at low vibrational excitation were analyzed in great detail [37, 38, 18, 54, 55,
56, 42, 57, 43, 58]. In particular, typical (universal) modifications of the cluster structure of
the energy level spectrum, or quantum bifurcations, were described in terms of modifications
of the set of stationary points of the energy surfaces. Direct, explicit relation of these station-
ary points to classical RE was established recently in [58, 13]. Other important qualitative
quantum phenomena include rearrangements (crossings) of energy level bands [59, 43, 60] and
quantum monodromy [61, 62], which are interpreted as crossings of semiquantum energies and
are also related to classical RE [60, 63, 64, 65].

1.4. Main idea. We combine recent theories of rotational RE and vibrational nonlin-
ear normal modes in order to study the rotation–vibration problem. Using symmetry and
topology, we find particular solutions (critical orbits) common to a whole class of model sys-
tems with given symmetry and with different potentials. Subsequently, we define a concrete
potential, normalize the classical system, and construct explicitly the effective Hamiltonian
Heff . Using this Hamiltonian, we obtain quantitative predictions for concrete molecular mod-
els, which illustrate general qualitative results. We explain our approach in the example of
rotation–vibration of the four-atomic homonuclear molecule A4 with tetrahedral equilibrium
configuration [47].

2. Basic aspects of the analysis. We review certain general definitions, which are used
later in the paper, and give the plan of the analysis.

2.1. Symmetry group Td and its extensions. Along with translation and rotational sym-
metry, which are present for any isolated finite-particle system in the absence of external fields,
each molecule possesses its own internal symmetry related to the existence of identical par-
ticles. The symmetry group of our system originates from the spatial symmetry group Td
of the tetrahedral equilibrium configuration of A4 and momentum reversal T , which in the
original system sends (q, p) to (q,−p), and is discussed in more detail in section 3.1. Our
initial Hamiltonian is invariant with respect to these symmetries. As an abstract group, Td
is the permutation group of four identical objects. We use the Schönflis point group notation
[67, 66], which is standard in molecular physics. Irreducible representations of Td are most
frequently labeled in molecular physics as A1, A2 (one-dimensional), E (two-dimensional),
and F1, F2 (three-dimensional).

2.2. Vibrational degrees of freedom of an A4 molecule. The A4 molecule has six vibra-
tional degrees of freedom, which constitute the nondegenerate “breathing” mode A1, and the
doubly and triply degenerate modes E and F2. The spectroscopic notation of these modes is
νA1
1 , νE2 , νF2

3 . We use a simplified notation for the coordinates and conjugate momenta of the
modes given in Table 1 and we also use classical complex oscillator variables

z = q + ip, z̄ = q − ip.(2.1)

The zero order vibrational Hamiltonian H0 of A4 represents a 1-oscillator, a 1:1 oscillator,
and a 1:1:1 oscillator with frequencies ωA1 , ωE , and ωF2 , respectively.

2.3. Rotation–vibration Hamiltonian. Assuming that the static equilibrium configura-
tion of A4 about which the atoms are vibrating is well defined and the amplitudes of vibrations
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Table 1
Notation for vibrational and rotational dynamical variables of the A4 molecule. Expression of angular

momenta jα in terms of dynamical variables of a two-dimensional oscillator (Schwinger representation) is used
in this table and throughout the paper.

Subsystem Traditional notation This paper

F2 mode qF2
α , pF2

α , α = x, y, z qi, pi, i = 1, 2, 3

E mode qEα , pEα , α = a, b or 1, 2 qi, pi, i = 4, 5

A1 mode qA1 , pA1 qa, pa
rotation momenta jα, α = x, y, z qi, pi, i = 6, 7

are small, we can separate molecular rotation and define the frame rotating with the molecule.
The molecule is isolated, external fields are absent, and translation of the center of mass is
therefore excluded.

To derive the rotation–vibration Hamiltonian H, we can follow the procedure described
in Chapter 11 of [1] and, more rigorously, in Chapter 7.10 of [68]. The molecule-fixed frame
is related to the equilibrium configuration by the Eckart conditions. The kinetic energy T is
a complicated function

2T =
∑
i

mi

[
(Ω ∧ (R0

i + ri))
2 + ṙ2

i + 2Ω(ri ∧ ṙi)
]

(2.2)

of small vibrational displacement velocities and angular velocities defined with respect to
this frame. The intramolecular potential U can be simply written in terms of vibrational
coordinates. The Hamiltonian form requires rotational angular momenta j, defined in the
molecule-fixed frame, and vibrational coordinates q and momenta p.

To put the initial Hamiltonian in the form suitable for normalization, we Taylor expand
H = T (q, p, j) +U(q) in q and rescale (p, q) to bring the harmonic part to the standard form.
We then express the components of j in terms of coordinates and momenta of the auxiliary two-
dimensional harmonic oscillator in order to treat vibrational and rotational variables in the
same way and use complex variables z in (2.1). The resulting formal power series expression

H = ω(H0 + εH1 + ε2H2 + ε3H3 + · · · )(2.3)

is the starting point of the normal form transformation.
We use the concrete example of the phosphorus molecule P4 with the tetrahedral equi-

librium configuration and harmonic atom–atom bond potential [13] to illustrate our results.
The only two molecular parameters in this example are the energy scale ω and the dimen-
sional smallness parameter ε = (kmr)−1 in the series expansion. Here r, m, and k stand
for the interatomic distance, the mass of the atoms, and the force constant of the potential,
respectively. The values of ε and ω can be used as phenomenological parameters to reproduce
experimental data qualitatively: ε ≈ 2 × 10−2 and ω ≈ 329 cm−1 for P4 [13].

2.4. Reduced system. The approximate dynamical symmetry of the system with Hamil-
tonian (2.3) is defined by the zero order term H0. We suppose that the frequencies νA1 , νE ,
and νF2 are incommensurate; i.e., we assume the absence of any resonances between different
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vibrational modes. In such a case, we can introduce reduced phase spaces for each of the sub-
systems simultaneously. The total reduced phase space is the product of these spaces. The
normal form Heff is an effective rotation–vibration Hamiltonian describing polyads of nonreso-
nant modes A1, E, and F2. For simplicity, we neglect the A1 mode (i.e., we set qA1 = pA1 = 0)
and focus on modes E and F2.

2.4.1. Rotational subsystem; rotational space S
2. Conservation of the total angular

momentum is the consequence of the isotropy of physical space (in the absence of external
fields). The rotational dynamical variables jα (α = 1, 2, 3) are subjected to the constraint
j21 + j22 + j23 = const and the rotational phase space is a two-dimensional sphere S

2, which
can be constructed in the space R

3 with coordinates jα. For the auxiliary two-dimensional
oscillator, used to represent the momenta jα (Table 1), the restriction j2 = const is equivalent
to fixing the sum of two actions.

2.4.2. E-mode subsystem, vibrational space CP 1 ∼ S
2. Exploiting the well-known

equivalence of the two-dimensional 1:1 harmonic oscillator and an angular momentum system,
we introduce vibrational angular momenta v1, v2, v3 [69, 20, 21]. The internal structure of
vibrational polyads formed by the doubly degenerate vibrational mode E can be described in
terms of these dynamical variables. The E-mode polyad sphere S

2 is defined by the equation

v2
1 + v2

2 + v2
3 = n2

e = const

in the ambient space R
3 with coordinates (v1, v2, v3). Any point on this sphere is uniquely

represented by the values of (v1, v2, v3) if we keep in mind that v2
1 + v2

2 + v2
3 is a constant.

The diffeomorphic space CP 1 can be defined in C2 −{0} using the equivalence class of points
z4:z5. Two complex numbers (z4, z5) can be used as coordinates on CP 1

ne
if their modules are

restricted as

|z4|2 + |z5|2 = 2ne

and all pairs (z4, z5), which differ in a common phase factor eiφ, correspond to the same point
of CP 1. For example, coordinates (v1, v2, v3) = (0, 1, 0) and (z4, z5) = (1,−i) = (eiφ, eiφ−π/2)
define the same point.

2.4.3. F2-mode subsystem; vibrational space CP 2. Generalization of the above con-
struction for the F2-mode 1:1:1 oscillator [17, 18, 70] leads to the reduced phase space CP 2

nf
.

The approximate integral of motion equals

1
2(z1z̄1 + z2z̄2 + z3z̄3) = nf ≈ const,

and (z1, z2, z3) can be used as coordinates on CP 2. In fact, we can define a point on the CP k

space as an equivalence class of points on Ck+1 given by their homogeneous coordinates z1 :
z2 : · · · : zk+1 or, equivalently, as a class of points on (z1, z2, . . . , zk+1) ∈ Ck+1 defined up to a
common phase (z1, z2, . . . , zk+1) ∼ eiφ(z1, z2, . . . , zk+1) and such that |z1|2+|z2|2+· · ·+|zk+1|2
is a constant.
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2.4.4. Full reduced phase space CP 2×CP 1×S
2. Before reduction, our initial molecular

system has five vibrational degrees of freedom (if the nondegenerate A1 mode is neglected) and
two auxiliary oscillatory degrees of freedom introduced to describe the rotational subsystem.
Three independent reductions fix the strict integral of motion j (the amplitude of the total
angular momentum) and polyad integrals ne and nf of the doubly degenerate mode E and
the triply degenerate mode F2. The reduced system is left with only four degrees of freedom.
Reduction makes the topology of the reduced phase space more complicated. The total reduced
space is a direct product of the rotational phase sphere, S

2
j , E-mode vibrational polyad sphere

CP 1
ne

∼ S
2, and F2-mode vibrational polyad phase space CP 2

nf
. Omitting extra indexes and

shortening the notation, we represent the topology of the reduced phase space simply as
CP 2 × CP 1 × S

2, where S
2 and CP 1 stand for the rotational and vibrational E-mode phase

spaces, respectively.

2.4.5. Normal form. Once the Hamiltonian function H is in the oscillator form (2.3), we
can normalize it using the standard Lie transform method [71, 72, 73, 74]. All odd orders
[odd degrees in (z, z̄)] vanish in the normal form

Hnf = ω(H0 + ε2H2 + ε4H4 + ε6H6 + · · · ),(2.4)

which is a power series in ε2. To obtain the reduced Hamiltonian Heff , the terms H2k in
(2.4) should be expressed as functions of basic invariant polynomials (of all generators of
the algebra of invariant polynomials) on the reduced phase space CP 2 × CP 1 × S

2. Due to
algebraic dependencies between generators (or “sygyzies”) a special polynomial basis should
be constructed. A general solution to this problem is provided by a Gröbner basis. Two more
specialized polynomial bases—an integrity basis used in invariant theory, and a tensorial basis
used by spectroscopists to represent effective Hamiltonians—can be used. We further discuss
these bases in section 6.4.

2.5. Scheme of the analysis. Our analysis of a finite-particle quantum system includes
several steps: (i) construction of the initial complete classical Hamiltonian H and of the cor-
responding quantum operator; (ii) reduction of H, taking into account strict and approximate
integrals of motion, i.e., the “model”; (iii) analysis of classical RE, relative periodic orbits,
and invariant submanifolds;

(iv) interpretation in terms of quantum energy spectrum. Each step has a general part
and a concrete part. Many important general results follow from the topology of the reduced
phase space and the symmetry group action on it, i.e., from the model.

In the first half of the paper, which includes sections 4 and 5, we find as much information
about our system as possible before any concrete interaction potential bounding the particles is
introduced explicitly and even before any dynamics is studied. After establishing the topology
of the reduced phase space CP 2 ×CP 1 ×S

2 and the invariance symmetry group Td×T of our
system, we study the action of the group Td × T on CP 2 × CP 1 × S

2. To this end, we first
consider the action on the individual factor spaces CP 2, CP 1, and S

2 and then extend it to
the full reduced space. Time reversal T and other reversing symmetries, which include T , are
antisymplectic and should be treated differently from purely spatial symplectic symmetries.

We assume that the reduced Hamiltonian Heff is a generic Td×T invariant Morse function
on CP 2×CP 1×S

2. The RE of our system are stationary points of Heff , which exist anywhere
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Table 2
Classes of conjugated and invariant subgroups of the Td × T group. Part I.

Class4 Structure5 Description and comments

Subgroups of order 1

1 C1 {1} Trivial subgroup.

Subgroups of order 2

1 T {1, T } Momentum (or time) reversal, also denoted as Z2.

6 Cs {1, σα} Reflection in a plane, Td has six conjugated operations σα.

6 Ts {1, Ts} Simultaneous reflection and time reversal,8 also denoted as (σT )
or (σZ2).

3 C2 {1, C2} Rotation by π around one of axes Sa
4 , a = (x, y, z).

3 T2 {1, T2} Rotation by π and time reversal,6 also denoted as (C2T ) or (C2Z2).

Subgroups of order 3

3 C3 {1, C3, C
2
3} Cyclic rotational subgroups corresponding to four different C3 axes

of the Td group.

Subgroups of order 4

1 D2 {1, Cx
2 , C

y
2 , C

z
2} An invariant subgroup of the Td group.

3 S4 {1, S4, C2, S
3
4} Cyclic groups generated by the Sa

4 operations a = (x, y, z).

3 T4 {1, T+4, C2, T−4} Cyclic groups generated by the Sa
4 ◦ T = T a

+4 operations.9

3 C2 × T2 {1, Ca
2 , T b

2 , T c
2 } (a, b, c) is one of the three cyclic permutations of (x, y, z).6

6 Cs × T2 {1, σa1 , T a
2 , T a2

s } These correspond to six different choices of the σa1 symmetry
plane.6,7,8

3 C2v {1, Ca
2 , σ

a1 , σa2} Subgroup of Td. Axis a is one of (x, y, z).7

3 C2 × Ts {1, Ca
2 , T a1

s , T a2
s } Obtained from C2v by combining two reflections and time rever-

sal7,8

3 C2 × T {1, C2, T , T2} direct product of Ca
2 and time reversal. Axis a is one of (x, y, z)6

6 Cs × T {1, σ, T , Ts} corresponding to one of the six conjugated symmetry planes σ of
the Td group.8

Subgroups of order 6

4 C3 × T {1, C3, C
2
3 ,

T , C3T , C2
3T }

Direct product of C3 and time reversal T corresponding to four
different axes C3.

4 C3v {1, 2C3, 3σ} Conjugated subgroups of the spatial symmetry group Td.

4 C3∧Ts {1, 2C3, 3Ts} This group has Ts instead of σd in C3v and is isomorphic to C3v as
an abstract group.8

close to the limit of linearization (i.e., at any arbitrarily small perturbation ε). In the simplest
case, RE are entirely defined by the finite symmetry Td × T of our system. They lie on the
critical orbits of the Td × T action on CP 2 × CP 1 × S

2 (they are isolated fixed points of
this action). The position of these orbits is independent of the interaction potential (and
thus of the particular Hamiltonian). We combine information about critical orbits on each
of the factor spaces of CP 2 × CP 1 × S

2 in order to find all critical orbits on the total space.
Considering Morse theory requirements, local symmetry, and local symplectic coordinates, we
suggest possible stabilities of RE.

Sections 6–9 focus on the dynamical analysis of the reduced system; concrete applications
are presented in sections 10 and 11. As soon as the interaction potential and the Hamiltonian

4–9See the footnotes to Table 3 on the following page.
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Table 3
Classes of conjugated and invariant subgroups of the Td × T group. Part II.

Class4 Structure5 Description and comments

Subgroups of order 8

1 D2 × T { 1, Cx
2 , C

y
2 , C

z
2 ,

T , T x
2 , T y

2 , T z
2 }

Direct product of the D2 subgroup of Td and time reversal
T .

3 C2v × T { 1, Ca
2 , σ

a1 , σa2 ,

T , T a
2 , T a1

s , T a2
s }

Direct product of the Ca
2v subgroup of Td and time reversal

a = (x, y, z).

3 D2d {1, Ca
2 , σ

a1,2 , Cb,c
2 , S±1

4 } Conjugated subgroups of the spatial symmetry group Td.

3 C2v∧T2 {1, Ca
2 , σ

a1,2 , T b,c
2 , T a

±4} Isomorphic to D2d as an abstract group6,7,9; two conju-
gated C2 rotations and two conjugated S4 operations of
D2d are replaced for their products with T .

3 D2∧Ts {1, Ca
2 , T a1,2

s , Cb,c
2 , T a

±4} Isomorphic to D2d as an abstract group; has two conju-
gated σ reflections and two conjugated S4 operations7,8,9

of D2d replaced for their products with T .

3 S4 × T { 1, S4, C2, S
−1
4 ,

T , T4, T2, T−4}
Direct product of the cyclic subgroup Sa

4 of Td and time
reversal.9

3 S4∧T2

(S4∧Ts)

{1, Ca
2 , T a1,2

s , T b,c
2 , S±1

4 } Isomorphic to D2d as an abstract group; has two conju-
gated σd reflections and two conjugated C2 rotations6,7,8,9

of D2d replaced for their products with time reversal T .

Subgroups of order 12

1 T Rotational subgroup of the Td group.

4 C3v × T Direct product of a C3v subgroup of Td and time reversal.

Subgroups of order 16

3 D2d × T Direct product of one of the three Da
2d subgroups of Td and

time reversal T .

Subgroups of index two (order 24)

1 T × T Direct product of T and time reversal, also denoted as T ×
Z2.

1 Td Tetrahedral group, isomorphic to the permutation group
π4 as an abstract group.

1 T∧Ts Another realization of π4 obtained from Td by replacing all
improper rotations, namely six σα and six S4 operations,
for their products with time reversal T .

Complete group (order 48)

1 Td × T Direct product of Td and time reversal group T .
4The leftmost column gives the number of conjugated subgroups in the class.
5When all operations in the group correspond to the same rotation axis a, we do not specify the choice of

the axis and omit index a.
6The operation T a

2 = Ca
2 ◦ T is rotation by π around axes a and time reversal; by convention a = (x, y, z)

is one of the axes S4.
7In the Td group, reflection planes σa1 and σa2 intersect on axis Ca

2 , where by convention a is one of (x, y, z);

in the Oh group these planes are called σd.
8The operation Ts = σ ◦ T is reflection in one of the six planes σd and time reversal; in particular, T a1,2

s =

T ◦ σa1,2 .
9The operations T a

±4 = T (Sa
4 )±1 = T ◦ (Sa

4 )±1, where a = (x, y, z), are operations S4 or S−1
4 combined with

time reversal T .
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are introduced explicitly, the value of Heff at critical orbits is found. This gives analytic
expressions for the energy of RE as a function of actions Ne, Nf , and J . Using these energies,
we characterize the multiplet of quantum states with quantum numbers Ne, Nf , and J . We
can also use the quantum analogue of Heff in order to compute energies of individual states.
Using the concrete Hamiltonian, we can check the Morse indexes of all known RE and find, if
necessary, additional RE which do not lie on critical orbits but are nevertheless required by
Morse theory conditions.

3. Finite symmetry group of the system. We briefly review the structure of the tetra-
hedral group Td and its extension Td × T . This group and its subgroups can be considered
as magnetic (or color) crystallographic symmetry groups; see Chapter 2 of [67]. Notation for
such groups is not commonly established. Below we explain our conventions and describe the
abstract group structure of Td × T given by its subgroup lattice (see Tables 2 and 3). We
distinguish only the nonconjugate subgroups of Td × T and study certain sublattices corre-
sponding to reduced or partial symmetry groups. This information is vital for understanding
the stratification of different reduced phase spaces by the action of Td ×T and, in particular,
for finding fixed points and invariant subspaces of this action.

3.1. Time reversal symmetry T . Momentum reversal symmetry T is a nonsymplectic
symmetry operation defined for the original physical 3-space coordinates and conjugate mo-
menta as

(q, p) → (q,−p).

We denote this operation as T , or simply as Z2, and imply that its action in each particular
context is either known or should be specified. We will distinguish the two types of behavior
(two representations of Z2) with regard to momentum reversal by “parity” indexes g (gerade)
and u (ungerade), respectively.

The symmetry operation T is also sometimes called time reversal . We like to make clear
that our operation T acts only on the phase space variables (q, p) and does not involve time
t. This implies that the action of T on the extended phase space is

T : (q, p, t) → (q,−p, t).

It can be seen that, even when the Hamiltonian of the system is invariant with regard to such
operation T , the corresponding equations of motion are not. In fact, this is due to the fact that
the action of T on (q, p) is antisymplectic. Operation T is an example of reversing symmetries.
Another commonly used definition of time reversal extends nontrivially our operation T to
time t:

Tt : (q, p, t) → (q,−p,−t).

This operation preserves the flow of the system with T -invariant Hamiltonian function. In
quantum mechanics, operation T changes the signs of all commutator relations while Tt pre-
serves these signs.

Of course, one can use either T or Tt for the analysis, as long as one understands their
action. For example, action of T and Tt on equilibria is the same, while their action on the
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trajectories γ : t→ (q, p) is different. Trajectories T (γ) and Tt(γ) coincide in the phase space
but have different direction. Reversing direction is the result of t → −t, which cannot be
represented as a geometric transformation of the phase space. Since in most cases we do not
work with extended phase spaces, we prefer to define T as just another transformation of the
phase space with coordinates (q, p).

The action of T ∼ Z2 on vibrational normal mode coordinates and conjugate momenta
is, of course, the same as on the 3-space q’s and p’s, and as we go to the complex variables

z = q − ip, z̄ = q + ip,

this action becomes

(z1, z2, z3, z4, z5) → (z̄1, z̄2, z̄3, z̄4, z̄5).(3.1a)

Note that this operation differs from plain “complex conjugation” as shown by

z1 + iz2 → z̄1 + iz̄2.(3.1b)

Molecular angular momentum components (j1, j2, j3) are not invariant with respect to Z2:

(j1, j2, j3) → (−j1,−j2,−j3).(3.1c)

This property of (j1, j2, j3) follows, of course, from the explicit Wilson–Howard definition of
rotational angular momenta in terms of particle coordinates and momenta. At the same time,
we can simply note that time reversal changes the direction of classical rotation and therefore
changes signs of (j1, j2, j3).

3.2. Spatial finite symmetry Td. The spatial symmetry group of the A4 molecule is the
point group of its tetrahedral equilibrium configuration Td. This group, and cubic groups
O and Oh (and to a lesser extent, T and Th) are well known to molecular physicists and
crystallographers. It is generated by the three-fold rotation C3 and the four-fold inversion
rotation S4. The latter can be realized as C4 ◦ Ci, a rotation C4 by angle π/2 followed by
a 3-space inversion Ci, or alternately as rotation by angle −π/2 followed by reflection in
the plane orthogonal to the rotation axis. A particular realization of Td is given in Table 4
and is illustrated in Figure 1. We will use the three symmetry operations in Table 4 for
explicit demonstrations later in the paper. Conventionally, axes x, y, and z are chosen as
S4 axes. Three operations S4 and three inverse operations S−1

4 form a class of six conjugate
elements. Three operations C2 = S2

4 , which rotate by π about the same axes, form a separate
class. Operations C3, which rotate by ±2π/3 about four diagonal axes, such as axis [1, 1, 1]
in Table 4, form one class of eight elements. Finally, there is a class of six reflection planes
denoted σ or Cs; each element Cs can be considered as a combination C2 ◦Ci, where axis C2

is orthogonal to the reflection plane.

3.3. Full finite symmetry group Td × T . The total symmetry group of our system is
the tetrahedral group Td extended to include the time reversal operation T . We exploit
the isomorphism Td × T ∼ Oh ∼ O × T to explain the notation for symmetry operations
and different subgroups of Td × T . Table 5 summarizes correspondence of notation for the
symmetry operations of the three groups.
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Table 4
Matrix representations of basic operations of the Td group illustrated in Figure 1.

A1 A2 F2 E F1

za (z1, z2, z3) (z4, z5) (j1, j2, j3)

C
[111]
3 1 1

(
0 0 1
1 0 0
0 1 0

)
1
2

(
−1 −√

3√
3 −1

) (
0 0 1
1 0 0
0 1 0

)

Sz
4 1 −1

(
0 1 0

−1 0 0
0 0 −1

) (
1 0
0 −1

) (
0 −1 0
1 0 0
0 0 1

)

Cxy
s 1 −1

(
0 1 0
1 0 0
0 0 1

) (
1 0
0 −1

)
−
(

0 1 0
1 0 0
0 0 1

)

C
[111]
3

Sz
4

Cxy
s

C1

(6)Cs
(3)C2

(4)C3

D2
(3)C2v

(3)S4

(4)C3v

(3)D2d
T

Td

Figure 1. Basic operations of the Td point group (left). The symmetry axis C2 (dashed line) of the Oh

and O groups is orthogonal to the Cs reflection plane (shadowed) of Td. This C2 should not be confused with
axis C2 = S2

4 , which has the same orientation as axis S4. Right: lattice of conjugate subgroups of the Td group.
Left: superscripts give the number of conjugate subgroups in each class.

The lattices of conjugate subgroups of the Oh and Td × T groups are shown in Figures 2
and 3, respectively, in order to compare the Schönflis notation for the classes of Oh [67] to our
notation of the Td × T classes. The 33 classes of conjugate subgroups of Td × T are arranged
according to their order and are further described in Tables 2 and 3. Left superscripts in
Figures 2 and 3 indicate, where necessary, the number of conjugate subgroups in the class.
Invariant subgroups are unique in their class which needs, therefore, no such superscripts.
Subgroups of Oh, which are distinguished by primes, C2v, C

′
2v, and C ′′

2v, D2d and D′
2d, D2h

and D′
2h, D2 and D′

2, C2h and C ′
2h, C2 and C ′

2, Cs and C ′
s, are nonconjugate in Oh but

become conjugate in the larger group SO(3). Such notation is less informative in comparison
with the Td×T notation for the corresponding nonconjugate subgroups, which highlights the
differences between the subgroups explicitly.

3.4. Sublattices corresponding to different images of Td×T and broken symmetries.
The action of the symmetry group Td×T on the vibrational E-mode polyad space CP 1 is not
effective; the invariant subgroup D2 forms the kernel, and the image (Td×T )/D2 is the group
isomorphic (as an abstract group) to C3v ×T or D3h, see Table 6. We compare the subgroup
lattice of (Td × T )/D2 in Figure 4, right, to the equivalent lattice of D3h (Figure 4, left) in
order to better explain the action of Td × T on CP 1. When characterizing the subgroups of
(Td × T )/D2 we take into account their extension by the kernel D2 in order to preserve the
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Table 5
Correspondence between classes of conjugate elements of the groups Oh, Td × T , and O × T .

Oh Td × T O × T Oh Td × T O × T
1 1 1 Ci T T

8C3 8C3 8C3 8S6 8(T C3) 8(T C3)
3C2 3C2 3C2 3σh 3(T C2) 3(T C2)
6C′

2 6σd 6C′
2 6σd 6(T σd) 6(T C′

2)
6C4 6S4 6C4 6S4 6(T S4) 6(T C4)

Table 6
Homomorphism Td × T → D3h, which defines the group of symmetry transformations of the vibrational

reduced polyad phase space CP 1 of the doubly degenerate mode E. Each element in D3h is an image of four
elements of Td × T . In particular, the identity in D3h is the image of the invariant subgroup D2 of Td × T .

{Td × T } → D3h {Td × T } → D3h

{1, 3C2} → 1 {T , 3(T C2)} → σh

{8C3} → 2C3 {8(T C3)} → 2S3

{6S4, 6σd} → 3C2 {6(T S4), 6(T σd)} → 3σv

relation to the Td × T action on the subspaces CP 2 and S
2 (where Td × T acts effectively).

The Td ×T group has a number of subgroups whose action on classical phase spaces CP 2

and S
2 was described earlier in [17, 70, 18]; action of the D2 × T group on CP 2 was studied

in detail in [70]. The Schönflis notation for spatial finite groups used in these studies can
be misleading if the actual spatial-temporal symmetry operations are not defined explicitly.
In order to compare our present work to [70] we give in Figure 5 the correspondence of the
subgroup lattice ofD2×T to that of the groupD2h. These two groups realize the same abstract
Abelian group of order 8, and all their subgroups are invariant. As shown in Figure 5, certain
invariant subgroups of D2 × T (or D2h) can be assembled in sets of three according to the
axes Ca

2 , a = {x, y, z}, of the D2 group. These subgroups become conjugate when lifted to
the higher symmetry group Td × T (or Oh).

4. Group action. When a group element acts on the point x on the space P, it can map
x either to a different point x′ on P or to itself. In the latter case the group element belongs
to the local symmetry group or stabilizer of x. The set of points obtained from x by applying
all group elements is called an orbit . Orbits of a finite group G are, obviously, finite sets,
and the maximum number of points in an orbit of the G action equals the number of group
elements or the order [G] of the group. If the stabilizer Gx of the point x is nontrivial, then
the number of points in the orbit equals [G]/[Gx]. In particular, if x is a fixed point of the
group action, it forms a one-point orbit.

Out of all the orbits of the action of the group G on the space P, we distinguish critical
orbits [75, 76]. The stabilizer of a point x on the critical orbit differs from that of any point
in a sufficiently small open neighborhood of x; i.e., points on critical orbits are isolated. As
a consequence, these points must be stationary or critical points of any G-invariant function
f(x) on P. When P is a reduced phase space and f(x) is a reduced Hamiltonian Heff , these
points correspond to RE of the initial system. This makes finding critical orbits the primary
purpose of our group action study [48, 49, 50]. In general, we also look for invariant subspaces
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48Oh

24OTd Th

16(3)D4h

12T (4)D3d

8(3)C4v
(3)C4h

(3)D2d
(3)D′

2d
(3)D4

(3)D2h D′
2h

6(4)S6
(4)D3

(4)C3v

4(3)C4
(3)S4

(3)C2v
(3)C′

2v
(6)C′′

2v
(3)D2 D′

2
(3)C2h

(6)C′
2h

3(4)C3

2(6)C′
s

(6)C′
2 Ci

(3)Cs
(3)C2

1C1

Figure 2. Lattice of conjugate subgroups of the Oh group. The order of all subgroups on the same row is
indicated on the right of the graph.

48Td × T

24TdT∧Ts T×T
16(3)D2d×T
12T (4)C3v×T

8(3)S4∧Ts (3)S4×T (3)D2∧Ts (3)C2v∧T2
(3)D2d

(3)C2v×T D2×T
6(4)C3∧Ts (4)C3v

(4)C3×T

4(3)S4
(3)T4

(3)C2×T2
(3)C2×Ts(6)Cs×T2

(3)C2v D2
(3)C2×T (6)Cs×T

3(4)C3

2(3)C2
(3)T2

(6)Ts (6)Cs T

1C1

Figure 3. Lattice of conjugate subgroups of the Td ×T group; cf. Figure 2. Shorthand notation T2, Ts, and
T4 is used for stabilizers T C2, T σd, and T S4; the order of all subgroups on the same row is indicated on the
right of the graph.

of the reduced phase space P—and especially for the invariant subspaces whose stabilizer is
a purely spatial symmetry subgroup of G.

The symmetry group Td was originally defined as a point group of transformations in the
Euclidean 3-space R

3 with coordinates (x, y, z), which transform in the same way as compo-
nents of the F2 mode (q1, q2, q3). The action of Td is subsequently extended symplectically
on (p1, p2, p3), which transform in the same way as (q1, q2, q3). This defines the action on
(z1, z2, z3). At the same time, momentum reversal T or Z2 is introduced as an antisymplectic
symmetry.

The E-mode variables and rotational variables (j1, j2, j3) transform according to the E
and F1 irreducible representations of the Td group. The action of the symmetry group in these
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C1

D3h

C3v D3 C3h
(3)C2v

C3(3)C
(v)
s (3)C2 C

(h)
s

D2

Td × T

T ∧ Ts Td T× T
(3)D2d× T

T(3)D2∧Ts (3)D2d D2 × T

12

6
4

3
2

1

Figure 4. Left: lattice of conjugate subgroups of the D3h group. Underlined subgroups appear as stabilizers
of the strata of the D3h action on the S

2 sphere. Right: part of the lattice of conjugate subgroups common to
Td×T and (Td×T )/D2. Underlined subgroups appear as stabilizers of the Td×T action on the E-mode polyad
reduced phase space CP 1 ∼ S

2.

D2h

Ca
2v D2 Ca

2h

Ca
2 Ca

s Ci

C1

D2 × T 8

Ca
2 × T2 D2C

a
2 × T 4

Ca
2 T a

2 T 2

C1 1

Figure 5. Subgroup lattices of the D2h group (left) and the D2 × T subgroup of Td × T (right); subgroups
distinguished by superscript a = {x, y, z} are conjugate in the higher groups Oh and Td × T , respectively.

representations is defined by the image of the initial symmetry group. To find the action of
the symmetry group Td and its extension Td×T on different components of the reduced phase
space (the F2-mode space CP 2, the E-mode space CP 1, and the rotational sphere S

2), we
first need to know the image of our symmetry group in the corresponding representations.
We find the image of the group in the particular representation Γ by acting explicitly on the
variables which realize Γ.

Group images and their actions can be very nontrivial even for finite symmetry groups
and should be studied with care. Thus the action of spatial inversion on the reduced phase
space of our system is equivalent to identity, and as a consequence, it suffices to consider pure
rotations C4 and C2 of the O group instead of operations S4 and Cs of the Td group. We will
also see that the image of Td in the E representation is a smaller group C3v and that its action
on the E-mode reduced phase space CP 1 is equivalent to that of a dihedral group D3. We
begin by explaining actions of Td ×T on the reduced phase spaces CP 2, CP 1, and S

2 and on
the total reduced space CP 2 ×CP 1 × S

2 with the action of the rotation group SO(2) (or C∞)
and its finite subgroups Ck, k = 2, 3, 4, . . . , of which C2 is a special case, and by explaining
the action of time reversal T (or Z2). We use operations from Table 4 to illustrate group
actions.

4.1. Rotational subsystem: Action of Td×T on S
2. Unlike components of polar vectors

(x, y, z) and (q1, q2, q3), the angular momenta (j1, j2, j3) are invariant with regard to the 3-
space inversion Ci (i.e., they do not change sign). The image of Td in the F1 representation
realized by (j1, j2, j3) is an isomorphic group O generated by pure rotations. (This group can
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T2

C2

C2

(a) (b) (c) (d)

Figure 6. Action of the C2 × T group on the rotational sphere S
2 and construction of the corresponding

orbit space. (a) Two points with stabilizer C2 are shown as filled black circles; points with stabilizer T2 lie on
the circle shown in bold. (b) The T2 symmetry is reduced; all points inside the disc represent two-point orbits.
(c)–(d) The C2 and T symmetries are reduced; the disc is cut and glued conewise. All points in the shaded
interior in (d) represent generic four-point orbits with stabilizer C1; the black circle corresponds to the two-
point orbit with stabilizer C2; two-point orbits with stabilizer T2 form the boundary, which is a one-dimensional
stratum S

1.
S4∧Ts

Ts

C3∧TsTsCs∧T2

T2

Figure 7. Space of orbits of the Td × T symmetry group action on the rotational phase space S
2. Critical

orbits with stabilizers S4 ∧ Ts, C3 ∧ Ts, and Cs ∧ T2 (C4v, C3v, and C2v in the Oh notation) are shown by the
black square, triangle, and disc, respectively. One-dimensional strata with stabilizers Ts (C′

s) and T2 (Cs) are
shown by solid and dashed border lines. Generic C1 orbits correspond to points in the shaded interior.

be obtained from Td if S4 is replaced with C4 = S4 ◦Ci and Cs with C2 = Cs ◦Ci; see Table 5.)
On the other hand, time reversal T changes the signs of all three components of the angular
momentum, and therefore (j1, j2, j3) realize the F1u representation of Td × T . The image of
Td×T in this representation is the group O×T . The three isomorphic groups Td×T , O×T ,
and Oh are realizations of the same abstract group. Correspondence of their subgroups and
classes of conjugate elements is presented in Figures 2 and 3 and Table 5.

As discussed in section 2.4.1, equation j2 = const defines the reduced rotational phase
space S

2 as a sphere in the ambient space R
3 with coordinates (j1, j2, j3). The action of O×T

on this sphere is often represented in terms of the action of the Oh group of transformations
of the R

3 space (see Figure 7). The Oh notation, or even shorter O group notation, is used
in practically all applications [18, 39, 32, 33, 34] and remains preferred (at least for the study
of a purely rotational system) because geometric transformations in R

3 are very commonly
known. On the other hand, the Td × T notation properly reflects the actual symmetry of the
system and is more adequate.

Any rotation Ck acting on S
2 (as an element of the Oh group of transformations of the

ambient space R
3) has two fixed points, which are the two diametrically opposite points of S

2

situated on the axis. The two points are mapped into each other by the T operation (which
acts as inversion in R

3) and belong to one orbit. This orbit is critical. Reversing operations
Ck ◦ T with k > 2 have no fixed points on S

2. The operation T2 = C2 ◦ T acts in R
3 like a

symmetry plane σ orthogonal to the C2 axis. The set of all points on S
2 invariant with regard

to T2 is a circle S
1, which is the intersection of σ and S

2.
As a simple example, consider the action of the C2×T group on S

2 illustrated in Figure 6
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Table 7
Action of Td × T on the rotational sphere S

2.

Oh stabilizer C4v C3v C2v Cs C′
s C1

Td × T stabilizer S4 ∧ Ts C3 ∧ Ts Cs ∧ T2 T2 Ts C1

Points in orbit 6 8 12 24 24 48
Conjugate stabilizers 3 4 6 3 6 1

48Td × T

24TdT∧Ts T×T
16(3)D2d×T
12T (4)C3v×T

8(3)S4∧Ts (3)S4×T (3)D2∧Ts (3)C2v∧T2
(3)D2d

(3)C2v×T D2×T
6(4)C3∧Ts (4)C3v

(4)C3×T

4(3)S4
(3)T4

(3)C2×T2
(3)C2×Ts(6)Cs×T2 (3)C2v D2

(3)C2×T (6)Cs×T
3(4)C3

2(3)C2
(3)T2

(6)Ts (6)Cs T

1C1

E-mode space CP 1

F2-mode space CP 2

rotational space S2

Figure 8. Lattice of conjugate subgroups of the Td × T group. Subgroups that appear as stabilizers on the
reduced phase spaces S

2, CP 1, and CP 2 are underlined, bold framed, and framed, respectively. The order of all
subgroups on the same row is indicated on the right of the graph; cf. Figure 3.

(with the C2 axis along the z axis). There are three types of orbits: a two-point orbit with
stabilizer C2, a one-dimensional stratum of two-point orbits with stabilizer T2, and a two-
dimensional stratum with trivial stabilizer. The space of orbits is a punctured closed disc
shown in Figure 6, right.

The action of Td × T on S
2 is described in Table 7 and the space of orbits is shown in

Figure 7. Out of 33 classes of the conjugate subgroups of this group, six appear as stabilizers
(see Figure 8). There are 26 fixed points on S

2, which form three critical orbits with stabilizers
S4 ∧ Ts ∼ C4v, C3 ∧ Ts ∼ C3v, Cs ∧ T2 ∼ C2v. Note that, as in the case of any Ck action, each
specific stabilizer in the class of conjugate stabilizers corresponds to two different points in
the orbit.

4.2. E-mode vibrational subsystem: Action of Td × T on CP 1 ∼ S
2. We find the

image of the spatial symmetry group Td in the E representation by considering the action of
Td on the plane R

2 with coordinates (q4, q5) or on a complex plane with coordinates (z4, z5).
From Table 4 we can see that operation Cz

2 = (Sz
4)2 acts trivially on this plane, operation C3

rotates by 2π/3 about the origin, while operations Sz
4 and Cxy

s have the same action on R
2:

they reflect with respect to the axis {q5 = 0} passing through the origin. It follows that the
image of Td is a group D3 (or C3v).

The action of the full symmetry group Td × T on the reduced vibrational phase space
CP 1 is equivalent to that of C3v × T . The kernel of the homomorphism Td × T → C3v × T
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T∧Ts

D2∧Ts
D2d × T

D2 × T
D2d × T

D2∧Ts

Figure 9. Space of orbits of the Td×T symmetry group action on the E-mode reduced phase space CP 1 ∼ S
2.

Triangle and circles mark critical orbits with stabilizers T ∧Ts and D2d×T (C3v and C2v in the D3h notation),
respectively. One-dimensional strata with stabilizers D2∧Ts and D2 ×T (σh) form the boundary of the variety,
while generic D2 orbits correspond to points in the interior.

Table 8
Action of Td × T on the polyad phase space CP 1 of the E mode; notation is explained in Table 6.

D3h stabilizer C3v C2v C
(v)
s C

(h)
s C1

(Td × T ) stabilizer T ∧ Ts D2d × T D2 ∧ Ts D2 × T D2

Number of
points in orbit 2 3 6 6 12
conj. stabilizers 1 3 3 1 1
orbits 1 2 ∞ ∞ ∞2

is D2, i.e., the order four invariant subgroup of Td × T described in Table 2. The action of
C3v × T on the E-mode vibrational phase sphere S

2 ∼ CP 1 can be better visualized as the
natural action of the point group D3h of transformations of the Euclidean 3-space R

3 on a
sphere embedded in this space. The correspondence between the D3h notation and symmetry
operations of Td × T is given in Figure 4 and Table 6.

All strata of the Td × T action on the E-mode space CP 1 ∼ S
2 are described in Figure 9

and Table 8. The D3h analogy makes understanding this stratification straightforward. We
can essentially use the approach in section 4.1 and, of course, earlier results for classical C3v

symmetric rotational systems (see section 1), such as a triatomic molecule with equilateral
equilibrium configuration. For example, any rotation in D3h has two fixed points on S

2; the
particular C3 rotation in Table 4 has fixed points with coordinates v = (0,±1, 0) or equally
(z4, z5) = (1,∓i), which form one two-point critical orbit with stabilizer T∧Ts. The stabilizer
of the two other critical orbits is D2d×T . Note that the points in the T∧Ts orbit have exactly
the same stabilizer (because T∧Ts is an invariant subgroup), whereas the three points in each
D2d × T orbit have different conjugate stabilizers.

Dynamical variables of the reduced E-mode system and local canonical coordinates near
points on critical orbits on CP 1 can be classified using irreducible representations of both
Td × T and D3h. Thus, vibrational angular momenta {v1, v2, v3} introduced in section 2.4.2
span the natural reducible representation A2u⊕Eg of the Td×T group (see section 7), which
corresponds to A′′

2 ⊕ E′ of the D3h group. Table 9 gives the relation between the irreducible
representations of the Td×T group and its subgroup (Td∧T )/D2. This correspondence should
be taken into account in order to study vibration-rotation dynamics on CP 1 × S

2, where the
group Td × T acts as D3h and Oh on the vibrational subspace CP 1 and rotational subspace
S

2. We should warn the reader that D3h is not a subgroup of Oh. We simply use standard
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Table 9
Reduction of irreducible representations of Td × T (∼ Oh) into those of (Td × T )/D2 (∼ D3h). The

correspondence is written initially for Oh and its D3d subgroup and is further extended using the isomorphism
D3d ↔ D3h.

Td × T → (Td × T )/D2 Td × T → (Td × T )/D2

∼ Oh → D3d ∼ D3h ∼ Oh → D3d ∼ D3h

A1g → A1g A′
1 A1u → A1u A′′

1

A2g → A2g A′
2 A2u → A2u A′′

2

Eg → Eg E′ Eu → Eu E′′

F1g → A1g ⊕ Eg A′
1 ⊕ E′ F1u → A1u ⊕ Eu A′′

1 ⊕ E′′

F2g → A2g ⊕ Eg A′
2 ⊕ E′ F2u → A2u ⊕ Eu A′′

2 ⊕ E′′

notation for irreducible representations of Oh and D3h.

4.3. F2-mode vibrational subsystem: Action on CP 2. Action of several different point
symmetry groups on the CP 2 space was studied by Zhilinskíı [17]. An example of the exten-
sion to a larger group including the time reversal T was given later in [70]. We summarize the
results of [17] for the symmetry groups O and Td and then take the T element into account.

The action of Td on the 3-space with coordinates (q1, q2, q3), which span the irreducible
representation F2, is effective, and the image corresponds to the whole group. Of course,
the same holds for (p1, p2, p3) and (z1, z2, z3). In order to verify that the action of Td ×
T on the CP 2 space is also effective [17], we can consider the representation realized by
(z1, z2, z3, z̄1, z̄2, z̄3), act by operations in Td × T (use (3.1a) and Table 4), and take the CP 2

restrictions (section 2.4.3) into account. In particular, due to the common phase equivalence,
points (z1, z2, z3) and (−z1,−z2,−z3) are the same on CP 2; i.e., the image of the 3-space
inversion is identity. It follows that the images of the Td, O, and Oh point symmetry groups
are the same (up to an isomorphism between the stabilizers), and we can simply use the O
group whose elements are proper rotations.

For any rotation axis Ck, we should consider a point in CP 2 lying on the axis and a
subspace orthogonal to the axis. The former is obviously an isolated fixed point, while the
latter is a CP 1 ∼ S

2 subspace of CP 2, which contains other Ck symmetric points. As an
example, take rotation about axis z1 that can be most easily understood in the coordinates

z1, ζ =
1√
2
(z2 + iz3), ζ ′ =

1√
2
(z2 − iz3),

subject to the same restriction

|z1|2 + |ζ|2 + |ζ ′|2 = 1

and common phase identification

(z1, ζ, ζ
′) ≡
(
z1e

iφ, ζeiφ, ζ ′eiφ
)

as the initial (z1, z2, z3) in section 2.4.3. When we rotate about z1 by angle ϕ �= 0 so that

(z1, ζ, ζ
′) →
(
z1, ζe

iϕ, ζ ′e−iϕ),
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fixed stabilizer
point in Td × T

� D2d × T
� C3v × T
� S4∧Ts
� C3∧Ts
• C2v × T

Figure 10. Orbits of the O (and Td × T ) group action on the complex projective space CP 2 according to
Zhilinskíı [17]. Colored areas represent nine C2-invariant spheres, which belong to the classes of three and six
spheres (according to their stabilizers).

the fixed point coordinates should satisfy equations

(
z1, ζe

iϕ, ζ ′e−iϕ) = (z1eiφ, ζeiφ, ζ ′eiφ).
For all ϕ �= π (and in particular for all ϕ = 2π/k with k > 2) we have three isolated solutions

A : ζ = ζ ′ = 0, B : z1 = ζ = 0, and C : z1 = ζ ′ = 0;

i.e., two of the three coordinates should vanish. When ϕ = π (rotation C2) our equations
become

(z1,−ζ,−ζ ′) =
(
z1e

iφ, ζeiφ, ζ ′eiφ
)
.

We should take the point (1, 0, 0) and the whole CP 1 subspace with z1 = 0. (Set φ = π to show
explicitly that (0, z2, z3) and (0,−z2,−z3) is the same point of this C2-invariant subspace.)

The action of the entire symmetry group O on the reduced phase space CP 2 is obtained
if we apply the above principle to every rotation in O. The groups Td and O have the same
action on CP 2. The action of Td × T then can be found as an extension by adding the T
element. Results are summarized in Figure 10 reproduced from [17] and in Tables 10–12.
Action of O on CP 2 has five critical orbits (five zero-dimensional strata) characterized in
Table 10. It is important to notice that each of the three points on the D3 orbit correspond to
a different (but conjugate) stabilizer; the same is true for the four points on the D4 orbit. In
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Table 10
Zero-dimensional strata of the CP 2 space under the action of the image of the Td×T (or O×T or Oh×T )

group in the representation spanned by bilinear combinations of vibrational coordinates q and conjugate momenta
p, which transform according to the triply degenerate representation F2 of point symmetry group Td, O, or Oh.

Orbit stabilizer10 Coordinates11 Point stabilizer10

Td O or Oh on CP 2 O or Oh Td

D2d × T D4 × T (1, 0, 0) D
(x)
4 × T D

(x)
2d × T

(0, 1, 0) D
(y)
4 × T D

(y)
2d × T

(0, 0, 1) D
(z)
4 × T D

(z)
2d × T

C3v × T D3 × T (1, 1, 1) D
(c)
3 × T C

(c)
3v × T

(1,−1,−1) D
(d)
3 × T C

(d)
3v × T

(1,−1, 1) D
(b)
3 × T C

(b)
3v × T

(1, 1,−1) D
(a)
3 × T C

(a)
3v × T

S4 ∧ T2 C4 ∧ T2 (1,±i, 0) C
(z)
4 ∧ T (y)

2 S
(z)
4 ∧ T (y)

2

(1, 0,±i) C
(y)
4 ∧ T (x)

2 S
(y)
4 ∧ T (x)

2

(0, 1,±i) C
(x)
4 ∧ T (y)

2 S
(x)
4 ∧ T (y)

2

C3 ∧ Ts C3 ∧ T (d)
2 (1, η2, η), C

(a)
3 ∧ T ⊥

2 C
(a)
3 ∧ T ‖

s

(1, η̄, η̄2)

(1, η, η2), C
(b)
3 ∧ T ⊥

2 C
(b)
3 ∧ T ‖

s

(1, η̄2, η̄)

(1, η2, η̄2), C
(c)
3 ∧ T ⊥

2 C
(c)
3 ∧ T ‖

s

(1, η̄2, η2)

(1, η, η̄), C
(d)
3 ∧ T ⊥

2 C
(d)
3 ∧ T ‖

s

(1, η̄, η)

C2v × T D′
2 × T (1,±1, 0) D

′(z)
2 × T C

(z)
2v × T

(1, 0,±1) D
′(y)
2 × T C

(y)
2v × T

(0, 1,±1) D
′(x)
2 × T C

(x)
2v × T

the case of the C4, C3, and D2 orbits, one stabilizer corresponds to two different orbit points.
Zero-dimensional strata of the action of the symmetry group O×T and Td×T (where T acts
as in (3.1a)) remain the same, but their stabilizers become larger. The order of the symmetry
group O × T is twice that of O and the order of all stabilizers is doubled. The structure of
critical orbits also remains exactly the same except for the stabilizers. Each zero-dimensional
stratum again consists of one orbit.

At the same time, two-dimensional invariant topological spheres S
2 with stabilizers C

(a)
2 ,

a = {x, y, z}, and C
(α)
s , α = 1, . . . , 6, of the Td action on CP 2 (see Figure 10) become further

stratified due to the action of the T -extended group. Below we detail the action of O × T
(and Td × T ) on these invariant manifolds.

Stratification of each of the three C2-invariant S
2 spheres is equivalent to the natural

action of the D2h point symmetry group (see Figure 11, left). The generic two-dimensional

10We give notation for Td, and O or Oh groups.
11Coordinates in terms of (z1, z2, z3), η = exp(iπ/3).
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CP 2

S2

CP 2 × S2

symbol point stabilizer

� Sα
4 ∧ Ts (C4v)

� Dβ �=α
2d ∧ T (D4)

• Cα
2v ∧ T (D2h)

Cα
2 ∧ T β

2 (C2v)
Cα

2 ∧ Ts (C ′
2v)

Cα
2 ∧ T (C2h)

surface generic Cα
2

Figure 11. Correlation between the Ca
2 -invariant sphere on the CP 2 space and Ca

2 -invariant spheres on the
CP 2 × S

2 space whose coordinates on the S
2 space (rotational sphere) are fixed to those of the Sa

4 ∧ Ts points.

CP 2

S2

CP 2 × S2

symbol point stabilizer

� D2d ∧ T (D4)
� C3v ∧ T (D3d)
• C2v ∧ T (D2h)
◦ Cs ∧ T2 on S

2

Cs ∧ T2 (C ′′
2v)

Cs ∧ T (C ′
2h)

surface generic Cs

Figure 12. Correlation between the C
(k)
s -invariant sphere on the CP 2 space and C

(k)
s -invariant spheres on

the CP 2 × S
2 space whose coordinates on the S

2 space (rotational sphere) are fixed to those of the C
(k)
s ∧ T2

points.

stratum has stabilizer C2; three isolated (critical) two-point orbits with stabilizers D2d∧T ,
S4∧T2, and C2v∧T are described in Table 10; three one-dimensional strata with stabilizers
C2∧g, where g = T , T2, or Ts, are listed in Table 11. Together with isolated fixed points,
these strata form C2∧g-invariant circles S

1.

Stratification of the six topological S
2 spheres with stabilizers C

(α)
s deserves special com-

ment. Each such sphere has one exceptional two-point critical orbit with stabilizer C3v∧T (see
Figure 12, left). This orbit cannot be found if we consider only those symmetry operations

that act within the C
(α)
s -invariant sphere, its presence is due to the action of the symmetry

group Td × T on the entire CP 2 space. Disregarding the exceptional C3v∧T orbit, we can

identify the action of the symmetry group Td × T within each C
(α)
s sphere with the natural

action of the C2v point group (on a sphere in a 3-space). This action has two critical one-point
orbits with global stabilizers D2d∧T and C2v∧T (Table 10), which lie on the C2 axis (hor-
izontal axis of the leftmost sphere in Figure 12) and two different one-dimensional families
of orbits with stabilizers Cs∧g, where g = T or T2 (Table 11). Except for the C2v and D2d

points, all other points form two-point orbits of the spatial subgroup C2. The Cs∧g invariant
circles combine respective one-dimensional strata and fixed points.

All two-dimensional invariant subspaces of the Td ×T group action on CP 2 are described
in Table 12. In addition to the two types of invariant spheres S

2, this action has a number of
other two-dimensional invariant subspaces whose stabilizers T , T2, and Ts include reversing
symmetries. Generic stratum on the T , T2, and Ts invariant subspaces includes orbits with
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Table 11
One-dimensional strata on the CP 2 space under the same group action as in Table 10.

Orbit stabilizer12 Coordinates13 Point stabilizer12

Td O or Oh on CP 2 O or Oh Td

C2 ∧ T C2 ∧ T (1,±a, 0) C
(z)
2 ∧ T C

(z)
2 ∧ T

(1,±1/a, 0)

(1, 0,±a) C
(y)
2 ∧ T C

(y)
2 ∧ T

(1, 0,±1/a)

(0, 1,±a) C
(x)
2 ∧ T C

(x)
2 ∧ T

(0, 1,±1/a)

C2 ∧ T2 C2 ∧ T2 (1,±ia, 0) C
(z)
2 ∧ T (x)

2 C
(z)
2 ∧ T (x)

2

(1,±i/a, 0)

(1, 0,±ia) C
(y)
2 ∧ T (z)

2 C
(y)
2 ∧ T (z)

2

(1, 0,±i/a)
(0, 1,±ia) C

(x)
2 ∧ T (y)

2 C
(x)
2 ∧ T (y)

2

(0, 1,±i/a)

C2 ∧ Ts C2 ∧ T (d)
2 (1,±η, 0) C

(z)
2 ∧ T (d)

2 C
(z)
2 ∧ T ‖

s

(1,±η̄, 0)

(1, 0,±η) C
(y)
2 ∧ T (d)

2 C
(y)
2 ∧ T ‖

s

(1, 0,±η̄)
(0, 1,±η) C

(x)
2 ∧ T (d)

2 C
(x)
2 ∧ T ‖

s

(0, 1,±η̄)

Cs ∧ T C
(d)
2 ∧ T (1, 1,±a) C

(1)
2 ∧ T C

(xy)
s ∧ T

(1,−1,±a) C
(2)
2 ∧ T C

(xy)
s ∧ T

(1,±a, 1) C
(3)
2 ∧ T C

(xz)
s ∧ T

(1,±a,−1) C
(4)
2 ∧ T C

(xz)
s ∧ T

(1,±a,±a) C
(5)
2 ∧ T C

(yz)
s ∧ T

(1,±a,∓a) C
(6)
2 ∧ T C

(yz)
s ∧ T

Cs ∧ T2 Cd
2 ∧ T2 (1, 1,±ia) C

(1)
2 ∧ T (z)

2 C
(xy)
s ∧ T (z)

2

(1,−1,±ia) C
(2)
2 ∧ T (z)

2 C
(xy)
s ∧ T (z)

2

(1,±ia, 1) C
(3)
2 ∧ T (y)

2 C
(xz)
s ∧ T (y)

2

(1,±ia,−1) C
(4)
2 ∧ T (y)

2 C
(xz)
s ∧ T (y)

2

(1,±ia,±ia) C
(5)
2 ∧ T (x)

2 C
(yz)
s ∧ T (x)

2

(1,±ia,∓ia) C
(6)
2 ∧ T (x)

2 C
(yz)
s ∧ T (x)

2

24, 8, and 4 points, respectively. The topology of all these subspaces is RP 2.

4.4. Rotational structure of the E mode: Action on CP 1 × S
2 ∼ S

2 × S
2. The

Hamiltonian that describes rotational structure of the E-mode polyads is defined on the
four-dimensional reduced rotation–vibration phase space CP 1 × S

2, the direct product of the
vibrational E-mode polyad space CP 1 (polyad sphere) and rotational sphere S

2. We use

12We give notation for either the Td, O, or Oh group.
13Here a 	= 0,±1,∞, and η = eiϕ, where ϕ 	= kπ/2.



ROTATION–VIBRATION RELATIVE EQUILIBRIA 283

Table 12
Two-dimensional invariant subspaces of CP 2 under the same group action as in Tables 10 and 11.

Orbit stabilizer14 Coordinates15 Point stabilizer14 Topology
Td O or Oh on CP 2 O or Oh Td

C2 C2 (1, w, 0) C
(z)
2 C

(z)
2 S

2

(1, 0, w) C
(y)
2 C

(y)
2

(0, 1, w) C
(x)
2 C

(x)
2

Cs C
(d)
2 (1, 1, w) C

(1)
2 C

(xy)
s S

2

(1,−1, w) C
(2)
2 C

(xy)
s

(1, w, 1) C
(3)
2 C

(xz)
s

(1, w,−1) C
(4)
2 C

(xz)
s

(1, w, w) C
(5)
2 C

(yz)
s

(1, w,−w) C
(6)
2 C

(yz)
s

T T (1, a, b) T T RP 2

T2 T2 (1, a, ib) T (z)
2 T (z)

2 RP 2

(1, ia, b) T (y)
2 T (y)

2

(1, ia, ib) T (x)
2 T (x)

2

Ts T (d)
2 (1, w, w) T (d1)

2 T (yz)
s RP 2

(1, w,−w) T (d2)
2 T (yz)

s

(1, aη, η2) T (d3)
2 T (xz)

s

(1, aη,−η2) T (d4)
2 T (xz)

s

(1, η2, aη) T (d5)
2 T (xy)

s

(1,−η2, aη) T (d6)
2 T (xy)

s

information on the stratification of the individual factor spaces CP 1 (section 4.2) and S
2

(section 4.1) in order to find the stratification of CP 1 × S
2.

Let (v) and (r) be points on CP 1 and S
2, respectively, and let (v, r) denote points on the

rovibrational (i.e., rotational-vibrational) space CP 1 × S
2. The stabilizer Gv,r of point (v, r)

is an intersection Gv ∩ Gr of stabilizers on CP 1 and S
2. In simple terms, the symmetry of

(v, r) can only be lower than that of its projections (v) and (r). The dimension of the stratum
{v, r} on CP 1 ×S

2 is the sum of the dimensions of strata {v} and {r}. The stratum {v, r} on
the product space is connected if both its projections {v} and {r} on the two factor subspaces
are connected.

Most important and basic to our analysis are critical orbits (v, r). Such orbits can either
be nonconnected parts of a nonzero-dimensional stratum or belong to a stratum {v, r} of
dimension zero. These latter strata occur when both strata {r} and {v} have dimension zero
and there is no stratum of nonzero dimension with stabilizer Gr ∩Gv.

Using the lattice of conjugate subgroups of Td × T in Figure 8, where we indicated all
possible stabilizers Gv and Gr, the reader can easily find the intersections Gv ∩Gr and then
look up the details of the structure of the particular subgroups in Table 2. Indeed, all sub-
groups of a given stabilizer G are found by descending along the lattice paths which originated

14We give notation for either the Td, O, or Oh group.
15Here a, b are real, w is a complex number, and η = eiϕ.
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Table 13
Intersection (correlation) of stabilizers of the Td ×T group action on the E-mode polyad phase space CP 1

(left column) and on the rotational phase space S
2 (top row). For information on the notation and structure

of subgroups of Td × T refer to Table 2. Critical orbits on CP 1 × S
2 are underlined.

Strata16 on the rotational phase space S
2

0D 0D 0D 1D 1D 2D
Strata16 on (4) (3) (6) (3) (6)

the CP 1 space C3∧Ts S4∧Ts Cs∧T2 T2 Ts C1

0D T∧Ts C
(k)
3 ∧Ts Cξ

2∧Ts T ξ2
s C1 T β

s C1

0D (3) D2d × T Ts Sη
4∧Ts

17 Cs∧T2
19 T η

2 Ts
19 C1

Cη
2∧T ξ

2
20 T ξ

2
20 C1

20

1D (3) D2∧Ts Ts Cη
2∧Ts

17 Ts
19 C1 Ts

19 C1

Cξ
2
18 C1

20 C1
20

1D D2 × T C1 Cη
2∧T ξ

2
20 T2 T ξ

2 C1 C1

2D D2 C1 Cξ
2 C1 C1 C1 C1

at G. The highest node, where the paths descending from Gv and Gr join, is the intersec-
tion Gv ∩ Gr, i.e., the largest common subgroup of Gv and Gr. All possible intersections
are summarized in Table 13. We comment on them below starting with the low-symmetry
strata.

4.4.1. Noncritical orbits. Generic points (r) on S
2 have stabilizer Gr = C1 (rightmost

column in Table 13). Obviously, these points lift to points (v, r) with trivial symmetry C1

regardless of the stabilizer Gv. The generic stratum {v, r} is of dimension four, has stabilizer
C1, and includes 48-point orbits.

Generic points (v) on CP 1 (bottom row in Table 13) have stabilizer D2, which has three
order-two subgroups Cη

2 with axes η = {x, y, z}. Intersection of D2 with stabilizers Gr equals
C1 in all cases except for the three conjugate subgroups Gη

r = Sη
4∧Ts. Intersection Gη

r ∩D2

is the particular Cη
2 subgroup of D2. The corresponding C2 stratum on CP 1 × S

2 includes
24-point orbits. Since Sη

4∧Ts points on S
2 are critical (fixed), this stratum has dimension two.

The stabilizerGv = D2∧T of the one-dimensional stratum on CP 1 is an invariant subgroup
of Td×T ; its intersection with subgroups Gr of the same class of conjugate subgroups of Td×T
results again in conjugate subgroups. For Gr = S4 ∧ Ts the intersection is C2 × T2 and the
stratum {v, r} has dimension one. If Gr = T b

2 , where b = {x, y, z}, we have a two-dimensional

16For each space, strata of dimensions zero, one, and two are marked as 0D, 1D, and 2D; the number of
different conjugate stabilizers in the same class of Td × T is given in parentheses. Right superscripts define
concrete conjugate stabilizers: η and ξ label axes (x, y, z) for orbits on CP 1 and S

2, respectively; (k) and
β distinguish stabilizers of orbits on S

2 in the C3 class and the σ class; they can take four and six values,
respectively.

17η = ξ; axes η and ξ are the same.
18η 	= ξ; axes η and ξ are different .
19β = {η1, η2}; stabilizer of the orbits on S

2 of index (β) includes one of the two operations of index {η1, η2};
see text for examples.

20β 	= {η1, η2}; stabilizer of the orbits on S
2 of index (β) does not include operations of index {η1, η2}.
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family {v, r} of 24-point orbits with symmetry T b
2 . If Gr = Cs ∧ T2, the intersection is again

T2; i.e., isolated fixed points (r) on S
2 with stabilizer Cs∧T2 lift to points (v, r) with stabilizer

T2. Since the zero-dimensional stratum Cs∧T2 on S
2 is the closure of the one-dimensional

stratum T2 on S
2, the entire T2 stratum {v, r} is connected. As a consequence, isolated points

(r) with stabilizer Cs ∧ T2 lift to noncritical points (v, r) on the two-dimensional stratum on
CP 1 × S

2.
When both Gv and Gr are not invariant subgroups, the symmetry of the {v, r} stratum

depends on the choice of the subgroup within the class of conjugate subgroups. In the case
of Gv = D2∧Ts and Gr = Ts the intersection can be either Ts or C1. As shown in Table 2,
the element Ca

2 , where a = {x, y, z}, of D2∧Ts distinguishes a particular stabilizer in the
class of three conjugate subgroups. This stabilizer has two Ts subgroups generated by T a1

s

and T a2
s . If, therefore, Gr is one of these two subgroups, then its intersection with Gv is

nontrivial; otherwise Gv ∩Gr = C1. In the case of Gv = D2∧Ts and Gr = T2 the intersection
is always trivial. On the other hand, intersection of Gv = D2∧Ts and C3∧Ts is always a
nontrivial subgroup Ts because one of the two orthogonal symmetry planes T a1,2

s in D2∧Ts
always contains the particular axis C3 of C3∧Ts. In other words, intersection of the set of two
Ts elements in D2∧Ts and three Ts elements in C3∧Ts (which cross on the C3 axis) is never
empty. Observe that the Ts stratum {v, r} has dimension two and is connected. All points in
Table 13 that lift to this stratum become noncritical; the {v, r} parts of dimensions zero and
one form the closure.

4.4.2. Critical orbits (strata of dimension zero). Orbits that project on zero-dimensional
strata of CP 1 and S

2 and have unique stabilizers are critical. The six critical orbits on CP 1×S
2

are characterized below.

Stabilizer on CP 1 T ∧ Ts D2d × T D2d × T
Stabilizer CP 1 × S

2 C3 ∧ Ts S4 ∧ Ts Cs × T2

Number of orbits 2 2 2
Number of points in orbit 8 6 12

We explain how to find these orbits using Table 13.
Consider the stratum {v} with stabilizer Gv = T ∧ Ts, which consists of one two-point

orbit, and the stratum {r} with stabilizer Gr = C3 ∧ Ts, which consists of one eight-point
orbit. Since each of the four conjugate subgroups Gr is a subgroup of Gv, we have the zero-
dimensional stratum {v, r} with stabilizer C3 ∧ Ts, which includes two eight-point orbits (all
points on the orbit {r} lift to the same orbit {v, r}). If for the same {v} we consider {r}
with stabilizer Gr = S4 ∧ Ts, the resulting 12-point orbit {v, r} has the stabilizer C2 ×Ts and
should, therefore, be part of a one-dimensional stratum. Indeed, as can be seen from Figure 8,

T ∧ Ts ∩ S4 ∧ Ts = D2 ∧ Ts ∩ S4 ∧ Ts = C2 × Ts.

Consider now the stratum {v} with stabilizer Gv = D2d × T , which again consists of one
two-point orbit. The intersection of Gv with Gr = S4 ∧ Ts can be the whole Gr (i.e., Gr can
be the subgroup of Gv) if both subgroups include the same element Cη

2 , where axis η can be
x, y, or z. In this case we have a zero-dimensional stratum {v, r} with stabilizer S4 ∧ Ts,
which includes two six-point orbits (all points on the six-point orbit {r} lift to the same orbit
{v, r}). If for the same {v} we take {r} with stabilizer Gr = Cs×T2, this latter stabilizer can
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Table 14
Intersection (correlation) of stabilizers of the Td group action on the F2-mode vibrational phase space CP 2

(left column), on the rotational phase space S
2 (top row, center), and on the E-mode vibrational phase space

CP 1 (top row, right). Critical orbits are underlined.

Strata21 on S
2 Strata21 on CP 1

Strata21 on CP 2 0D 0D 0D 2D 0D 0D 2D

S
(η′)
4 C

(k′)
3 C

(β′)
s C1 T D

(η′)
2d D2

η′≤3 k′≤4 β′≤6 η′≤3

0D D
(η)
2d S4

22 C1 Cs
24 C1 D2 D2d

22 D2

η≤3 C2
23 C1 D2

23

0D S
(η)
4 S4

22 C1 C1 C1 C2 S4
22 C2

η≤3 C1
23 C2

23

0D C
(k)
3v C1 C3

22 Cs
24 C1 C3 Cs C1

k≤4 C1
23 C1

0D C
(k)
3 C1 C3

22 C1 C1 C3 C1 C1

k≤4 C1
23

0D C
(η)
2v C2

22 C1 Cs
24,25 C1 C2 C2v

22 C2

η≤3 C1
23 Cs

24 C2
23

C1

2D C
(η)
2 C2

22 C1 C1 C1 C2 C2
22 C2

η≤3 C1
23 C2

23

2D C
(β)
s C1 C1 Cs

22 C1 C1 Cs
24 C1

β≤6 C1
23 C1

4D C1 C1 C1 C1 C1 C1 C1 C1

again be a subgroup of Gv if both share the same Cs = σ element, which can be either ση1

or ση2 (see Table 2). Since in this case {r} consists of one 12-point orbit, the corresponding
zero-dimensional {v, r} stratum with stabilizer Cs × T2 contains two 12-point orbits.

4.5. Rotational structure of the F2 mode: Action of Td and Td × T on CP 2 × S
2.

We now combine small-amplitude F2-mode vibrations and rotation. The Hamiltonian of this
system is a (Td×T )-invariant function on the six-dimensional reduced phase space CP 2 ×S

2.
The action of the full symmetry group Td × T on CP 2 × S

2 can be found from that on the
individual spaces CP 2 and S

2 using the approach of the previous section; in particular, we

21Strata of dimension s are marked as sD, s = 0, 1, 2, 4. Classes of stabilizers of the strata are listed in Td

notation. Indexes η, k, β distinguish different stabilizers on CP 2 within the same class; indexes η′, k′, β′ are
used for S

2 or CP 1. Refer to Table 2 for information on the notation and structure of subgroups of Td × T .
22Identical subgroups of Td × T : axes η and η′, k and k′, or subgroups β and β′ are the same, i.e., η ≡ η′,

k ≡ k′, or β ≡ β′.
23Different subgroups of Td × T of the same class: axes η and η′, k and k′, or subgroups β and β′ are

different , i.e., η 	= η′, etc.
24Subgroups D

(η)
2d , C

(η)
2v , C

(k)
3v include the symmetry plane β′.

25β′ equals η1 or η2; the point projects on the disconnected zero-dimensional component of the Cη1
s or Cη2

s

stratum on CP 2; see section 4.5.1.



ROTATION–VIBRATION RELATIVE EQUILIBRIA 287

determine intersections of stabilizers from the subgroup lattice of Td × T .
Essential information can be obtained from the simpler study of the action of the spatial

symmetry group Td whose subgroup lattice is given in Figure 1. As shown in Table 14, the
action of Td on the rotation–vibration space CP 2 × S

2 creates strata of symmetry S4, C2, C3,
Cs, and C1 (generic). Some strata, notably Cs, have disconnected components of different
dimension. By dimension of these strata, we mean the highest dimension of their components.
The C1 stratum has dimension six, components of other strata can be of dimension zero
and two.

4.5.1. Strata and components of dimension zero (critical orbits). The S4 stratum on
CP 2 × S

2 projects on the S4 orbits on the rotational space S
2 and on the D2d or S4 orbits

on the vibrational space CP 2. Each Gr = S
(η′)
4 stabilizer has two fixed points on S

2 (which

belong to the same orbit of the Td action). Each Gv = D
(η)
2d stabilizer has one fixed point on

CP 2 (see Table 10). Consequently, there are two points on CP 2 × S
2 with the same stabilizer

Gr ∩Gv = D
(η)
2d ∩ S(η)

4 = S
(η)
4 .

The six points corresponding to three different conjugate stabilizers with η = x, y, z form one

six-point orbit, which we label A(4). If for the same Gr we take Gv = S
(η)
4 , we combine two

points on CP 2 (which are in the same orbit) with two points on S
2. It is important to observe

that the resulting four points on CP 2 × S
2 belong to two different orbits: one pair belongs to

orbit B(4) and another to orbit C(4). With three possible axes η taken into account, orbits B
and C contain six points each.

The above description of the S4 orbits B(4) and C(4) can be easily verified on a concrete
example. Such examples are given in Table 15, where the E-mode coordinates (z4, z5) should
at present be ignored. Consider a particular axis η = z (axis 3). The two fixed points on the
CP 2 space have coordinates (Table 10)

(z1, z2, z3) = (1,±i, 0),(4.1a)

and the coordinates of the two fixed points on the S
2 sphere are

(j1, j2, j3) = (0, 0,±1).(4.1b)

(For simplicity, here and in the rest of this section, we drop normalization factors, which
are not essential to our current discussion.) The group Td acts on CP 2 and S

2 in such a way
that any operation in Td that interchanges the two points (4.1a) on CP 2 interchanges the two
points (4.1b) on S

2. The C2 rotation about axis x (axis 1) is an example:

Cx
2 : (z1, z2, z3; j1, j2, j3) → (z1,−z2,−z3; j1,−j2,−j3).

As a result, no operation in Td maps points

B = (1,±i, 0; 0, 0,±1) and C = (1,±i, 0; 0, 0,∓1)

of the CP 2 × S
2 space into each other; these points, therefore, belong to different orbits.
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Table 15
Fixed points of the Td × T group action on the reduced phase space CP 2 × CP 1 × S

2.

(a) Stabilizer Sz
4 (or C4), rf =

√
Nf , re =

√
2Ne, rj = J .

Point
z1
rf

z2
rf

z3
rf

z4
re

z5
re

j1
rj

j2
rj

j3
rj

A1 0 0
√

2 1 0 0 0 1

A′
1 0 0

√
2 1 0 0 0 −1

A2 0 0
√

2 0 1 0 0 1

A′
2 0 0

√
2 0 1 0 0 −1

B1 1 i 0 1 0 0 0 1
B′

1 1 −i 0 1 0 0 0 −1
B2 1 i 0 0 1 0 0 1
B′

2 1 −i 0 0 1 0 0 −1
C1 1 i 0 1 0 0 0 −1
C′

1 1 −i 0 1 0 0 0 1
C2 1 i 0 0 1 0 0 −1
C′

2 1 −i 0 0 1 0 0 1

(b) Stabilizer C3 [111], rf = (
√

2Nf )/
√

3, re =
√
Ne, rj =

√
3J , χ = exp(2πi/3).

Point
z1
rf

z2
rf

z3
rf

z4
re

z5
re

j1
rj

j2
rj

j3
rj

A1 1 1 1 1 i 1 1 1
A2 1 1 1 1 i −1 −1 −1
B1 1 χ χ̄ 1 i 1 1 1
B2 1 χ χ̄ 1 i −1 −1 −1
C1 1 χ χ̄ 1 i −1 −1 −1
C2 1 χ χ̄ 1 i 1 1 1

(c) Stabilizer Cxy
s (or C2), rf =

√
Nf , re =

√
2Ne, rj = J/

√
2.

Point
z1
rf

z2
rf

z3
rf

z4
re

z5
re

j1
rj

j2
rj

j3
rj

A1 1 −1 0 1 0 1 −1 0
A2 1 −1 0 0 1 −1 1 0

The three eight-point critical orbits of the C3 stratum can be described analogously; cf.

Table 15(b). Combination of the C
(k)
3v point on CP 2 and two C

(k)
3 points on S

2 gives two
points on the A(3) orbit. With all four axes C3 taken into account (k = 1, . . . , 4), the orbit has
eight points. The B(3)- and C(3)-type orbits of the C3 action include points (z, j) and (z,−j),
respectively, where (z) and (j) stand for the coordinates of the fixed point on CP 2 and S

2.

The two critical fixed points of the C
(α)
s action on CP 2×S

2 are obtained when we combine

the only isolated fixed point of the C
(α)
s action on CP 2 (see Table 10) with the two respective

points on S
2 (recall that Cs acts both on CP 2 and on S

2 as operation C2 of the O group).

In the particular case of C
(z)
2v and its subgroup C

(xy)
s (set η = z and β′ = η1 = xy in Table

14), we combine the z = (1,−1, 0) fixed point of the C
(xy)
s action on CP 2 with two points

j = ±(1,−1, 0) on S
2. For six conjugate elements Cs, we obtain a 12-point orbit, which is

isolated from the rest of the Cs stratum (because its projection on the CP 2 space is isolated).
This orbit is therefore critical.



ROTATION–VIBRATION RELATIVE EQUILIBRIA 289

4.5.2. Strata of dimension two. Action of Td on CP 2×S
2 creates two strata of dimension

two, C2 and Cs. The Cs stratum has a disconnected component of dimension zero, described
above. In both cases, we combine isolated fixed points on the rotational space S

2 and points
on the invariant spheres S

2 ⊂ CP 2. This is illustrated in Figure 11 and 12.
We describe first the C2 stratum. Since C2 = S2

4 , points with local symmetry C2 and S4

coincide on the rotational space S
2
j . In the particular example of Cz

2 = (Sz
4)2 these points are

given in (4.1b). We combine points on S
2
j with points on the C2-invariant sphere in CP 2. In

our Cz
2 example, these latter points are (see Table 12)

(z1, z2, z3) = (1, w, 0), Rew �= 0.

All points on CP 2 × S
2 with stabilizer Cz

2 are

(z1, z2, z3; j1, j2, j3) = (1, w, 0; 0, 0,±1), Rew �= 0.

Removing the above restriction on w adds four critical points (1,±i, 0; 0, 0,±1) with stabilizer
Sz

4 and produces two spheres shown in Figure 11, right. These are the only isolated critical
points which remain on the C2-invariant spheres when we add rotation; all other fixed points
which lie on the C2-invariant sphere of the purely vibrational system with phase space CP 2

(i.e., when j = 0) disappear. For example, consider the twoD2d points z = (1, 0, 0) and (0, 1, 0)
with stabilizers Dx

2d and Dy
2d, respectively (Table 10 and Figure 11, left). Their rotational

coordinates should necessarily be j = (1, 0, 0) and (0, 1, 0), which project to points on S
2 with

stabilizers Sx
4 and Sy

4 , respectively.
A similar approach can be used to describe the Cs-invariant spheres (the two-dimensional

component of the Cs stratum) in the CP 2 × S
2 space shown in Figure 12, right. In this case,

no critical points remain on the spheres when rotation is added and we lift from CP 2 to
CP 2×S

2. As an example, consider the reflection plane x = y whose action is given in Table 4.
This operation has two fixed points on the rotational sphere S

2
j :

(j1, j2, j3) = (±1,∓1, 0).

(At these points, axial vector j is orthogonal to the plane x = y.) Operation Cxy
s is a

combination of inversion and rotation by π about axis x = −y, i.e., (1,−1, 0). The points on
the CP 1 ∼ S

2 subspace orthogonal to this axis have, therefore, coordinates (see Table 12)

(z1, z2, z3) = (1, 1, w),

and the points of the two Cs-invariant spheres S
2 in the six-dimensional space CP 2 × S

2 are

(z1, z2, z3; j1, j2, j3) = (1, 1, w; ±1,∓1, 0).

Stabilizers of critical points, which are present on the Cs-invariant sphere when j = 0 (Fig-
ure 12, left), are such that these points become noncritical when rotation is added. Thus,
the C2v point with z = (1, 1, 0), which lies on the Cxy

s -invariant sphere of our example, has
the stabilizer Cz

2 and must, therefore, combine with j = (0, 0, 1) in order to have a higher
stabilizer.



290 EFSTATHIOU, SADOVSKII, AND ZHILINSKII

4.5.3. Extension by time reversal T . The action of the full group Td×T on the CP 2×S
2

space creates more strata. For our purposes, however, it is sufficient to observe that the system
of critical orbits of Td × T remains the same, as in the case of Td, and to study the action of
reversal operations on the invariant spheres with stabilizers C2 and Cs.

Internal stratification of the C2-invariant spheres in the CP 2 × S
2 space under the action

of Td × T is shown in Figure 11, right. It can be seen that the action of Td × T on these
spheres is equivalent to the natural action of the C2v group (whose axis C2 is the vertical axis
in Figure 11). In addition to the two isolated S4 points, this action creates one-dimensional
strata with stabilizers C2 × T2 and C2 × Ts.

The Cs-invariant spheres also do not remain homogeneous when reversal operations are
accounted for properly. The action of Td × T on these spheres is equivalent to that of the
group Ch (whose reflection plane is the plane of Figure 12); it creates a (Cs ∧ T2)-invariant
circle on each Cs-invariant sphere in CP 2 × S

2.

4.6. Action on the vibrational subspace CP 2 × CP 1. Description of combined small-
amplitude E- and F2-mode vibrations requires the six-dimensional reduced phase space CP 2×
CP 1. The action of the Td ∧ T symmetry group on the F2-mode subspace CP 2 and on the
whole of CP 2×CP 1 is effective. The action of Td×T on the E-mode subspace is not effective;
see Table 14: any point on this subspace is automatically D2-invariant.

4.6.1. Critical orbits. All critical orbits on CP 2 × CP 1 can be found and classified if
we combine points from Tables 8 and 10 and determine the intersection of their stabilizers
Gf ∩Ge using the lattice from Figure 2, 3, or 8. To find whether the point (orbit) is critical,
we consider the stratum with stabilizer Gf ∩Ge and verify that we deal with an isolated point
(orbit) using projections on the orbit spaces in Figures 9 and 10. As in the previous sections,
we should combine points with identical stabilizers in order to determine the number of orbits
and of points in the orbits. Concrete examples can be found in Table 15 if we ignore the
rotational part (i.e., let j = 0). Results are summarized below.

Stabilizer of the orbits on Number Examples in
CP 2

CP 1
CP 2 × CP 1 of points Table 15

D2d × T D2d × T D2d × T 3 + 3 A
(4)
1,2

S4 ∧ Ts D2d × T S4 ∧ Ts 6 + 6 (B,C)
(4)
1,2

C3v × T T ∧ Ts C3 ∧ Ts 4 + 4 A
(3)
1,2

C3 ∧ Ts T ∧ Ts C3 ∧ Ts 8 + 8 (B,C)
(3)
1,2

C2v × T D2d × T C2v × T 3 + 3 A
(2)
1,2

Here the superscripts (4), (3), and (2) correspond to parts (a), (b), and (c) of Table 15; by k+k
we denote two k-point orbits.

4.6.2. Invariant subspaces of CP 2 × CP 1. Three D2d-invariant points on CP 2 are the
only points whose stabilizer includes D2. Combining these points with the whole E-mode
space CP 1 ∼ S

2 gives three D2-invariant spheres S
2 in the six-dimensional space CP 2 × S

2.
Six Cs-invariant spheres on CP 2 combined with, respectively, six D2d-invariant points of the
E-space give 12 Cs-invariant spheres S

2 in CP 2 × S
2. The stabilizer D2 of the E-mode space

CP 1 ∼ S
2 has three conjugate Ca

2 subgroups with a = {x, y, z}. Consequently, there are three
C2-invariant subspaces S

2
(F ) × S

2
(E). Points with higher symmetry lie on each of the above

subspaces.
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4.7. Action on the full reduced phase space CP 2 × CP 1 × S
2. In order to describe

the simultaneous rotation and small amplitude E- and F2-mode vibrations of the A4 molecule
(rotational structure of all combination polyads nν2 + mν3), we need the eight-dimensional
total classical reduced phase space CP 2 × CP 1 × S

2. In this section, we find critical (fixed)
points of the Td×T action on CP 2×CP 1×S

2 by combining points on the three factor spaces.
Fortunately, most of the work has already been done in the previous sections. We can take
critical orbits A, B, and C on CP 2 × S

2 found in section 4.5 and combine them with critical
orbits of the Td×T action on the E-mode space CP 1 while matching the stabilizers carefully.
It can be seen in the examples of Table 15 that orbits A, B, and C are duplicated in the
presence of E-mode vibrations. Indexes 1 and 2 distinguish two different possible projections
(z5, z6) on the E-mode space CP 1. We use shorter Td notation for stabilizers in Table 15.
Extending the symmetry group Td by the time reversal T does not modify the critical orbits;
it merely doubles the order of stabilizers, which become S4 ∧ Ts, C3 ∧ Ts, and Cs × T2. We
comment briefly on these orbits.

The orbit stabilizer is defined as a class of conjugate subgroups; the point stabilizer is an
individual subgroup in that class. As before, we match concrete point stabilizers. The Sz

4

operation has (1 + 2), 2, and 2 fixed points on the F2-mode space CP 2, E-mode space CP 1,
and rotational sphere S

2, respectively. The 3× 2× 2 = 12 points on CP 2 ×CP 1 ×S
2 with the

stabilizer Sz
4 are listed in Table 15. To complete orbits of the Td group action we should add

points with stabilizers Sx
4 and Sy

4 (which are obtained from the given points using symmetry
operations R such that Sα

4 = R ◦ Sz
4 ◦ R−1). The total of 36 points can split into six orbits

with stabilizer S4. In particular, points A1 and A′
1 in Table 15 belong to the same six-point

orbit (which also includes two points with stabilizer Sy
4 and two points with stabilizer Sx

4 ).
A similar argument shows that there are 12 points on CP 2×CP 1×S

2 for each of the four

conjugate stabilizers C
(k)
3 (Table 15(b), where points A′, B′, and C ′ are omitted for brevity).

The total of (3 × 2 × 2) × 4 = 48 points on CP 2 × CP 1 × S
2 is made up of six eight-point

orbits with stabilizer C3.
The remaining two critical orbits on CP 2×CP 1×S

2 have stabilizer Cs. We construct these
orbits by taking points with stabilizer Cα

s on the CP 2×S
2 subspace (section 4.5) and combining

them with the appropriate two D2d points on the E-mode space CP 1 (see Table 15(c)), as
in the case of the stabilizer S4. For six conjugate subgroups Cs we have 24 critical points on
(the zero-dimensional component of) the Cs stratum of CP 2 ×CP 1 × S

2, which separate into
two 12-point orbits.

5. Prediction of RE. This section is a reward for our painstaking study of the Td × T
group action on CP 2 × CP 1 × S

2. The reduced Hamiltonian Heff is a (Td × T )-invariant
function on CP 2 × CP 1 × S

2 and it must have stationary points at all critical orbits of the
Td×T action, which we found in the previous section (Table 15). Stationary points of Heff are
equilibria of the reduced system and are RE of the initial system with six vibrational degrees
of freedom.26

26In order to simplify the analysis of the reduced system for P4, the A1-mode subsystem is excluded in [13]
by setting qA1 = pA1 = 0 and na = 0; the model potential function was developed to cubic terms only. The
number of degrees of freedom can be counted in several ways. Translational degrees of freedom can be trivially
separated. Out of three rotational degrees of freedom, two can be reduced to account for the preservation of
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RE correspond to families of special 3-tori in the initial phase space (see footnote 26)
and are characterized entirely by symmetry and the values of the three integrals nf , ne, and
j. The value of Heff (energy) at RE and stability of RE are the primary characteristics of
our system. Table 15 becomes, therefore, our most important result in view of practical
applications. (Note that RE forming one symmetry group orbit are equivalent and it suffices
to analyze stability and energy for one RE in the orbit.)

In this section, we are preoccupied with general understanding and description of possible
functions Heff . In particular, we want to know if such functions can have stationary points
only on critical orbits, i.e., have the minimum number of stationary points. We place RE on
critical group orbits and suggest possible stability. Assuming that Heff is a Morse function on
the space CP 2 ×CP 1 × S

2, we make sure that possible sets of stationary points satisfy Morse
inequalities for this space and its invariant subspaces. We then find the simplest possible set
(or sets) of RE, which correspond to the simplest Morse Hamiltonian(s) on CP 2 × CP 1 × S

2

invariant with respect to the symmetry group of the system Td × T . We can expect that at
low perturbation (or excitation) our Heff is such a simplest function.

The main purpose of this paper is the analysis of the complexity of the set of RE of systems
combined of different subsystems. Our first observation in this context follows directly from
the group action study in section 4. The RE set of the entire system is far from being a
simple combination of the RE of the subsystems. As an example, take the F2- and E-mode
subsystems, which have 9 and 27 RE, respectively. These RE are also known as “nonlinear
normal modes” [14, 15, 16]. They combine nonlinearly; there are 48 RE of the combined E–F2

system corresponding to critical orbits on the CP 2 × CP 1 phase space (see section 4.6).
Finding critical orbits on high-dimensional spaces constructed as a direct product of sim-

pler spaces is greatly facilitated by tracing the correlation between critical orbits on subspaces
and those on the complete space (for example, see section 4.5, Figures 11 and 12). Our sec-
ond main observation is that the simplest (Td × T )-invariant Morse-type function Heff with
stationary points placed exclusively on critical orbits can be defined on individual subspaces
S

2, CP 1, and CP 2. However, when we go to a product space, such as CP 2 × S
2, the situ-

ation becomes more complicated and there must be RE (stationary points of Heff) lying on
noncritical group orbits.

5.1. Consequences of local symmetry for linear stability. We can use our results on the
critical orbits of the Td×T group action on CP 2×CP 1×S

2 to find the position of corresponding
RE and compute their energy for any given Hamiltonian Heff . To find more about these RE
without using any concrete Heff , we should classify small phase space displacements x from
them (coordinates on the tangent plane) according to the irreducible representations of their
stabilizers. In this work, we are interested in one particular kind of group action, which

the length of the angular momentum vector and its projection on a laboratory fixed frame. This leaves six
vibrational degrees of freedom and one rotational degrees of freedom, sometimes called “internal” degrees of
freedom. However, we replace internal rotational degrees of freedom with two constrained oscillatory degrees of
freedom, so there is a total of eight initial degrees of freedom (and a phase space of dimension 16), of which two
represent one physical rotational degrees of freedom, and one representing the A1 mode is ignored. Reduction
with respect to all integrals na, nf , ne, and j leads to the reduced system on the space CP 2×CP 1×S

2 with four
degrees of freedom. The corresponding dynamical symmetry is T 4. If we neglect na by setting qA1 = pA1 = 0
before reduction, we restrict the initial system to seven degrees of freedom, and the dynamical symmetry is T 3.
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is induced on CP 2 × CP 1 × S
2 by spatial and reversal symmetries of the initial molecular

rotation–vibration system. This action can be studied in the example of the SO(2) group
(axial symmetry) and its discrete cyclic subgroups Ck (rotation by 2π/k with k = 2, 3, 4, . . . )
acting on the initial coordinates of our system as groups of transformations.

We begin by describing a number of nondegenerate equilibria e with nontrivial stabi-
lizers Ge = Ck and corresponding Ge-invariant local quadratic Hamiltonians H0 such that
H0(e) = 0. The local symmetry of e results in certain restrictions on H0 and on the stabil-
ity. We compute the Hessian matrix ∂2H0/∂x

2. Displacements that transform according to
different rows of the same irreducible representation Γe form a degenerate eigenvalue block
of ∂2H0/∂x

2. The number of negative eigenvalues of this matrix, or the Morse index , enters
in Morse inequalities in section 5.2; the Poincaré index gives the sign of det(∂2H0/∂x

2). In
order to determine the stability of e, we consider H0 as a Hamiltonian, establish local sym-
plectic structure J , and compute the eigenvalues of the corresponding Hamiltonian matrix
J ∂2H0/∂x

2. Hamiltonian stability and the Morse index are related unambiguously only in
the case of dimension two (reduced system with one degree of freedom). The Poincaré index,
which can be computed from the Morse index, gives some characteristics of linear Hamiltonian
stability in systems with any degrees of freedom. Subsequently, we use our results to study
the RE of our system.

5.1.1. Ck-invariant quadratic Hamiltonians on R
2. We define the action of the rotation

group SO(2) on the real variables (x1, x2) using the 2 × 2 orthogonal matrix

Mm(ϕ) =

(
cosmϕ sinmϕ

− sinmϕ cosmϕ

)
, m = 0, 1, 2, . . . ,

and consider quadratic functions H0(x1, x2), which are invariant with respect to SO(2) or its
discrete subgroups Ck (rotation by ϕ = 2π/k). For each given m we take k > m. Furthermore,
it suffices to consider k ≤ 2m. The point e = (x1, x2) = 0 is a critical orbit and, therefore,
an equilibrium of H0. If the two displacements (x1, x2) about e transform as components of a
two-dimensional real irreducible representation, then e can only be a minimum or a maximum
of H0 with signature (++) or (−−) (Morse index 0 or 2), respectively, but not a saddle (+−)

with index 1.
Invariants of our SO(2) action are constructed using combinations

ξ = x1 + ix2 and ξ̄ = x1 − ix2,

which transform as conjugate irreducible one-dimensional complex representations ±m of
SO(2). The pair (x1, x2) realizes a two-dimensional representation of SO(2), which is irre-
ducible over reals. Descending to Ck, we should check whether this representation remains
irreducible (over reals). For m = 1 and m = 2 this is the case for all k �= 2 and k �= 4,
respectively. When m = 2 and k = 4, the image of C4 becomes C2. The corresponding
quadratic forms are given in Table 16. We can see that the case k = 2m is stable (elliptic)
when c2 − ab < 0 or unstable (hyperbolic) otherwise, while the k �= 2m equilibrium is always
stable.
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Table 16
Invariant local quadratic Hamiltonians with one and two degrees of freedom encountered in our study.

The action of Ck on the phase plane R
2 with coordinates (x1, x2) is given by the 2 × 2 orthogonal matrix

Mm(ϕ) with ϕ = 2π/k; the action of Ck on the phase space R
4 with coordinates (x1, x2, x3, x4) is defined by

diag(Mm′ ,Mm′′)(ϕ). The action of the subgroups of Td × T on the local coordinates (x1, x2, y1, y2) is given in
Table 18.

Stabilizer Ck-invariant quadratic form Eigenvalues27,28

Case 2D: m = 1, 2, etc., k > m, and ω = dx ∧ dy
C2m

1
2
ax2 + 1

2
by2 + cxy

[
±√

c2 − ab
]
, 1

2
{a+ b±Dabc}

C2m+1
1
2
a(x2 + y2) [±ia], {a, a}

Case A: m′ = 1, m′′ = 1, and ω = dx1 ∧ dy1 + dx2 ∧ dy2
C2

1
2
a′x2

1 + 1
2
a′′x2

2 + 1
2
b′y2

1 + 1
2
b′′y2

2 No restrictions

+ (all possible cross terms)

Ck(k > 2) 1
2
a(x2

1 + x2
2) + 1

2
b(y2

1 + y2
2)

[
±√

c2 − ab+ id,±√
c2 − ab− id

]
+ c(x1y1 + x2y2) + d(x1y2 − x2y1)

1
2

{
a+ b±Dabcd

}
× 2

Case A with extended symmetry Tk = Ck × T , where T : (x1, x2, y1, y2) → (x1, x2,−y1,−y2)
T2

1
2
a′x2

1 + 1
2
a′′x2

2 + 1
2
b′y2

1 + 1
2
b′′y2

2 No simple restrictions

+ cx1x2 + dy1y2
1
2

{
b′ + b′′ ±Db′b′′d, a

′ + a′′ ±Da′a′′c

}
Tk(k > 2) 1

2
a(x2

1 + x2
2) + 1

2
b(y2

1 + y2
2) [±i√ab] × 2, {a, b} × 2

Case A with full symmetry and ω = dx1 ∧ dy1 + dx2 ∧ dy2
C2v × T 1

2
a′x2

1 + 1
2
a′′x2

2 + 1
2
b′y2

1 + 1
2
b′′y2

2

[
±i√a′b′,±i√a′′b′′

]
, a′, b′, a′′, b′′

D2d × T 1
2
a(x2

1 + x2
2) + 1

2
b(y2

1 + y2
2) [±i√ab] × 2, {a, b} × 2

C3v × T 1
2
a(x2

1 + x2
2) + 1

2
b(y2

1 + y2
2) [±i√ab] × 2, {a, b} × 2

Case B: m′ = 1, m′′ = 2, and ω = dx1 ∧ dy1 + dx2 ∧ dy2
C3

1
2
a′(x2

1 + y2
1) + 1

2
a′′(x2

2 + y2
2) 1

2

[
i(a′ − a′′) ± ∆, i(a′′ − a′) ± ∆

]
+ c(x1x2 − y1y2) + d(x1y2 + y1x2)

1
2

{
a′ + a′′ ±Da′a′′cd

}
× 2

C4
1
2
a′(x2

1 + y2
1) + 1

2
a′′x2

2 + 1
2
b′′y2

2 + cx2y2 [±ia′,±√
c2 − a′′b′′]{

a′, a′, 1
2
(a′′ + b′′ ±Da′′b′′c)

}
Ck(k > 4) 1

2
a′(x2

1 + y2
1) + 1

2
a′′(x2

2 + y2
2) [±ia′,±ia′′], {a′, a′′} × 2

Case B with full symmetry and ω = dx1 ∧ dy1 + dx2 ∧ dy2
C3 ∧ Ts

1
2
a′(x2

1 + y2
1) + 1

2
a′′(x2

2 + y2
2) 1

2

[
i(a′ − a′′) ± ∆, i(a′′ − a′) ± ∆

]
+ c(x1x2 − y1y2)

1
2

{
a′ + a′′ ±Da′a′′c

}
× 2

S4 ∧ T2
1
2
a′(x2

1 + y2
1) + 1

2
a′′x2

2 + 1
2
b′′y2

2

[
±ia′,±i√a′′b′′

]
, {a′, a′, a′′b′′}

5.1.2. Ck-invariant quadratic Hamiltonians on R
4. We define the action of the SO(2)

group on the four-plane R
4 with coordinates (x1, x2, x3, x4) using the matrix (Mm′ 0

0 Mm′′
),

where the submatrices Mm′ and Mm′′ act on the (x1, x2)-subspace and the (x3, x4)-subspace,

27Eigenvalues of the Hamiltonian and Hessian matrices are given in square [ ] and curly {} brackets, respec-
tively; ×2 indicates multiplicity.

28∆ =
√

4(c2 + d2) − (a′ + a′′)2, Dabcd =
√

(a− b)2 + 4(c2 + d2), Dabc = Dabc0.
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respectively. (The case of the diagonal SO(2) action on R
2 × R

2.) Invariants of this action
can be readily constructed using

ξ = (x1 + ix2) and η = (x3 + ix4)

together with their conjugates ξ̄ and η̄. The four variables ξ, η, ξ̄, η̄ realize irreducible
representations m′, m′′, −m′, −m′′, respectively. We consider several situations of interest to
our later study.

In the case of m′ = 1 and m′′ = 2, we have two quadratic SO(2) invariants 1
2ξξ̄ and

1
2ηη̄. When SO(2) is lowered to C3, we also have ξη and ξ̄η̄, which transform like exp(±3iϕ).
Similarly, η2 and η̄2 transform like exp(±4iϕ) and are the two extra invariants in the case
of C4.

In the case of m′ = m′′ = 1 (and generally for m′ = m′′), our SO(2) action has four
quadratic invariants: the familiar 1

2ξξ̄,
1
2ηη̄, and the cross terms ξη̄, ηξ̄. The same four remain

if SO(2) is lowered to Ck and k > 2. When k = 2, each coordinate xi realizes real one-
dimensional irreducible antisymmetric representation. All 10 quadratic monomials xjxi are,
therefore, C2-invariant.

Generic Ck-invariant real quadratic forms in (x1, x2, x3, x4) constructed using the above
invariants are presented in Table 16. As can be seen from this table, Hamiltonian stability
of e = (0, 0, 0, 0) depends on m′, m′′, k, and the symplectic form ω. The eigenvalues of the
Hessian at (0, 0, 0, 0), which are also given in Table 16, are used in the Morse theory analysis.
Furthermore, we can see that additional symmetry, such as the time reversal extension for
case A critical orbits (see sections 4.3, 4.5.3 and Table 15), can simplify the situation quite
radically.

5.1.3. Points on S
2 and CP 1. Consider a nondegenerate critical point e with stabilizer

Ge on the 2-sphere S
2 or on the diffeomorphic space CP 1. The group Ge is defined as a group

of transformations of the ambient Euclidean space R
3, which embeds S

2 (see section 4). We
want to know how Ge acts on the 2-plane R

2
(e) tangent to S

2 or CP 1 at e. It suffices to consider

the circle group Ge = SO(2) and its subgroups Ck. A straightforward computation shows that
the image of SO(2) and Ck in the representation spanned by the Euclidean coordinates (x, y)
on R

2
(e) is again SO(2) and Ck and that x ± iy span representations ±1. Then, following

section 5.1.1, the point e on S
2 and CP 1 with stabilizer Ck, k > 2, is always stable; points

with stabilizer C2 can also be unstable.

5.1.4. Points on CP 2. As before, we study a special case of the group action on the
CP 2 space induced by the natural action (vector representation) of the group SO(2) and its
subgroups Ck on the complex 3-space with coordinates (z1, z2, z3). This action is defined by
a 3× 3 orthogonal matrix M . The action on the corresponding real 6-space with coordinates
(q1, q2, q3, p1, p2, p3) is given by the matrix (M 0

0 M
) with one copy of M acting on the q space

and the other on the p space. The above action of SO(2) with the symmetry axis z3, and of
the corresponding discrete subgroups Ck with k > 2, on CP 2 has three isolated fixed points
(see section 4.3 and [17]):

A = (0, 0, 1), B = (1,±i, 0).
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Table 17
Generic equilibria on CP 2 in the presence of the natural action of the cyclic group Ck and its extensions.

Equilibrium29 ∂2H0
30 J ∂2H0

31

A C2 × T No simple restrictions

C2v × T 4, 2, 0 ii

3, 1 ir

2 rr

A Ck × T , k > 2 4, 0 ii 1:1

2 rr 1:1

Equilibrium29 ∂2H0
30 J ∂2H0

31

B C3 4, 2, 0 ii

2 c

B C4 4, 2, 0 ii

3, 1 ir

B Ck, k > 4 4, 2, 0 ii

(In Table 15 we use notation B,C for points of type B.) In the C2 case, only the A-type fixed
point is isolated. It is also useful to recall that the stabilizer of the A points in the case of
the Td × T action on CP 2 includes T (see Table 10) and that Ck can be extended easily to
Tk = Ck × T .

Any Ck-invariant Morse Hamiltonian H on CP 2 has nondegenerate stationary points of
types A and B. Let z be one of these points and let C

2
(z) ∼ R

4
(z) be the plane tangent to CP 2

at z. This plane is a chart of CP 2 with four real displacement coordinates (q′, p′, q′′, p′′). The
zero order H0(q

′, p′, q′′, p′′) of the Taylor expansion of H near z is a nondegenerate quadratic
form. We study the action of Ck on (q′, p′, q′′, p′′) and find which generic forms in Table 16
correspond to H0. Table 17 gives the summary of the results.

The action of Ck on R
4
(z) can be found by direct computation; see also section 10. The

matrix of the rotation about axis z3 by an arbitrary angle ϕ is

M(ϕ) =

⎛
⎜⎝ cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

⎞
⎟⎠ .

We can see right away that four small real quantities (q1, q2), and (p1, p2), which define a
displacement from point A (in the appropriate chart of CP 2),

dA = (q1 + ip1, q2 + ip2, 1)

transform like two copies of the real two-dimensional representation ±1 of the group SO(2).
Consequently, the forms of caseA in Table 16 with (x1, x2, y1, y2) corresponding to (q1, q2, p1, p2)
represent generic Ck and (Ck × T )-invariant Morse functions locally at point A. The C2 × T
form can be further simplified if we consider the full C2v × T stabilizer of the actual fixed
point of the Td × T action. In that case H0 has only four terms q21, q

2
2, p

2
1, and p2

2. Hamilto-
nian (linear) stability analysis of the A-type equilibria in the case of the full Td × T action is
straightforward (see Table 17) because the linearized system separates in initial phase space
coordinates and the analysis reduces to combining two systems with one degree of freedom.

29Type and local symmetry (stabilizer) of equilibria on CP 2; see section 5.1.4 and Table 15 and compare to
Table 16.

30Possible Morse index derived from the corresponding Hessian eigenvalues in Table 16.
31Possible eigenvalues of the Hamiltonian matrix: i and r stand for the imaginary and the real eigenvalue

pair, respectively; 1:1 indicates resonance, c denotes four complex eigenvalues.
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When we use the same approach for

dB = (1, i+ q2 + ip2, q3 + ip3) = (1, i+ z2, z3),

we should project the transformed vector

M(ϕ)dB =
(
eiϕ + z2 sinϕ, ieiϕ + z2 cosϕ, z3

)
back to the initial chart of CP 2 and Taylor expand to the first order in (q2, p2, q3, p3),

M(ϕ)dB
∣∣
chart

=
[
eiϕ + z2 sinϕ

]−1
M(ϕ)dB

≈
(
1, i+ e−2iϕz2, e

−iϕz3
)
.

We can now see that (q3, p3) and (q2, p2) realize representations ±1 and ±2 of SO(2), respec-
tively. Therefore, quadratic forms of case B in Table 16 with (x1, y1, x2, y2) corresponding to
(q2, p2, q3, p3) represent generic Ck-invariant Morse functions locally at point B. For all points
B(k) with k > 3, linearization separates in the initial coordinates (q2, p2) and (q3, p3). As in
case A, stability analysis of these equilibria is simple. Point B(3) turns out to be the only
interesting case, where the localized system is intrinsically four-dimensional; cf. [97].

5.1.5. Stability analysis of stationary points on CP 2 in the presence of Td × T . In
the previous section, we showed that linear stability of stationary points on CP 2 (vibrational
RE) can be predicted by analyzing possible local Hamiltonians for RE whose stabilizer is an
SO(2) group or a discrete cyclic subgroup Ck of this group. For the five types of vibrational
RE labeled A(2), A(3), B(3), A(4), and B(4) (see Table 15) we take subgroups C2, C3, and C4,
respectively. The latter can be regarded as the principal symmetry operations of the respective
stabilizers C2v × T , C3v × T , C3∧T , D2d × T , and S4∧T . At the same time, prediction of
stability of these RE can be further improved if we account for the full stabilizers.

To this end we proceed as before in section 5.1.4. We define local displacement coordi-
nates (x1, y1, x2, y2) near the stationary point on CP 2 and determine the action of the full
stabilizer G on these coordinates. Knowing the action, we find the representation of G real-
ized by (x1, y1, x2, y2) and construct the typical G-invariant quadratic form H(x1, y1, x2, y2).
We choose (x1, y1, x2, y2) so that the local 2-form is dx1 ∧ dy1 + dx2 ∧ dy2 and consider
H(x1, y1, x2, y2) as a Hamiltonian function of local linearization near the RE.

In order to define (x1, y1, x2, y2) we rotate the initial coordinates (z1, z2, z3) so that in the
new coordinates (z′1, z′2, z′3) the principal symmetry axis of the stabilizer becomes axis z′1. The
direction of the two other axes can be chosen as shown below:

Stabilizer (z1, z2, z3) Map (z′1, z
′
2, z

′
3)

D
(x)
2d × T √

2n(1, 0, 0) E
√

2n(1, 0, 0)

S
(x)
4 ∧ T (y)

2

√
n(0, 1, i) E

√
n(0, 1, i)

C
(z)
2v × T √

n(1, 1, 0) M1

√
2n(1, 0, 0)

C
[111]
3v × T

√
2
3
n(1, 1, 1) M2

√
2n(1, 0, 0)

C
[111]
3 ∧ T ‖

s

√
2
3
n(1, η2, η̄2) M2

√
neiπ/6(0, 1, i)

where z′ = Mz, E = diag(1, 1, 1),

M1 =

⎛
⎜⎝

√
2

2

√
2

2 0

−
√

2
2

√
2

2 0
0 0 1

⎞
⎟⎠ , and M2 =

⎛
⎜⎜⎝

1√
3

1√
3

1√
3

1√
2

0 − 1√
2

− 1√
6

2√
6

− 1√
6

⎞
⎟⎟⎠ .
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Using the approach in section 5.1.4, we can show that the position of the RE in the new
coordinates (z′1, z′2, z′3) is (1, 0, 0) for type A and (0, 1,±i) for type B. We define displacement
vectors

dA =
(
z1, x1 + iy1, x2 + iy2

)
,

with z1 =
√

2n− |z2|2 − |z3|2, and

dB =
(
x1 + iy1, z

′
2, i

√
n+

√
2x2 + iy2/

√
2
)
,

with z′2 =
√
n− |z′1|2 − |z′3|2. Note that, instead of projecting on an R

4
(x,y) chart of CP 2 as

we do in section 5.1.4, we represent the points of CP 2 by fixing the total phase of (z′1, z′2, z′3)
so that Im(z′1) = 0 in the case of dA and Im(z′2) = 0 in the case of dB (cf. section 2.4.3).
Each symmetry operation R in the stabilizer G is realized initially as a linear transformation
of the space R

3 defined by a real matrix MR. The same transformation applies to C
3 with

coordinates (z′1, z′2, z′3). To realize this transformation on CP 2, we should correct or restore
the phase of MRz

′ in order to obey our phase condition. Therefore we define

RdA =
[MRz̄]1∣∣[MRz̄]1

∣∣MRdA and RdB =
[MRz̄]2∣∣[MRz̄]2

∣∣MRdB.

To find the action on (x, y) we Taylor expand RdA and RdB at (x, y) = 0 and compare them
to the initial vectors dA and dB. Results are summarized in Table 18. As can be concluded
from this table, displacements (x, y) realize the following representations of the respective
stabilizers:

Point Stabilizer Representation spanned by (x, y)

A(2) C2v × T A2g(x1) ⊕A2u(y1) ⊕B1g(x2) ⊕B1u(y2)

A(3) C3v × T Eg(x1, x2) ⊕ Eu(y1, y2)

B(3) C3∧Ts E(x1, y1) ⊕ E(x2,−y2)
A(4) D2d × T Eg(x1, x2) ⊕ Eu(y1, y2)

B(4) S4∧T2 B1(y2) ⊕B2(x2) ⊕ E(x1, y1)

Here we denote irreducible representations of T -extended groups using notation of correspond-
ing point groups [66].

The above decomposition of representations realized by local displacements into irre-
ducible representations makes construction of local quadratic Hamiltonians straightforward.
In the case of A(k) and B(4) RE, all quadratic invariants are just linear combinations of scalar
squares of displacements transforming according to different irreducible representations, such
as
[
Eg(x1, x2)

]2
= x2

1 + x2
2, etc. The case of B(3) is the only case where a scalar product

of two different displacements transforming according to the same irreducible representation
E occurs. Generic local quadratic Hamiltonians for each RE are listed in Table 16. The
brute-force way to find these Hamiltonians is by projecting the most general homogeneous
second degree polynomial in (x1, x2, y1, y2) using the operator |G|−1∑

R∈GR, where G is the
stabilizer of the RE in question.
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Table 18
Action of stabilizers on local displacements from the stationary points on CP 2.

Action of D
(x)
2d × T on Eg⊕Eu

R Rx1 Rx2 Ry1 Ry2
E x1 x2 y1 y2
Cx

2 −x1 −x2 −y1 −y2
Cy

2 −x1 x2 −y1 y2
Cz

2 x1 −x2 y1 −y2
σyz x2 x1 y2 y1
σyz −x2 −x1 −y2 −y1
S4 x2 −x1 y2 −y1

S−1
4 −x2 x1 −y2 y1

R Rx1 Rx2 Ry1 Ry2
T x1 x2 −y1 −y2

T x
2 −x1 −x2 y1 y2

T y
2 −x1 x2 y1 −y2

T z
2 x1 −x2 −y1 y2

T yz
s x2 x1 −y2 −y1

T yz
s −x2 −x1 y2 y1

S4T x2 −x1 −y2 y1
S−1

4 T −x2 x1 y2 −y1
Action of C

(z)
2v × T on A2g⊕A2u⊕B1g⊕B1u

R Rx1 Rx2 Ry1 Ry2
E x1 x2 y1 y2
Cz

2 x1 −x2 y1 −y2
σxy −x1 x2 −y1 y2
σxy −x1 −x2 −y1 −y2

R Rx1 Rx2 Ry1 Ry2
T x1 x2 −y1 −y2
T z

2 x1 −x2 −y1 y2
T xy
s −x1 x2 y1 −y2

T xy
s −x1 −x2 y1 y2

Action32 of C
[111]
3v × T on Eg⊕Eu

R Rx1 Rx2 Ry1 Ry2
E x1 x2 y1 y2
C3 −ax1 − bx2 bx1 − ax2 −ay1 − by2 by1 − ay2
C2

3 −ax1 + bx2 −bx1 − ax2 −ay1 + by2 −by1 − ay2
σxy x1 −x2 y1 −y2
σyz −ax1 + bx2 bx1 + ax2 −ay1 + by2 by1 + ay2
σzx −ax1 − bx2 −bx1 + ax2 −ay1 − by2 −by1 + ay2
T x1 x2 −y1 −y2

C3T −ax1 − bx2 bx1 − ax2 ay1 + by2 −by1 + ay2
C2

3T −ax1 + bx2 −bx1 − ax2 ay1 − by2 by1 + ay2
T xy
s x1 −x2 −y1 y2

T yz
s −ax1 + bx2 bx1 + ax2 ay1 − by2 −by1 − ay2

T zx
s −ax1 − bx2 −bx1 + ax2 ay1 + by2 by1 − ay2

Action of S
(x)
4 ∧ T (y)

2 on B1⊕B2⊕E
R Rx1 Rx2 Ry1 Ry2
E x1 x2 y1 y2
Cx

2 −x1 x2 −y1 y2
S4 y1 −x2 −x1 −y2

S−1
4 −y1 −x2 x1 −y2

R Rx1 Rx2 Ry1 Ry2
T y

2 −x1 −x2 y1 y2
T z

2 x1 −x2 −y1 y2
T yz
s y1 x2 x1 −y2

T yz
s −y1 x2 −x1 −y2

Action32 of C
[111]
3 ∧ T ‖

s on E⊕E
R Rx1 Rx2 Ry1 Ry2
E x1 x2 y1 y2
C3 −ax1 − by1 −ax2 + by2 bx1 − ay1 −bx2 − ay2
C2

3 −ax1 + by1 −by2 − ax2 −bx1 − ay1 bx2 − ay2
T xy
s ax1 − by1 ax2 + by2 −bx1 − ay1 bx2 − ay2

T yz
s −x1 −x2 y1 y2

T zx
s ax1 + by1 ax2 − by2 bx1 − ay1 −bx2 − ay2

32Notation a = 1/2, b =
√

3/2.
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5.2. Application of Morse theory. Simplest Morse Hamiltonians. Consider a manifold
P whose topology is described by dimP + 1 Betti numbers bk. Particularly useful is the
combination of these numbers, called the Euler characteristics Σ. A Morse function f on P
is smooth and has only nondegenerate stationary points. Let ck be the number of stationary
points of f of Morse index k. The set of dimP Morse inequalities

s∑
k=0

(−1)s−kck ≥
s∑

k=0

(−1)s−kbk, 0 ≤ s < dimP,

and the Euler–Poincaré equation

dimP∑
k=0

(−1)k ck =
dimP∑
k=0

(−1)k bk = Σ,

express the relation between ck and topological invariants bk and Σ.
In the presence of a nonfree action of group G on P , all isolated points on the critical orbits

of this action must be stationary points of f . The Morse function f with a minimal possible
number of stationary points on P (in the presence of the specific group action) represents a
class of simplest Morse functions. In the most trivial situations, such functions would have
stationary points only on the isolated critical points. We should, therefore, check whether
(and how) placing stationary points exclusively on the isolated points of critical orbits can
satisfy the above Morse theory requirements. Table 19 gives Betti numbers for S

2 and CP 2

and suggests systems of stationary points on the vibrational spaces CP 2 and CP 1 and the
rotational space S

2 satisfying Morse theory in the presence of the Td × T group action. We
begin with the simplest Morse Hamiltonians on each factor space of the total reduced phase
space CP 2 × CP 1 × S

2. Such Hamiltonians describe isolated F2-mode or E-mode vibrational
systems (polyads) or pure rotation.

5.2.1. Morse functions on the rotational space S
2. Among the 26 fixed points of the Td×

T action on S
2 (Table 7), six points with stabilizer S4∧T and eight points with stabilizer C3∧Ts

should be elliptic. The Morse conditions are satisfied if the 12 points with stabilizer Cs×T2 are
hyperbolic (unstable): 6−12+8 = 2. The two possible simplest Morse Hamiltonians differ in
sign: one has six maxima and eight minima while the other has this structure turned upside-
down. If the internuclear adiabatic potential of the A4 molecule can be well approximated
as a sum of six pairwise interaction terms and all vibrations are frozen, then the minima are
located at the six S4 points [12] as shown in Figure 13, left.

We like to note that stationary points of simplest Morse functions of purely rotational
systems (rotational RE of nonrigid bodies) should not necessarily be fixed points on S

2. Thus
in the case of the lowest possible symmetry of such systems T (no spatial symmetry), neither
of the three pairs of equivalent RE has a fixed position on S

2. Another example is the C2 ×T
system in Figure 6: four (two pairs) of its six RE can lie anywhere on the invariant circle.

5.2.2. Morse functions on the E-mode phase space CP 1. Critical orbits of the Td ×T
action on CP 1 are presented in Figure 9 and Table 8. The two equivalent T ∧Ts (C3v) points
should be elliptic. The Morse conditions are satisfied if, out of the two three-point orbits with
stabilizer D2d × T , one contains elliptic points and the other hyperbolic points. The freedom
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Table 19
Betti numbers bk and Euler–Poincaré characteristics Σ for the spaces CP 2 and CP 1 ∼ S

2 (top). Number
and type of stationary points of the simplest Morse function on the F2-mode space CP 2, E-mode space CP 1, and
rotational sphere S

2 in the presence of the symmetry group Td × T . The frame indicates additional stationary
points of the possible nonsimplest Morse function on CP 2.

Space b0 b1 b2 b3 b4 b5 b6 Σ

CP 1 ∼ S
2 1 0 1 2

CP 2 1 0 1 0 1 3
CP 1 × S

2 1 0 2 0 1 4
CP 2 × S

2 1 0 2 0 2 0 1 6

Space c0 c1 c2 c3 c4 c5 c6 Σ

CP 1 3D2d × T 3D2d × T 2T ∧ Ts 2

S
2 6S4 ∧ Ts 12Cs ∧ T2 8C3 ∧ Ts 2

CP 2 4C3v × T 6C2v × T 8C3 ∧ Ts 6S4 ∧ Ts 3D2d × T 3

CP 2 4C3v × T 6C2v × T 3D2d × T
8C3 ∧ Ts

6Cs ∧ T2

6Cs ∧ T2
6S4 ∧ Ts 3

CP 2 × S
2 8C(3) 12Cs 6C(4) 6A(4) 12A(2) 8A(3) 8B(3) 12Cs 6B(4) 6

Figure 13. Simplest purely rotational (left) and E-mode vibrational (right) Morse Hamiltonians (often
called energy surfaces) of the A4 molecule as functions on the phase spaces S

2 and S
2 ∼ CP 1. The bounding

potential of the A4 molecule is approximated as a sum of pairwise harmonic atom–atom interaction terms;
see [12].

of choice is limited to having two maxima and three minima or vice versa. As before, we can
predict which of the two possibilities is realized in A4 using the simple atom–atom vibrational
potential of [12, 13]. It turns out that at fixed action ne the two C3v-symmetric RE have
maximum energy; see Figure 13. Note that the same happens in the case of the E mode of
the A3 molecule, such as H+

3 [19], whose equilibrium configuration is an isosceles triangle.

5.2.3. Morse functions on the F2-mode phase space CP 2. Among the fixed points of
the Td × T action on CP 2 (see Tables 10 and 17) only points with stabilizers C2v ∧ T and
S4∧T2 (D2 and C4 in the short notation) can have odd Morse indexes. Table 19 demonstrates
how Morse inequalities for CP 2 are satisfied if stationary points lie only on the critical orbits.
We can interchange points of indexes 1 ↔ 3 or/and 0 ↔ 4 to obtain other possible simplest
Morse functions. Table 20 shows how this simplest set of stationary points respects Morse
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Table 20
Stationary points of the (Td × T )-invariant Morse Hamiltonians on CP 2 (see Table 19) projected on the

C2- and Cs-invariant spheres.

Stabilizer of Signature (index) Number of
sphere orbit on CP 2 on S

2 points on S
2

Simplest Morse Hamiltonian:
C2 D2d × T [++++] (0) [++] (0) 2

S4 ∧ T2 [+++−] (1) [+−] (1) 2
C2v ∧ T [+−−−] (3) [−−] (2) 2

Cs D2d × T [++++] (0) [++] (0) 1
C2v ∧ T [+−−−] (3) [+−] (1) 1
C3v × T [−−++] (2) [−−] (2) 2

Nonsimplest Morse Hamiltonian:
C2 D2d × T [+−+−] (2) [+−] (1) 2

S4 ∧ T2 [++++] (0) [++] (0) 2
C2v ∧ T [+−−−] (3) [−−] (2) 2

Cs D2d × T [+−+−] (2) [+−] (1) 1
C2v ∧ T [+−−−] (3) [+−] (1) 1
Cs ∧ T2 [+++−] (1) [++] (0) 2
C3v × T [−−++] (2) [−−] (2) 2

Figure 14. Position of RE (left) and vibrational F2-mode Hamiltonian (right) of the A4 molecule restricted
to the Cs-invariant sphere in the phase space CP 2. White circles denote extra (nonfixed) RE; other markers
correspond to fixed points in Figure 12 (left). The bounding potential of A4 is approximated as a sum of pairwise
atom–atom harmonic interaction terms [13].

theory requirements for the C2- or Cs-invariant spheres in Table 12 and in Figures 11 and 12
(left). It can be further verified that requirements for all closed invariant subspaces of CP 2

are satisfied.
Computation with the atom–atom potential [13] (in the limit of independent vibrational

and rotational motions) suggests that the simplest Morse Hamiltonian is not realized in real A4

molecules. Instead we expect a Hamiltonian with 12 additional equivalent RE with stabilizer
Cs∧T2, which are situated in pairs on the (Cs∧T2)-invariant main circle of the six Cs-invariant
spheres, as shown in Figure 14. When the energy of the system (or the action nf ) changes,
these two RE can move along the invariant circle. The set of RE of this nonsimplest system
is characterized in the second to last row of Table 19 and in Table 20, bottom.

5.2.4. Morse functions on combined spaces. The Betti numbers bk and Euler charac-
teristics Σ for the smooth manifold P , which is a product P ′×P ′′, follow from those for factor
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spaces P ′ and P ′′,

bk =
∑

i+j=k

b′ib
′′
j , Σ =

dimP∑
k=0

(−1)kbk,

where indexes i, j, and k go from 0 to dimP ′, dimP ′′, and dimP = dimP ′ + dimP ′′,
respectively. In many cases we can analyze RE on P by combining the rules for P ′ and P ′′;
the most interesting case turns out to be that of CP 2 × S

2 (F2-mode vibration and rotation).
Satisfying Morse conditions on invariant subspaces becomes increasingly important in high

dimensions. Thus, even before attempting to consider whether the “minimum” set of the 12
AC2 , six (A,B,C)C4 , and eight (A,B,C)C3 stationary points (see Table 15—ignore indexes

1,2) satisfies all conditions for CP 2 × S
2, we can check if this set works for the subspaces of

CP 2 × S
2. Going back to section 4.5 and Figure 12, we conclude immediately that our set

is incomplete. Indeed, we should expect at least two stationary points (a maximum and a
minimum) on each of the twelve Cs-invariant spheres in CP 2 × S

2—yet none of the fixed
points of the Td × T action lies on these spheres. Therefore, the set of stationary points
on the CP 2 × S

2 space (rotation–vibration RE) includes necessarily at least two 12-point
noncritical Cs-orbits. Adding these 24 points, the simplest Morse function on CP 2 × S

2

can be constructed; one possibility is presented in the last row of Table 19. This function
corresponds to the Coriolis-dominated structure, which we will discuss on the example in
section 11.

5.3. RE in the initial phase space. RE of the A4 molecule in the initial phase space can
be largely, and in some cases entirely , reconstructed using the qualitative information on the
symmetry group action on the reduced phase space CP 2 ×CP 1 × S

2 and stationary points of
the reduced Hamiltonian. Thus all purely rotational RE of a tetrahedral molecule correspond
to the stationary rotation around the symmetry axis of their stabilizers. For the S4 ∧ T
stabilizer we take axis C4, and for Cs × T2 we take the C2 axis orthogonal to the symmetry
plane. Vibrational RE of the E- and F2-mode systems form families of basic periodic orbits in
the initial phase space parameterized by the values of integrals ne and nf . Rotation–vibration
RE of our system are labeled by the values of integrals j, ne, and nf and can be reconstructed
as appropriate combinations of the periodic motions of the subsystems, which correspond to
the combined stationary points on the reduced phase space CP 2 × CP 1 × S

2 (see Table 15)
and which become 3-tori (see footnote 26) in the original phase space of the system. We will
characterize these RE in more detail and illustrate the results on the concrete example of the
A4 molecule introduced in section 2.3 and [13].

5.3.1. RE of the E-mode system. Neglecting rotation and interaction with other vibra-
tional modes, the E-mode system can be described by the Hamiltonian

H = ωe
[
H0 + V (q)

]
,(5.1a)

where

H0 =
1

2

2∑
i=1

(
q2Ei

+ p2
Ei

)
=

1

2

(
p2
E1

+ p2
E2

)
+ V0(5.1b)
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Figure 15. Hénon–Heiles potential V0(q) + εV (q) computed for ε = 0.1 and h/hsaddle = 0.2, 0.45, 0.7, 0.9
(bold contour), 1, 1.2, . . . (gray). Nonlinear normal modes of the Hénon–Heiles oscillator (E-mode system)
reconstructed using ε8 normal form with ε = 0.1 and h/hsaddle = 0.9 (colored).

is the Hamiltonian of the 1:1 harmonic oscillator, and the anharmonic part of theD3 symmetric
potential equals

V (q) = ε

(
1

3
q2E1

− q2E2

)
qE1 + · · · .(5.1c)

The potential V0 + V is shown in Figure 15. We can see that to the lowest order in ε our
E-mode system is equivalent to the Hénon–Heiles oscillator, which has the same symmetry
D3 × T ∼ D3h. (Note that the E-mode system of triatomic molecules with the equilateral
triangle equilibrium, e.g., H+

3 [19], also has the same symmetry and the same lowest order

Hamiltonian.) In our A4 example [13], ε = −3
√

3
4 ε and ωe = ω.

The RE of the E-mode system are, of course, reconstructed in the same way as the RE
of the Hénon–Heiles oscillator [77, 14, 15, 16, 18, 19, 78]. We represent trajectories of this
system at a given fixed energy h using their projection in the configuration space, a plane
R

2
q with coordinates (qE1 , qE2). To distinguish between trajectories with the same coordinate
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image, we specify their direction. The boundary of the classical motion is the h-level set of
V0(q)+V (q). (We consider small amplitudes and are not interested in the unbounded motion
of the Hénon–Heiles system at large energies.)

The symmetry group Td × T acts on R
2
q (see section 4.2) like the planar point group D3.

Operations in this group {1, 2C3, 3C2} act naturally on the RE projections in the R
2
q space.

The time reversal T acts trivially on the coordinate space R
2
q while changing signs of the

momenta p and thus reversing the flow of the dynamical system. It follows that T changes
the direction of the periodic trajectories and of their image in R

2
q . All we should do in order to

reconstruct qualitatively the projection of the RE in R
2
q is to suggest two curves with stabilizer

T ∧ Ts and two groups of three curves with stabilizer D2d × T (see critical orbits in Table 8).
In [77, 14, 15, 16] these RE are called Π7,8, Π3,4,5, and Π6,7,8, respectively.

Since the group (T ∧Ts)/D2 = {1, 2C3, 2(C2T )} does not include the time reversal T itself,
the two periodic trajectories Π7,8 are mapped into each other by T and share the same image
in R

2
q . The image is a closed C3-invariant loop shaped as a smoothed equilateral triangle

(Figure 15, right). It is easy to check that any of the three reflections C2 also map Π7 ↔ Π8,
while the operations C2T leave them invariant. The trajectories Π3,4,5 and Π6,7,8 project on
lines (degenerate loops) in R

2
q because their stabilizer (D2d × T )/D2 = C2 × T includes time

reversal T . Such lines should necessarily begin and end on the boundary of the motion, where
the trajectory has a turning point and approaches the boundary at a right angle. This leaves
two possibilities (Figure 15, right): three straight lines on the three C2 axes and three curved
lines, each intersecting one of the C2 axes at a right angle.

5.3.2. RE of the F2-mode system. Neglecting rotation and interaction with other vibra-
tional modes, the F2-mode system can be described by the Hamiltonian

H = ωf

[
H0 + εV1(q) + ε2H2(q, p) + · · ·

]
,

where

H0 =
1

2

3∑
i=1

(
q2i + p2

i

)
=

1

2

(
p2
1 + p2

2 + p2
3

)
+ V0

is the Hamiltonian of the 1:1:1 harmonic oscillator and

V1(q) = q1q2q3

is the lowest order anharmonic part of the Td symmetric potential. The potential V0 + εV1

illustrated in Figure 16 appears as a direct three-dimensional analogue of the two-dimensional
Hénon–Heiles potential in (5.1c). However, the (small) fourth degree term

V2(q) = q41 + q42 + q43

should also be included for the more general description of the reduced system [98]. (Note
that any Td symmetric potential can be written as a polynomial in V0, V1, and V2.) In the
concrete potential of the A4 molecule [13], we have

V (q) = V0 + ε
3

2 (2)1/4
V1 + ε2

(
7
√

2

64
V2 −

5
√

2

16
V 2

0

)
,
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V (q) D2d × T

C3v × T C2v × T

C3 × Ts S4 × T2

Figure 16. Qualitative representation of the equipotential surface of the F2-mode system (top left). Non-
linear normal modes (RE) of the three-dimensional analogue of the Hénon–Heiles oscillator (F2-mode system)
reconstructed for ε = 1 and energy H0 = 0.118.
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while ωf =
√

2ωe. The molecular F2-mode Hamiltonian H2 also contains the kinematic term
ε2 1

8 [p × q]2 related to the angular momentum induced by the F2-mode vibrations.
The RE of the F2-mode system in Figure 16 (cf. Figure 8 in [18] and [98]) can be recon-

structed qualitatively using the method in the previous section. We project trajectories of this
system in the configuration space R

3
q , where they stay inside a tetrahedral cavity bounded by

the h-level of V (q); see Figure 16, top left. We classify curves in this cavity by their stabiliz-
ers. RE with stabilizers D2d × T , C3v × T , and C2v × T (D4, D3, and D2 in the shorthand
notation of section 4.3) are T -invariant. They project to lines in R

3
q , which are passed in both

directions. Like Π1,2,3 of the Hénon–Heiles system, the D2d × T and C3v × T RE lie on the
corresponding symmetry axes C4 and C3. The C2v×T RE lie in the symmetry planes Cs and
are slightly curved; they resemble, therefore, Π4,5,6. RE with stabilizers S4 × Ts and C3 ∧ Ts
are similar to the “circular” RE Π7,8. They project on closed directed curves in R

3
q . In the

crudest approximation, these RE can be represented as circles lying in the plane orthogonal
to the respective axes C4 and C3. The S4 × Ts RE develops a characteristic “bow tie” twist
(see Figure 16), which brings the circular symmetry down precisely to S4 × Ts. The C3 ∧ Ts
RE has a triangular shape similar to that of Π7,8 and bends slightly out of plane like the trim
on a skullcap. We can further observe that the energy–action characteristics of the F2-mode
RE (see Table 19 and sections 5.1.4 and 5.2.3) also shows a certain similarity to the E-mode
system: At given fixed action nf , the energy of “circular” RE tends to be higher than that of
“linear” RE.

5.4. Quantum predictions. Quantum manifestations of RE are very familiar to physicists
working on highly excited rotating molecules [31, 32, 33, 34, 18]. Within our more general
context we should consider these manifestations for reduced phase spaces of dimension greater
than two and products of two (or more) reduced phase spaces with two (or more) dynamical
integrals of motion. The latter are quantized, and the corresponding quantum numbers label
polyads or multiplets of quantum levels whose internal structure (at given fixed values of
integrals) is analyzed using RE. In our system we have three dynamical integrals j, ne, and
nf , and three corresponding quantum numbers J , Ne, and Nf , which all take integer values.

5.4.1. Systems with one dynamical integral. The most well-known quantum “signature”
of classical RE is the presence of quantum states localized predominantly near one particular
stable RE (a basic stable periodic orbit). In the simplest situation, all nodes of the quantum
wavefunction lie along the periodic orbit, and the number of nodes N (up to Maslov’s correc-
tion µ negligible in the classical limit of large N) equals (2π)−1 times the action integral taken
along the orbit that in turn equals the value of the dynamical integral n for the particular RE
and energy h,

N + µ = n(h) =
1

2π

∮
H(p,q)=h

p dq,

where µ = K/2 for a K-dimensional harmonic oscillator. The energy of such a state is as
close to h, i.e., to the classical maximum or minimum energy, as possible. With excitation
of oscillations about the RE growing, the nodal pattern becomes less trivial and localization
disappears eventually.
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Stable RE manifest themselves clearly in the structure of the energy levels. The energy
level structure largely depends on the dimension of the reduced phase space P and the sym-
metry present. The reduced system near a stable RE on P can be represented as a nonlinear
oscillator of dimension 1

2 dimP . If the area of classical stability in the phase space is suffi-
ciently large (compared to �) we can even observe a “family” of states. If 1

2 dimP > 1, the
harmonic oscillator frequencies can be (partially) degenerate due to the local symmetry of
the RE. In the case of k equivalent RE, our reduced system is represented locally as a k-well
oscillator. The depth of the wells (or the height of the barrier) is determined by the stability
of the RE. We observe k-level quasi-degenerate quantum states or clusters. The cluster, which
is closest in energy to the classical RE limit, has the smallest splitting.

We should well distinguish the quasi-degeneracy of quantum states caused by the degen-
eracy of the local oscillator system and by the presence of several equivalent (by symmetry)
stable RE, respectively. We also recall that the presence of the symmetry group with multi-
dimensional (degenerate) irreducible representations can further complicate the analysis of
the energy level patterns because quantum states with wavefunctions transforming according
to rows of the same irreducible representation are strictly degenerate.

5.4.2. Examples of simple cluster structures. The most well-known molecular example
of the correspondence between quantum energy levels and classical RE is the structure of
individual (isolated) rotational multiplets (section 1.2). In this case P ∼ S

2, 1
2 dimP = 1.

We observe simple regular sequences of rotational clusters. Near the limiting RE energy, the
system of almost equidistant sequences resembles a k-well one-dimensional harmonic oscillator;
the energy separation between the RE and the closest (first) cluster is approximately half the
distance between the clusters, i.e., half-quantum.

The 2J + 1 multiplet of the ground vibrational state of a spherical top molecule [31, 32,
33, 34, 79] has six-fold and eight-fold clusters corresponding to stable RE (stable stationary
axes of rotation) with stabilizers C4 and C3, respectively. The energy region near the unstable
RE with stabilizer Cs separates the two cluster systems. In the case of A4 (section 5.2) the
six-fold clusters lie at the bottom energies.

Asymmetric top molecules, such as H2O, have three paired RE. The RE in each pair cor-
respond to classical rotation about one of the principal inertia axes in two different directions
and are related by time reversal. Four RE (in two pairs) are stable and rotational levels form
respective two-fold clusters (doublets).

A similar cluster structure is known for vibrational systems with P ∼ S
2, such as the

E-mode system in H+
3 [19], and in A4 (section 5.2 and 5.3.1). Vibrational polyads of these

systems are labeled by quantum number Ne = 0, 1, . . . and contain Ne +1 levels (to complete
the rotational analogy use Je = 1

2Ne); two-fold and three-fold clusters lie near the top and
bottom polyad energies, respectively. These E-mode clusters are formed when vibrational
excitation is high enough to have at least five quantum states in the polyad (Ne > 4). Other
vibrational systems with reduced phase space S

2 include a number of triatomic molecules
with nearly 1:1 resonant stretching vibrations, notably H2O and O3 [22, 23, 24, 25, 26, 27].
The so-called local modes of these molecules are nothing else but a pair of stable equivalent
RE, which bifurcates (very early) from the initial “normal mode” RE as the polyad quantum
number n rises. The corresponding “local mode states” form doublets; they are commonly
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associated with vibrations localized on the particular atom–atom bond.

5.4.3. Quantum F2-mode system. So far in this section, we have summarized the fun-
damentals of quantum interpretation of RE that are largely known. New aspects begin here.
The reduced phase space P ∼ CP 2 of the F2-mode system is a compact space of real di-
mension four, and 1

2 dimP = 2. This means that we have a finite number of quantum states
in each polyad with quantum number Nf = 0, 1, . . . and that the number of states is given
by a polynomial in Nf of degree 2. More precisely, the polyads of the 1:1:1 oscillator have
1
2(Nf + 1)(Nf + 2) states.

Predicting and understanding the internal structure of the F2-mode polyads begins with
the RE analysis. Taking into account Morse theory requirements for CP 2 (see section 5.1.4
and Table 17) and its Cs- and C2-invariant symplectic subspaces S

2 (section 5.2.3) we can
suggest stability of the set of RE in the second to last row of Table 19. One possibility is
given below.

RE Stabilizer Signature Stability Type

6C4 S4 ∧ T2 [−−−−] ii B,C(4)

12Cs Cs ∧ T2 [−−−+] ir Not fixed

8C3 C3 ∧ Ts [++−−] c B,C(3)

3D4 D2d ∧ T [+−+−] rr 1:1 A(4)

6D2 C2v ∧ T [−+++] ir A(2)

4D3 C3v ∧ T [++++] ii 1:1 A(3)

Here, as in Table 17, we use i and r to mark imaginary and real eigenvalue pairs of the local
linearized Hamiltonian; c stands for four complex eigenvalues.

Using only Nf and energy H is insufficient to untangle the rich energy level spectrum of
the polyad. Since the system is not integrable (there is no third global integral), all we can
do is label localized states of different kinds with different sets of additional “good” quantum
numbers. When the local approximation separates into the i and/or r subsystems, quantum
analysis becomes straightforward. Thus, near the two stable (elliptic) RE, which are denoted
ii, our system can be represented as a two-dimensional oscillator.

At the minimum polyad energy H(A(3)) we have an oscillator with four equivalent equi-
libria or “wells.” Near each equilibrium it is described as a two-dimensional D3 symmetric
oscillator with 1:1 resonant harmonic frequencies. In other words, we encounter a four-fold
analogue of the Hénon–Heiles system. Provided that the A(3) RE is sufficiently stable (the
wells are deep) we may expect to find a series of “small polyads” labeled by an additional
“good” quantum number Ñ = 0, 1, . . . � Nf . The structure is similar to that already dis-
cussed for the E-mode system, albeit the number of levels is quadrupled. In particular, the
first level with Ñ = 0 (the lowest level in the polyad) is a four-fold cluster. At the maxi-
mum polyad energy H(B(4)) we find a six-well two-dimensional oscillator. The wells are C4

symmetric and have two frequencies which are, in general, incommensurate. The level system
associated with the B(4) RE can be described using two additional local quantum numbers
Ñ ′ and Ñ ′′; the first level (the highest level in the polyad) is a six-fold cluster.

5.4.4. Combined systems with several dynamical integrals. Multiplets of combined sys-
tems are labeled with several quantum numbers. For example, rotation–vibration multiplets
of the F2-mode system are labeled with a pair of numbers (J,Nf ) and contain 1

2(Nf +1)(Nf +
2)(2J + 1) states. The structure of such multiplets can be analyzed using our results for
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the individual subsystems, the principles of combining rotational and vibrational RE, and, of
course, the set of critical orbits of the Td × T action given in Table 15. The new idea here is
that we can continue to distinguish between the two kinds of motion, rotation and vibration,
while both of them are treated classically.

In typical molecules, vibrational and rotational quanta differ by a magnitude, and the
common experimental situation is that J � Nf . In this limit, it is often possible to separate
the whole rotational–vibrational polyad into bands, branches, or, in the terminology of [80],33

vibrational components and consider the latter for different J at fixed Nf (or/and Ne). How
do RE reflect this band structure? The answer is simple: points in Table 15 with the same
rotational coordinates (j1, j2, j3) give different classical limits within the same component.
Thus the F2-mode system has three kinds of bands A, B, and C.

We recall that F2-mode vibrations induce angular momentum π. Rotational multiplets
of the F2-mode polyads are split into branches due to the Coriolis coupling of J and π and
are labeled with the additional “good” quantum number R of the angular momentum J + π
[81]. The Nf = 1 fundamental state has π = 1. This state splits into three branches with
R = J − 1, J , J + 1, which diverge linearly as J increases. The “circular” RE of type
B,C (see section 5.3.2) have maximal angular momentum π and are the classical limit for
the R = J ± 1 branches; the A-type RE have zero momentum and give the limit of the
R = 0 branch. Provided that we add the two extra nonfixed RE of symmetry Cs ∧ T2 (see
section 5.2.4), each classical limit branch has three types of RE with shorthand labels C4, C2,
and C3; the internal structure of branches can be analyzed like that of an isolated rotational
state in section 5.2.1.

Similar analysis for the E-mode system shows that it has two types of branches A1 and
A2 (see Table 15—ignore the F2 part (z1, z2, z3) and use time reversal where necessary). In
particular, the Ne = 1 state has two branches. The splitting between them is determined by
higher order rotation–vibration interactions.

The number of vibrational states and, correspondingly, the number of quantum branches,
increases with vibrational excitation. The number of critical orbits and of corresponding
rotational–vibrational RE remains the same. Quantum branches that lie at “intermediate
energies” far from the limit given by the RE can be considered in the same way as quantum
states at intermediate energies of purely vibrational polyads (sections 5.4.2 and 5.4.3), i.e.,
as states with more complex vibrational localization. The RE analysis of the rovibrational
structure is simpler for low vibrational polyads.

The number of quantum states in each band and possible intersections of bands (vibra-
tional components) which can change this number is the subject of further qualitative study of
bands. This study is beyond the scope of the present basic RE analysis. We mention only that
each band can be assigned a topological index (Chern index) [82], which gives the difference
between the number of states 2J + 1 of an isolated rotational multiplet and the number of
states in the band. The sum of these indexes over all components of the polyad equals zero.
Thus the number of states in the Coriolis branches of the F2-mode fundamental state equals
2R+ 1 and the indexes are ±2 and 0. In the E-mode polyads the indexes can equal only 2 or
4 modulo 6 [80].

33Note that the index introduced in this work equals one-half of the Chern index introduced in [82].
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6. Dynamical invariants of the reduced system. In the previous sections we analyzed
the action of the symmetry group on the reduced phase space of our system and predicted
its RE entirely on the basis of this analysis. We defined RE explicitly (Table 15) in terms
of coordinates (z, z̄) of the initial system (2.1). Any given reduced Hamiltonian Heff can be
expressed in terms of (z, z̄) and the energy–action characteristics of fixed RE can be computed.
Stability of RE can be determined using local expansions of Heff . Those RE whose position
on the reduced phase space changes (as a function of energy or parameters) are found as
conditional extrema of Heff(z, z̄) on the reduced phase space.

The use of initial coordinates (z, z̄) has, however, obvious limitations. These coordinates
are not well suited to studying dynamics on the reduced phase space CP 2 × CP 1 × S

2. The
more appropriate way to analyze the reduced system is in terms of dynamically invariant
functions, which can be constructed of (z, z̄) [44]. In the following sections we show how
invariant polynomials in (z, z̄) can be used to describe the reduced system. We will use
invariants to (i) express the reduced Hamiltonian Heff most compactly and unambiguously,
(ii) define nonlinear coordinates on the reduced phase space CP 2 × CP 1 × S

2, (iii) describe
the action of the symmetry group Td × T on this space, (iv) describe the dynamics of the
reduced system, and (v) characterize RE in terms of both their position on CP 2 × CP 1 × S

2

and stability.
We consider appropriate dynamical symmetry and its reduction in order to introduce

dynamical invariants of degree 2 in (z, z̄) (section 6.2 and Table 21), which generate the ring
of all invariant polynomials. All terms in Heff can be expressed as various powers of these
generators. In section 6.3 we describe the structure of the ring of invariant polynomials using
the Molien generating function, and later in section 6.4 we define an integrity basis in order
to represent uniquely each invariant polynomial in this ring. In particular, all remaining
dependence on the A1 variables is expressed as a power series in the 1-oscillator action na.
This happens because the A1 vibration does not change the geometry of the molecule.

6.1. Reduction of the initial rovibrational system and normal formHeff . The zero order
Hamiltonian of our system is a sum of three harmonic oscillators,

H0 = ωA1na + ωEne + ωF2nf + 0j,(6.1a)

where na, ne, nf , and j represent oscillators with degeneracy 1, 2, 3, and 2, respectively.
Explicit definition in terms of initial symplectic variables (z, z̄) is given in Table 21. The first
three oscillators describe the A1, E, and F2 vibrational modes, respectively. The reduced
rotational subsystem is lifted to an auxiliary degenerate two-oscillator system with dynamical
variables (z6, z7, z̄6, z̄7), which is more convenient in computations.

The complete initial rotation–vibration Hamiltonian H is a power series in dynamical
variables (z, z̄),

H = H0 + εH1 + ε2H2 + · · · ,(6.1b)

where ε is a smallness parameter, and different perturbation terms are characterized below.
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Table 21
Generators of the dynamical symmetry group action describing dynamics on CP 2 × CP 1 × S

2.

Definition

na
1
2
(zaz̄a)

j 1
4
(z6z̄6 + z7z̄7)

j2
1
4
(z6z̄7 + z7z̄6)

j3
1
4
(z6z̄7 − z7z̄6)i

j1
1
4
(z6z̄6 − z7z̄7)

ne
1
2
(z4z̄4 + z5z̄5)

v1 − 1
4
(z4z̄5 − z5z̄4)i

v2
1
4
(z5z̄5 − z4z̄4)

v3
1
4
(z4z̄5 + z5z̄4)

Definition

nf
1
2
(z1z̄1 + z2z̄2 + z3z̄3)

x3
1
2
(z1z̄1 − z2z̄2)

n3
1
2
(z3z̄3)

s1
1
2
(z2z̄3 + z3z̄2)

t1
1
2
(z2z̄3 − z3z̄2)i

s2
1
2
(z1z̄3 + z3z̄1)

t2
1
2
(z3z̄1 − z1z̄3)i

s3
1
2
(z1z̄2 + z2z̄1)

t3
1
2
(z1z̄2 − z2z̄1)i

Order Degree Type of the term

ε z3 Cubic anharmonic terms
ε2 z4 Quartic anharmonic terms

z2j Coriolis interaction
j2 “Rigid rotor” rotation

When the frequencies ωA1 , ωE , and ωF2 are incommensurate, na, ne, and nf can be
regarded as three approximate integrals of motion with values Na (see footnote 26), Ne, and
Nf , respectively. The fourth integral j with the value J is the amplitude of the total angular
momentum, which is strictly conserved.

We can now reduce (normalize) perturbations H1, H2, etc. in (6.1b) by removing all
terms which do not Poisson commute with integrals nf , ne, and j. (Note that a priori
{H, j} = 0 since j is a strict integral.) In other words, we reduce the action of the dynamical
4-torus symmetry group T

4 (see footnote 26) on the initial 16-dimensional phase space with
coordinates (z, z̄). This group is defined by the flow of four Hamiltonian vector fields Xnf

,
Xne , Xna , and Xj . The normalized Hamiltonian Heff , also called the reduced and/or effective
Hamiltonian, or simply the normal form, is invariant with regard to this flow.

6.2. Invariant polynomials of the oscillator symmetry. The dynamical symmetry of each
oscillator subsystem has the form

ϕ : R
1 × Ck → Ck : (t, z) → exp(it) z,(6.2a)

where dimension k can be 3 (F2 mode), 2 (E mode and rotation), or 1 (A1 mode). The
conjugate vector z̄ transforms, of course, as follows:

(t, z̄) → exp(−it) z̄.(6.2b)

It follows that all monomials in (z, z̄) that are invariant with respect to ϕ are of even total
degree and have the same degree in z and z̄, e.g., ziz̄j , zizj z̄mz̄l, etc. Furthermore, all invariant
polynomials can be expressed using quadratic monomials of the form zz̄ (or similar homoge-
neous polynomials of degree 2), which generate the multiplicative ring R of all polynomials
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invariant with respect to ϕ. Since ϕ is a flow of the vector field of the linearized system with
Hamiltonian

H0 =
1

2
zz̄ =

1

2
(z1z̄1 + z2z̄2 + · · · + zkz̄k),

all polynomials in this ring Poisson commute with H0, which is an integral of motion for the
reduced system.

Generators are defined explicitly in Table 21. In the case of the rotational subsystem,
the generators are the familiar components j1, j2, and j3 of the angular momentum whose
amplitude j is a constant. Since the reduced phase space of the 1:1 oscillator and that of the
rotator are diffeomorphic, CP 1 ∼ S

2, the generators v1, v2, and v3 for the E-mode polyads
can also be considered as components of an angular momentum with fixed amplitude 1

2ne [69].
The reduced F2-mode oscillator system is described by nine linearly independent generators.
The integral of motion nf , and polynomials x3 and n3, are combinations of the actions of the
individual oscillators,

nk =
1

2
zkz̄k, k = 1, 2, 3.

Invariants s and t can be considered as inner and exterior products of 2-vectors,

sα =
1

2
(zβ, z̄β) · (zγ , z̄γ), tα =

i

2
(zβ, z̄β) ∧ (zγ , z̄γ).

This construction of invariants goes back to Weyl [83].

6.3. Generating function for oscillator symmetry. Once the action of the dynamical
symmetry on the initial phase space Ck of the k-oscillator is defined explicitly in (6.2) we
can compute the Molien generating function g(λ), a heuristic tool [48, 49, 50, 84] suggesting
certain structural characteristics of the ring of invariant polynomials in (z, z̄). The function
g(λ) can be obtained directly from the Molien theorem [83]

g(λ) =
1

2π

∫ 2π

0

dt

det(1 − λUt)
,(6.3)

where the 2k×2k matrix Ut represents the action of the dynamical symmetry in (6.2) on both
z1, . . . , zk and z̄1, . . . , z̄N , i.e., on all phase space variables used to construct invariants. We
can see from (6.2) that Ut is a diagonal matrix

Ut = diag
(
eit, . . . , eit︸ ︷︷ ︸

k times

, e−it, . . . , e−it︸ ︷︷ ︸
k times

)
,(6.4)

and that

g(λ) =
1

2π

∫ 2π

0

dt

(1 − λeit)k(1 − λe−it)k
.(6.5)

After changing to the complex unimodular variable

θ = exp(it), dt =
dθ

iθ
,(6.6)
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the integral (6.5) becomes a Cauchy integral

g(λ) =
1

2πi

∮
|θ|=1

θk−1dθ

(1 − λθ)k(θ − λ)k
.(6.7)

Here we note that the formal real variable λ is used in Taylor series expansions of g(λ) and
the value of λ can be assumed arbitrarily small. In particular, we can have |λ−1| > 1. Since
our integral has a single pole θ = λ of order k ≥ 1 within the unit circle |θ| = 1, the Cauchy
integral formula yields

g(λ) =
1

(k − 1)!

∂k−1

∂θk−1

θk−1

(1 − λθ)k

∣∣∣∣∣
θ=λ

,(6.8)

and in particular,34

gC1/S1
(λ) = 1/(1 − λ2),(6.9a)

gC2/S1
(λ) = (1 + λ2)/(1 − λ2)3,(6.9b)

gC3/S1
(λ) = (1 + 4λ2 + λ4)/(1 − λ2)5,(6.9c)

gCk/S1
(λ) =

k−1∑
s=0

(
k − 1
s

)2
λ2s

/
(1 − λ2)2k−1.(6.9d)

Here the formal variable λ represents any of the variables z and z̄. Since all invariants are of
even degree in z and z̄, the degree in λ is also even. We can, therefore, change to variable

µ = λ2,

which represents generators in Table 21. We can also omit one factor (1− λ2) in the denomi-
nator of (6.9) that represents the principal oscillator invariant. Then

gCP 1(µ) = (1 + µ)/(1 − µ)2,(6.10a)

gCP 2(µ) = (1 + 4µ+ µ2)/(1 − µ)4.(6.10b)

6.4. Integrity basis. All functions invariant with respect to the dynamical symmetry
(6.2a), and in particular the reduced Hamiltonian (the normal form) Heff in (2.4), can be
expressed in terms of generator invariants in Table 21. Coefficients ck in the Taylor series for
the corresponding Molien function g(λ) at λ = 0 give the total number of linearly independent
invariant polynomials of degree k. Even though the generators themselves are linearly inde-
pendent, there are algebraic relations between them and the representation of ck invariants of
degree k in terms of such generators is not unique.

For example, the components of the angular momentum obey the relation

j21 + j22 + j23 = j2 = const.

34Alternative derivation of generating functions (6.9) was given in [84].
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Due to this relation, the ring of all invariant polynomials generated multiplicatively by (j1, j2, j3)
is not free. To express any member of this ring unambiguously we can use monomials of the
type ja1 j

b
2j

c
3, where a and b are arbitrary nonnegative integers and c equals 0 or 1. In other

words, the ring generated by (j1, j2, j3) has the structure [48, 49, 50]

R(j1, j2) • {1, j3},

where R is a polynomial ring generated freely by j1 and j2. This structure is described by
the Molien generating function

gj = (1 + µj)/(1 − µj)
2,(6.11)

where the formal variable µj represents any of (j1, j2, j3), the two denominator factors (1−µj)
suggest two main (or principal) invariants of degree 1 in (j1, j2, j3), while numerator terms 1
and µj suggest auxiliary invariants of degrees 0 and 1. Such decomposition of generators into
principal and auxiliary is called integrity basis.35 Our example shows that the choice of such
basis is not unique. Thus we can equally use (j2, j3) and j1. Similarly, all E-mode invariant
polynomials constitute the ring

R(v2, v3) • {1, v1}

described by the generating function

ge = (1 + µe)/(1 − µe)
2.(6.12)

Note that v1 changes sign under time reversal T , while v2 and v3 are T -invariant. Choosing
v1 as an auxiliary (numerator) invariant is convenient for further symmetrization with respect
to T .

The choice of the integrity basis is more difficult in the case of the 1:1:1 oscillator system
(F2 mode) with the reduced space CP 2.36 There are nine quadratic relations (“sygyzies” of
the first order) among the generators,

t21 + s21 − 4n3n2 = 0, t1t2 − s1s2 + 2s3n3 = 0, s2t3 + s3t2 + 2n1t1 = 0,(6.13a)

t22 + s22 − 4n3n1 = 0, t1t3 − s1s3 + 2s2n2 = 0, s1t3 + s3t1 + 2n2t2 = 0,(6.13b)

t23 + s23 − 4n1n2 = 0, t2t3 − s2s3 + 2s1n1 = 0, s1t2 + s2t1 + 2n3t3 = 0,(6.13c)

as well as other relations of higher degree. The Molien generating function

gf = (1 + 4µf + µ2
f )/(1 − µf )

4,(6.14)

with µf representing any of the generators {x3, n3, s, t}, suggests that all four principal in-
variants can be chosen from {x3, n3, s, t} and that there should be four auxiliary invariants of

35Such decomposition is known as integrity basis [83], homogeneous system of parameters [110], or Hironaka
decomposition [111].

36The number of principal and auxiliary invariants and their degrees in (z, z̄) can be deduced from the Molien
generating function. This function, however, does not suggest the explicit construction of the generators, which
may not be unique or may not be possible at all.
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degree 1 and one of degree 2. The choice of four main invariants is far from arbitrary. One
possible representation of the structure of this ring is

R(x3, s1, s2, s3) • {1, n3, n
2
3, t1, t2, t3}.

If we use this integrity basis, relations (6.13) should, of course, be rewritten in order to replace
n1 and n2 as

n1 = 1
2(nf − n3 + x3), n2 = 1

2(nf − n3 − x3).

To obtain an unambiguous expression of the reduced rotation–vibration Hamiltonian Heff

defined on CP 2 × CP 1 × S
2, we should combine the three integrity bases introduced above.

The direct multiplication of the three rings is described by the generating function

g = gfgegj =
1 + µf + 3µ̄f + µ2

f

(1 − µf )4
1 + µ̄e

(1 − µe)2
1 + µ̄j

(1 − µ̄j)2
,

where µ and µ̄ stand for T -invariants and T -covariants. We can use main invariants

R(x3, s1, s2, s3, v2, v3, j1, j2)

and auxiliary invariants

{1,v1, j3, n3, n
2
3, t1, t2, t3, v1j3, n3v1, n

2
3v1,

t1v1, t2v1, t3v1, n3j3, n
2
3j3, t1j3, t2j3, t3j3,

n3v1j3, n
2
3v1j3, t1v1j3, t2v1j3, t3v1j3 }.

All polynomials in the above integrity basis are chosen to be either invariant or pseudoinvariant
(change sign) with respect to the time reversal T ; the pseudoinvariants are underlined. This
helps further symmetrization in section 7. Of course, we should multiply our ring by all
integrals R(nf , ne, j). More rigorously, we should first express the normalized Hamiltonian
Hnf in terms of the above integrity basis and R(nf , ne, j), and only then we replace nf , ne, j
with their constant values Nf , Ne, and J , and thus obtain the reduced Hamiltonian Heff .

7. Dynamical invariants symmetrized with respect to finite symmetries. While the
integrity basis introduced above in section 6.4 serves the purpose of dynamical (oscillator)
symmetry reduction, further modifications should, in principle, follow in order to take the
finite symmetry of our system into account. In particular, a symmetrized basis allows us to
express (2.4) using the minimum number of (linearly independent) terms whose coefficients
can be treated by spectroscopists as free phenomenological (or “adjustable”) parameters.

7.1. Symmetry properties of dynamical invariants. We first find the action of the sym-
metry group Td ×T on the generators in Table 21. Before considering Td ×T , we explain the
action of two basic symmetry elements, the rotation Ck and the time reversal T .
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7.1.1. Spatial axial symmetry. Consider a rotation Cϕ of the Euclidean 3-space about
axis 1 by angle ϕ, which equals 2π/k in the case of the discrete operation Ck with k = 2, 3, . . . .
The action of Cϕ on the coordinates (q1, q2, q3) is defined by the familiar 3 × 3 orthogonal
matrix (

1 0

0 M(2ϕ)

)
, M(ϕ) =

(
cosϕ sinϕ

− sinϕ cosϕ

)
.(7.1)

Components of the angular momentum (j1, j2, j3) also transform according to this matrix.
To understand the action of Cϕ on the E-mode reduced space CP 1, consider the rotation

of the complex plane with coordinates (z4, z5) defined by matrix M(ϕ) in (7.1) (recall that
we rotate the (q4, q5) and (p4, p5) planes simultaneously) and show that the corresponding
rotation of the 3-space with coordinates (v1, v2, v3) defined in Table 21 is given by the 3 × 3
matrix in (7.1). It follows that for the 2-sphere S

2, which is defined as v2
1 + v2

2 + v2
3 = 1

4N
2
e

and is isomorphic to CP 1, axis v1 is the corresponding symmetry axis of rotation. It can be
equally verified that (due to the particular choice of variables (j1, j2, j3) in Table 21) similar
rotation of the (z6, z7) plane corresponds to the symmetry axis j3.

To find how Cϕ acts on the CP 2 space, we can rotate the complex space C3 with coordi-
nates (z1, z2, z3) using the matrix (

M(ϕ) 0

0 1

)
,

where M(ϕ) is the 2 × 2 matrix in (7.1), and show by a direct calculation that the action of
this operation on the invariants(

x3√
2
,
s3√
2

)
,

(
s2√
2
,
s1√
2

)
,

(
t1√
2
,
t2√
2

)
, n3, t3,

is given by the matrix diag
(
M(2ϕ),M(ϕ),M(ϕ), 1, 1

)
, i.e., that these invariants realize rep-

resentations of the SO(2) group of indexes ±2, ±1, ±1, 0, and 0, respectively.

7.1.2. Time reversal symmetry T (or Z2). Recalling the action of T on the initial
vibrational variables (z, z̄), we can see that vibrational generators v2, v3, s1, s2, s3, x3, and
n3 defined in Table 21 are invariants of the Z2 action, while v1, t1, t2, and t3 are covariants,

(s1, s2, s3) → (s1, s2, s3),(7.2a)

(x3, n3, v2, v3) → (x3, n3, v2, v3),(7.2b)

(t1, t2, t3, v1) → (−t1,−t2,−t3,−v1).(7.2c)

Integrity basis polynomials in section 6.4 are chosen as either T -invariant or T -covariant
(antisymmetric or antisymmetric with respect to T ). We can easily symmetrize this basis
with respect to T by taking squares of the principal T -covariants j1 and j2 and excluding
all auxiliary covariants. The corresponding transformation of the generating function gfgegj
[48, 49, 50] begins with multiplying by

(1 + λ)2/(1 + λ)2 = (1 + µ̄j)
2/(1 + µ̄j)

2
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(to transform the denominator) followed by expanding the numerator and sorting out all
numerator terms which represent T -invariants. The resulting generating function

1 + µ+ 19µ2 + 6µ3 + 19µ4 + µ5 + µ6

(1 − µ)6(1 − µ2)2
,(7.3)

where µ replaces any of formal variables {µf , µe, µj} and {µ̄f , µ̄e, µ̄j} for T -invariants and T -
covariants, respectively, describes polynomials on the phase space CP 2 ×CP 1 ×S

2, which are
invariant with regard to both dynamical and time reversal symmetry. The detailed expression
for the numerator of (7.3) shows the origin of the auxiliary integrity basis invariants:

1 + µf + µ2
f + 3µ̄f µ̄e + 3µ̄eµ̄j + 9µ̄f µ̄j + 3µ̄2

j

+ 3µf µ̄
2
j + 3µf µ̄eµ̄j + 3µ2

f µ̄eµ̄j + 3µ2
f µ̄

2
j

+ 9µ̄f µ̄eµ̄
2
j + 3µ̄f µ̄

3
j + µ̄eµ̄

3
j + µf µ̄eµ̄

3
j + µ2

f µ̄eµ̄
3
j .

7.1.3. Finite symmetry Td × T . The action of Td × T on the dynamical variables in
Table 21 can, in principle, be found on the basis of sections 7.1.1 and 7.1.2 if we introduce
an appropriately rotated coordinate frame to study each particular axial symmetry element
of the Td group. Otherwise we can consider tensor products

[
zE × z̄E

]Γ
and

[
zF2 × z̄F2

]Γ′

of vectors zF2 = (z1, z2, z3) and zE = (z4, z5) that transform according to irreducible repre-
sentations Γ or Γ′ of Td (and Td × T ) and express these products in terms of invariants in
Table 21. A straightforward calculation using Clebsch–Gordan coefficients for cubic groups
[85, 86, 87, 88, 89, 90, 91, 92, 93]37 gives

ne =

√
2

2

[
zE × z̄E

]A1
,

v1 = −i
√

2

4

[
zE × z̄E

]A2
,

(v2, v3) =

√
2

4

[
zE × z̄E

]E
,

nf =

√
3

2

[
zF2 × z̄F2

]A1
,(

3n3 − nf√
3

, x3

)
= − 1√

2

[
zF2 × z̄F2

]E
,

(t1, t2, t3) = − i√
2

[
zF2 × z̄F2

]F1
,

(s1, s2, s3) = − 1√
2

[
zF2 × z̄F2

]F2
.

37Our parameters h
Ω(K,Γ)
ff correspond to t

Ω(K,Γ)
ff in [92] times a constant (see [13]). The values of parameters

are in spectroscopic units of energy, cm−1.
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The transformation properties of the generators now can be obtained explicitly from the ma-
trices in Table 4 and equations in section 7.1.2. In particular, (t1, t2, t3) and (s1, s2, s3) realize
irreducible representations F1u and F2g of Td × T . We can further note that the compo-
nents of the 3-vectors qF2 , pF2 , and zF2 = qF2 − ipF2 transform according to the irreducible
representation of index 1 of the 3-space rotation group SO(3). We can also show that

nf , (t1, t2, t3), and

(
s1, s2, s3,

3n3 − nf√
3

, x3

)

transform according to the irreducible representations of SO(3) of indexes 0, 1, and 2, respec-
tively.

Variables (j1, j2, j3) are components of the total angular momentum, which is an axial
vector transforming according to the irreducible representation 1 of the SO(3) group and F1

of the O group. We can see from (3.1c) that (j1, j2, j3) realize an irreducible representation F1u

of Td×T . (This Oh-like notation should not be confused with F1g, which is the representation
of the spatial group Oh ⊂ O(3) realized by (j1, j2, j3).)

7.2. Symmetrized integrity basis. Once the symmetry properties of the dynamical vari-
ables are established, the integrity basis in sections 6 and 7.1.2 can be symmetrized with
regard to the finite group Td × T and can be used to describe the ring of all polynomials
invariant with regard to Td × T .

7.2.1. Symmetrized basis for the rotational subsystem. The ring R of polynomials in
{j1, j2, j3} invariant with respect to the action of Td × T has the same structure as the ring
of polynomials in {x, y, z} invariant with respect to the action of the Oh group of transfor-
mations of R

3. In both cases we construct an integrity basis using the components of the
triply degenerate irreducible representation F1u realized by {j1, j2, j3}. The Molien generat-
ing function g(A1g, F1u;λ) in Table 22 indicates that the ring R is freely generated by three
invariants j2, r4, and r6 of degree 2, 4, and 6, respectively. (In molecular literature these
invariants have several definitions, such as Ω4 and Ω6 in [31, 79] and R4(4,A1) and R6(6,A1) in
[85, 86, 87, 88, 89].) Thus, up to degree 6 in j, a purely rotational effective Hamiltonian of a
tetrahedral (or octahedral) molecule has only six parameters corresponding to terms j2, j4,
r4, j

6, j2r4, and r6.
To express terms in the reduced rotation–vibration Hamiltonian we also need to construct

Γ-covariants (i.e., polynomials that transform according to representation Γ) for all irreducible
representations Γ of Td × T . Corresponding Molien generating functions g(Γ, F1u;λ) have, of
course, the same denominator as g(A1g, F1u;λ) but also have a numerator num(Γ) which
describes auxiliary Γ-covariants. The ring of Γ-covariants is a product of freely generated
R(j2, r4, r6) and a finite set of numerator Γ-covariants. One possible explicit choice of these
covariants is suggested in Table 22. (See [94] for the discussion of integrity bases for point
groups.)
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Table 22
Molien functions and possible explicit definition for invariants (Γ = A1g) and Γ-covariants of the action

of the Oh group (and of the isomorphic group Td × T ) constructed from the components {x, y, z} of the triply
degenerate irreducible representation F1u.

K38 Γ num(Γ)39 Invariants and Γ-covariants40

0 A1g 1 x2 + y2 + z2

4 x4 + y4 + z4

6 x2y2z2

9 A1u λ9 xyz(x2 − y2)(y2 − z2)(z2 − x2)
6 A2g λ6 (x2 − y2)(y2 − z2)(z2 − x2)
3 A2u λ3 xyz

2 Eg λ2 + λ4 {√3(y2 − z2), y2 + z2 − 2x2}
4 {√3(y4 − z4), y4 + z4 − 2x4}
5 Eu λ5 + λ7 xyz{y2 + z2 − 2x2,

√
3(z2 − y2)}

7 xyz{y4 + z4 − 2x4,
√

3(z4 − y4)}
4 F1g λ4 + λ6 + λ8 {(y2 − z2)yz, (z2 − x2)zx, (x2 − y2)xy}
6 {(z4 − x4)zx, (z4 − x4)zx, (x4 − y4)xy}
8 {(x6 − y6)xy, (z6 − x6)zx, (x6 − y6)xy}
1 F1u λ+ λ3 + λ5 {x, y, z}
3 {x3, y3, z3}
5 {x5, y5, z5}
2 F2g λ2 + λ4 + λ6 {yz, zx, xy}
4 {x2yz, y2zx, z2xy}
6 {x4yz, y4zx, z4xy}
3 F2u λ3 + λ5 + λ7 {x(y2 − z2), y(z2 − x2), z(x2 − y2)}
5 {x2(y2 − z2), y2(z2 − x2), z2(x2 − y2)}
7 {x4(y2 − z2), y4(z2 − x2), z4(x2 − y2)}

7.2.2. Symmetrized basis for the E-mode subsystem. The three components {v1, v2, v3}
of the induced vibrational angular momentum of the E-mode transform according to the
reducible representation A′′

1 ⊕E′ of D3h (v1 transforms according to A′′
1 and {v2, v3} span the

doubly degenerate irreducible representation E′). The structure of the integrity basis for the
invariant and Γ-covariant polynomials in {v1, v2, v3}, i.e., for the functions on the vibrational
E-mode phase space CP 1 ∼ S

2, is described by the Molien functions g(A′
1, A

′′
1 ⊕E′;µ, λ) and

g(Γ, A′′
1 ⊕ E′;µ, λ) in Table 23.

Table 23 also suggests the explicit form of the integrity basis polynomials. One of the
principal second degree invariants is, of course, the oscillator integral 1

2ne = v2
1 + v2

2 + v2
3.

We also note that the cubic invariant v3
2 − 3v2v

2
3 represents the three-fold symmetry and that

the reduced vibrational E-mode Hamiltonian should go up to degree 6 in the initial variables

38Maximum index of the irreducible representation of SO(3).
39Molien function for Γ-covariants g(Γ, F1u;λ) equals

num(Γ)

(1 − λ2)(1 − λ4)(1 − λ6)
= num(Γ) g(A1g, F1u;λ).

40Axes {x, y, z} correspond to symmetry axes C4.
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Table 23
Molien functions and possible explicit definition for invariants and Γ-covariants of the action of the D3h

group (and of the isomorphic group (Td × T )/D2) constructed from the components z ⊕ {x, y} of the represen-
tation A′′

1 ⊕ E′.

Γ num(Γ)41,42 Invariants and Γ-covariants43,44

A′
1 1 x2 + y2 + z2, z2, x3 − 3xy2

A′′
1 µ z

A′
2 λ3 3yx2 − y3

A′′
2 λ3µ z(3yx2 − y3)

E′ λ+ λ2 {x, y}, {y2 − x2, 2xy}
E′′ µ(λ+ λ2) {zy,−zx}, {2xyz, z(x2 − y2)}

Table 24
Molien generating functions for invariants (Γ = A1g) and Γ-covariants of the action of the Oh group (and

of the isomorphic group Td × T ) constructed from the components {x, y, z} of the triply degenerate irreducible
representation F2g.

Γ45 num(Γ)46,47

A1g 1 + λ3 + λ4 + λ5 + λ6 + λ9

A2g 2λ3 + λ4 + λ5 + 2λ6

Eg λ+ 2λ2 + λ3 + 2λ4 + 2λ5 + λ6 + 2λ7 + λ8

F1g λ2 + 3λ3 + 5λ4 + 5λ5 + 3λ6 + λ7

F2g λ+ 2λ2 + 3λ3 + 3λ4 + 3λ5 + 3λ6 + 2λ7 + λ8

A1u λ3 + λ4 + 2λ5 + λ6 + λ9

A2u λ2 + λ3 + λ4 + λ5 + λ6 + λ7

Eu λ2 + 2λ3 + 3λ4 + 3λ5 + 2λ6 + λ7

F1u λ+ λ2 + 3λ3 + 4λ4 + 4λ5 + 3λ6 + λ7 + λ8

F2u 2λ2 + 3λ3 + 4λ4 + 4λ5 + 3λ6 + 2λ7

(q, p) in order to represent adequately the symmetry of the system.

7.2.3. Symmetrized basis for the F2-mode subsystem. Generating functions for the
invariants and covariants of the O and Td group action on the CP 2 are given in [84]. The
generating function for the invariants has the form

1 + 2λ3 + 3λ4 + 3λ5 + 2λ6 + λ9

(1 − λ2)2(1 − λ3)(1 − λ4)
.(7.4a)

41Molien function for Γ-covariants g(Γ, A′′
1 ⊕ E′;µ, λ) equals

num(Γ)

(1 − λ2)(1 − λ3)(1 − µ2)
= num(Γ) g(A′

1, A
′′
1 ⊕ E′;µ, λ).

42Formal variables µ and λ represent z and {x, y}, respectively.
43In the case of the E-mode {z, x, y} = {v1, v2, v3}.
44Axes z and x correspond to symmetry axes C3 and C2.
45g and u label T symmetric and T antisymmetric representations.
46All functions have the same denominator as in (7.4b).
47The formal variable λ represents zz̄, where z is any of (z1, z2, z3).
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The corresponding integrity basis is further simplified due to the T -symmetrization, which
removes half of the auxiliary (numerator) invariants. The function (7.4a) becomes

1 + λ3 + λ4 + λ5 + λ6 + λ9

(1 − λ2)2(1 − λ3)(1 − λ4)
.(7.4b)

Generating functions for covariants are given in Table 24.
Coefficients ck of terms λk in the formal series expansion of the generating functions

in Table 24 equal the number of linearly independent polynomials of the kind zkz̄k. Thus
expansion of the function (7.4b)

1 + 2λ2 + 2λ3 + 5λ4 + 5λ5 + · · ·(7.5a)

suggests that there are two linearly independent (Td×T )-invariant terms z3z̄3. This does not
include polynomials built with powers of the scalar nf that can be taken into account if we
divide (7.4b) by one more (1 − λ). Then the corresponding formal series

1 + λ+ 3λ2 + 5λ3 + 10λ4 + 15λ5 + · · ·(7.5b)

indicates five terms of degree 3, of which three should, obviously, contain nf . In fact there is
n3
f and two terms of the kind nfz

2z̄2.
The generators of the rings of Td and (Td×T )-invariants and covariants can be constructed

from the polynomials of the forms[
abc
pqr

]
= za1z

b
2z

c
3z̄

p
1 z̄

q
2 z̄

r
3 +

{
column

permutations

}
(7.6a)

and (
abc
pqr

)
=

[
abc
pqr

]
+

[
pqr
abc

]
.(7.6b)

In particular, nf = 1
2 [100

100 ]. The Molien functions in Table 24 characterize heuristically the
structure of these rings. The denominator of the function (7.4b) tells us that there are two
z2z̄2, one z3z̄3, and one z4z̄4 principal integrity basis invariants, which can enter in any
degree in the expression for other invariants and covariants. The concrete choice of these four
principal invariants, [

110
110

]
,

[
200
020

]
,

[
111
111

]
,

(
400
022

)
,(7.7a)

and five nontrivial auxiliary (numerator) invariants,(
300
120

)
,

(
301
121

)
,

(
410
032

)
,

(
411
033

)
,

(
702
144

)
−
(

612
054

)
,(7.7b)

is suggested in [84].
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7.2.4. Symmetrized basis for the complete system. Once we take all symmetries into
consideration and combine the three subsystems, the integrity basis becomes very complicated.
Resulting symmetrized principal polynomials and a large number of auxiliary polynomials
require high powers of dynamical variables and will not be used here. Instead, we will study
both the group action of Td × T and the dynamics of the reduced system in terms of simpler
dynamical invariants in Table 21. In the next section we briefly describe the tensorial basis,
which we use to express the effective Hamiltonian Heff (normal form).

7.2.5. Tensorial bases used in molecular literature. Instead of using an integrity basis of
the kind described above, spectroscopists represent their effective Hamiltonians using tensorial
bases constructed by the rules of the tensorial product of the finite symmetry group of the
system. For example, the F2-mode Coriolis term is constructed as[

i
[
zF2 × z̄F2

]F1 × jF1

]A1

= −
√

2√
3
(t, j).

(This term is invariant with regard to a larger group SO(3).) Such bases guarantee complete-
ness but cannot exclude the possibility of linear dependence among terms of a given order. At
low orders, where such dependencies are few or nonexistent, this is tolerable. Explicit construc-
tion of all linearly independent terms of a given degree using the standard coupling scheme of
tensors adopted in molecular spectroscopy is often nontrivial. The difficulty increases rapidly
with degree. Of course, all spectroscopic tensors can be expressed using generators in Table 21.
Some of the most frequently used terms [13] are given in Tables 25 and 26.

8. Group action, fixed points, and invariant subspaces. The action of the symmetry
group of our system Td×T on the reduced phase space CP 2×CP 1×S

2 is not free. Our main
interest is in the fixed points of this action and in the subspaces of CP 2 × CP 1 × S

2, which
are invariant with regard to the spatial symmetry group Td and are therefore dynamically
invariant.

In section 4 we analyzed the action of Td × T using complex dynamical variables z of the
initial system (see section 2.2). Below we obtain the same results using the dynamical invari-
ants in Table 21 and their symmetry properties. These invariants serve both as dynamical
variables of the reduced system and as polynomial “coordinates” on the reduced phase space
CP 2 × CP 1 × S

2. We use invariants in order to remove the dynamical symmetry Gdyn = T
4

(see footnote 26 and section 6.1) and to avoid the ambiguity of the (z, z̄) coordinates. (Indeed,
the values of generators in Table 21 specify uniquely a Gdyn orbit, which corresponds to a
distinct point on CP 2 × CP 1 × S

2.) At the same time, we cannot label orbits of the finite
group Td × T because our polynomials are not symmetrized with regard to Td × T . Instead
we find concrete fixed points (and invariant subspaces) for concrete stabilizer subgroups of
Td × T . Results are summarized in Tables 27 and 28.

8.1. Fixed points in the presence of spatial axial symmetry. We return to the general
discussion of the axial symmetry in section 7.1.1. The action of any spatial rotation Ck with
k = 2, 3, . . . ,∞ on the CP 1 space and on the isomorphic 2-sphere S

2 has two fixed points.
These points lie on the symmetry axis. Thus in the j3 axis example,

j1 = j2 = 0, j3 = ±J.
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Table 25
Expression of spectroscopic tensors used in effective rotation–vibration Hamiltonians for the E and F2

modes in terms of dynamical invariants.

H0
ff nf

H0
ee ne

H
1(1,F1)
ff −

√
2√
3
(t3j3 + t2j2 + t1j1)

J2 j2

V A1
eeee 2

(
1

4
n2
e − v2

1

)
V E
eeee

√
2
(

1

4
n2
e + v2

1

)
V A1
ffff

1

3
(s21 + s22 + s23) + n2

3 − 2

3
nfn3 +

1

3
x2

3

V E
ffff

√
2

6

(
3

2
n2 +

3

2
n2

3 +
1

2
x2

3 − nfn3 − s21 − s22 − s23

)
V F2
ffff

1

2
√

3
(n2

f − x2
3 + 2nfn3 − 3n2

3)

V F1
efef

1

2
√

3
nfne +

1

2
√

3
(3n3 − nf )v2 +

1

2
x3v3

V F2
efef

1

2
√

3
nfne − 1

2
√

3
(3n3 − nf )v2 − 1

2
x3v3

H
2(0,A1)
ff −4

3
nf j

2

H
2(2,E)
ff

√
2(3n3 − nf + x3)j

2
2 − 2

√
2
(
n3 − 1

3
nf

)
j2

+
√

2(3n3 − nf − x3)j
2
1

H
2(2,F2)
ff − 4√

3
(s1j3j2 + s2j3j1 + s3j2j1)

H2(0,A1)
ee −2

√
2√
3
nej

2

H2(2,E)
ee 2

√
6 v2

(
2

3
j2 − j22 − j21

)
+ 2

√
2 v3(j

2
1 − j22)

H3(3,A2)
ee −16

√
3 v1j3j2j1

J4 j4

H4(4,A1) 16

√
10√
3

(
j42 + j41 + j22j

2
1 − j2(j21 + j22) +

1

5
j4
)

In the complex coordinates (z6, z7) these points can be represented as (1, 0) and (0, 1). The
analysis is the same for the E-mode space.

Rotation Ck with k > 2 acting on the CP 2 space has three fixed points. The action of
this operation on the dynamical invariants is described in section 7.1.1 for the case of rotation
about z3 (take ϕ < π because k > 2). In this case, we find that

x3 = s3 = s2 = s1 = t1 = t2 = 0

at the fixed points. Substitution into (6.13) gives

(1 − η)η = (1 − η)t3 = η2 − t23 = 0,
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Table 26
Relation between low degree polynomials constructed in terms of integrity basis and spectroscopic tensorial

terms. Only leading terms are taken into account (i.e., classical limit commutativity of variables is assumed).[
100
100

]
2H0

ff[
100
100

]2
4V A1

ffff + 4
√

2V E
ffff + 4

√
3V F2

ffff[
110
110

]
2
√

3V F2
ffff[

200
020

]
8V A1

ffff − 4
√

2V E
ffff[

100
100

]3
8
√

3

(
V EF2,EF2
fff,fff + V F2F2,F2F2

fff,fff + V A1F2,A1F2
fff,fff

)
+24

√
3V EF1,EF1

fff,fff + 8V F2A1,F2A1
fff,fff[

100
100

][
110
110

]
4V F2A1,F2A1

fff,fff + 8
√

3V EF1,EF1
fff,fff + 4

√
3V F2F2,F2F2

fff,fff[
100
100

][
200
020

]
8
√

3

(
2V A1F2,A1F2

fff,fff − V EF1,EF1
fff,fff − V EF2,EF2

fff,fff

)
[
111
111

]
4

3
V F2A1,F2A1
fff,fff(

300
120

)
4
√

3

(
4V A1F2,A1F2

fff,fff − V F2F2,F2F2
fff,fff − 2V EF2,EF2

fff,fff

)

where n1 = n2 = 1
2η ≥ 0 and of course n3 = Nf − η ≥ 0. This system has three solutions,

all isolated fixed points on CP 2, with (t3/Nf , η/Nf ) equal to (0, 0), (1, 1), and (1,−1), re-
spectively. The first solution is invariant with regard to time reversal T , while the other two
constitute one T orbit. In the complex coordinates (z1, z2, z3) these points can be represented
as (1, 0, 0) and (0, 1,±i).

In the special case of the C2 rotation we can only assert that

s2 = s1 = t1 = t2 = 0.

This leaves two possibilities: an isolated fixed point

n3 = Nf , n1 = n2 = t3 = s3 = 0,

and a 2-sphere defined as

n3 = 0, t23 + s23 + x2
3 = N2

f .

In the original (z1, z2, z3) coordinates, the former is again the point (1, 0, 0), while the latter
is the CP 1 subspace of CP 2, where z3 = 0.
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Table 27
Points in the critical orbits of the Td × T group action on the reduced phase space CP 2 × CP 1 × S

2

characterized by values of dynamical invariants in Table 21. Points are listed without their time reversal (T )
companions; upper and lover signs in the ± and ∓ notation correspond to different orbits with subscript indices
1 and 2, respectively. Matrices of stabilizers Sz

4 , C
[111]
3 , and Cxy

s are given in Table 4.

Orbit
x3

Nf

s1
Nf

s2
Nf

s3
Nf

n3

Nf

t1
Nf

t2
Nf

t3
Nf

v1
Ne

v2
Ne

v3
Ne

j1
J

j2
J

j3
J

Stabilizer

A
(2)
1,2 0 0 0 −1 0 0 0 0 0 ∓ 1

2
0 1√

2

−1√
2

0 Cxy
s

0 0 0 1 0 0 0 0 0 ∓ 1
2

0 1√
2

1√
2

0

1
2

0 −1 0 1
2

0 0 0 0 ± 1
4
±

√
3

4
1√
2

0 −1√
2

1
2

0 1 0 1
2

0 0 0 0 ± 1
4
±

√
3

4
1√
2

0 1√
2

− 1
2

1 0 0 1
2

0 0 0 0 ± 1
4
∓

√
3

4
0 1√

2

1√
2

− 1
2

−1 0 0 1
2

0 0 0 0 ± 1
4
∓

√
3

4
0 1√

2

−1√
2

A
(3)
1,2 0 2

3
2
3

2
3

1
3

0 0 0 ∓ 1
2

0 0 1√
3

1√
3

1√
3

C
[111]
3

0 2
3

− 2
3

− 2
3

1
3

0 0 0 ∓ 1
2

0 0 1√
3

−1√
3

−1√
3

0 − 2
3

2
3

− 2
3

1
3

0 0 0 ∓ 1
2

0 0 −1√
3

1√
3

−1√
3

0 − 2
3

− 2
3

2
3

1
3

0 0 0 ∓ 1
2

0 0 −1√
3

−1√
3

1√
3

B
(3)
1,2 0 − 1

3
− 1

3
− 1

3
1
3

1√
3

1√
3

1√
3

∓ 1
2

0 0 1√
3

1√
3

1√
3

C
[111]
3

0 − 1
3

1
3

1
3

1
3

1√
3

−1√
3

−1√
3

∓ 1
2

0 0 1√
3

−1√
3

−1√
3

0 1
3

− 1
3

1
3

1
3

−1√
3

1√
3

−1√
3

∓ 1
2

0 0 −1√
3

1√
3

−1√
3

0 1
3

1
3

− 1
3

1
3

−1√
3

−1√
3

1√
3

∓ 1
2

0 0 −1√
3

−1√
3

1√
3

C
(3)
1,2 0 − 1

3
− 1

3
− 1

3
1
3

−1√
3

−1√
3

−1√
3

∓ 1
2

0 0 1√
3

1√
3

1√
3

C
[111]
3

0 − 1
3

1
3

1
3

1
3

−1√
3

1√
3

1√
3

∓ 1
2

0 0 1√
3

−1√
3

−1√
3

0 1
3

− 1
3

1
3

1
3

1√
3

−1√
3

1√
3

∓ 1
2

0 0 −1√
3

1√
3

−1√
3

0 1
3

1
3

− 1
3

1
3

1√
3

1√
3

−1√
3

∓ 1
2

0 0 −1√
3

−1√
3

1√
3

A
(4)
1,2 0 0 0 0 1 0 0 0 0 ∓ 1

2
0 0 0 1 Sz

4

1 0 0 0 0 0 0 0 0 ± 1
4
∓

√
3

4
1 0 0 Sx

4

−1 0 0 0 0 0 0 0 0 ± 1
4
±

√
3

4
0 1 0 Sy

4

B
(4)
1,2 0 0 0 0 0 0 0 1 0 ∓ 1

2
0 0 0 1 Sz

4

− 1
2

0 0 0 1
2

1 0 0 0 ± 1
4
∓

√
3

4
1 0 0 Sx

4

1
2

0 0 0 1
2

0 1 0 0 ± 1
4
±

√
3

4
0 1 0 Sy

4

C
(4)
1,2 0 0 0 0 0 0 0 −1 0 ∓ 1

2
0 0 0 1 Sz

4

− 1
2

0 0 0 1
2

−1 0 0 0 ± 1
4
∓

√
3

4
1 0 0 Sx

4

1
2

0 0 0 1
2

0 −1 0 0 ± 1
4
±

√
3

4
0 1 0 Sy

4

8.2. Fixed points of the Td × T group action.

8.2.1. Stabilizer S4. Orientation of the Sz
4 axis in Table 4 corresponds to the one used

in section 8.1 for the general case of a Ck axis; solutions for fixed points with stabilizer C4 on
the F2-mode space CP 2 and on the rotational space S

2 are already given above in section 8.1.
On the E-mode space CP 1 ∼ S

2; the image of the Sz
4 operation is a rotation about axis v2 by
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Table 28
Invariant subspaces of CP 2 × CP 1 × S

2 with stabilizers Cxy
s and Cz

2 .

Values of dynamical variables and defining equation(s)

Stabilizer
x3

Nf

s1
Nf

s2
Nf

s3
Nf

n3

Nf

t1
Nf

t2
Nf

t3
Nf

v1
Ne

v2
Ne

v3
Ne

j1
J

j2
J

j3
J

Orbit
size Topology

Cz
2 0 0 0 0 1 0 0 0 ν1 ν2 ν3 0 0 1 6

ν2
1 + ν2

2 + ν2
3 = 1

4
S2

Cz
2 ξ 0 0 σ 0 0 0 τ ν1 ν2 ν3 0 0 1 6

τ2 + σ2 + ξ2 = 1, ν2
1 + ν2

2 + ν2
3 = 1

4
S2 × S2

Cxy
s 0 σ σ η 1 − η τ −τ 0 0 1

2
0 1√

2

−1√
2

0 12

2τ2 + 2σ2 + (2η − 1)2 = 1 S2

0 σ σ η 1 − η τ −τ 0 0 − 1
2

0 1√
2

−1√
2

0 12

angle π. Consequently, at the two fixed points on this space, v1 = v3 = 0.

8.2.2. Stabilizer C2. We can consider the Cz
2 stabilizer using directly the results in sec-

tion 8.1. There is a fixed point and an invariant 2-sphere in CP 2 and two fixed points on the
rotational sphere S

2 (the fixed points are the same as in the case of Sz
4). Furthermore, the

whole E-mode space CP 1 ∼ S
2 is invariant because operations Cz

2 , Cx
2 , and Cy

2 act trivially
on this space. There is, therefore, no restriction on (v1, v2, v3). On the full reduced space
CP 2 × CP 1 × S

2 we can have a point, an invariant 2-sphere, or an S
2 × S

2 space.

8.2.3. Stabilizer C3. In the case of C3, we also expect three fixed points on CP 2 and
two points on CP 1 and S

2 each. We first recall that (j1, j2, j3) transform according to the
irreducible representation F1 of the Td group. Considering the matrix representation of F1

for the particular operation C
[111]
3 in Table 4, we can see immediately that a point on the

rotational sphere S
2 remains invariant (stable) with respect to this operation only if

j1 = j2 = j3.

Furthermore, since

j21 + j22 + j23 = j2 = J2,

the two possible solutions for the fixed points on S
2 are

j1 = j2 = j3 = ±J/
√

3.

These two points form one T orbit. There are four axes C3 (four conjugate subgroups C3v of
the Td group) and there is one orbit of the action of the full group Td × T that includes all
eight points on S

2 with stabilizer C3.
Vibrational E-mode polynomials v1 and (v2, v3) are chosen so that they transform ac-

cording to the irreducible representations A2 and E of Td (see section 7). When the E-mode
reduced phase space is defined using equation

v2
1 + v2

2 + v2
3 =

1

4
n2
e =

1

4
N2

e
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as a 2-sphere in the ambient 3-space with coordinates (v1, v2, v3), the action of the C3 operation
is equivalent to the C3 rotation about axis v1. (This illustrates the abstract statement that the
image of the Td group in this case is a dihedral group D3.) The two points that are invariant
with regard to this operation lie on the v1 axis (on the diametrically opposite ends),

v1 = ±1

2
Ne, v2 = v3 = 0.

Since v1 has the symmetry A2, these points are mapped into each other by operations S4 and
Cs of Td and, therefore, they are equivalent and form one two-point orbit. Operation T also
maps these points into each other.

To find the fixed points on CP 2 with stabilizer C
[111]
3 , we note that polynomials (s1, s2, s3)

and (t1, t2, t3) transform according to the irreducible representations F2 and F1 of the Td
group, respectively. From matrices in Table 4 we conclude that at the fixed points on CP 2,

s1 = s2 = s3 = σNf , t1 = t2 = t3 = τNf ,(8.1a)

where σ and τ are dimensionless. We further note that at the same fixed point (with stabilizer

C
[111]
3 ) polynomials

(
3n3 − nf√

3
, x3

)
,

which transform according to the irreducible representation E, should vanish, i.e.,

3n3 − nf = x3 = n1 − n2 = 0,(8.1b)

and since n1 + n2 + n3 = Nf we obtain

n1 = n2 = n3 =
1

3
Nf .(8.1c)

Substituting conditions (8.1) into relations (6.13) produces equations

{
(1 + 3σ)τ = 0, σ2 + τ2 =

4

9
, σ2 − τ2 =

2

3
σ

}

with two kinds of solutions:

(τ, σ) =

(
0,

2

3

)
and

(
± 1√

3
,−1

3

)
.

Combining fixed points on S
2, CP 1, and CP 2 for the same stabilizer, i.e., the group generated

by the C
[111]
3 operation in Table 4, we obtain the fixed points on CP 2 × CP 1 × S

2 listed in
Table 27.
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8.2.4. Stabilizer Cs. In the case of Cs, solution for the fixed points on the rotational
sphere S

2 and on the E-mode space CP 1 ∼ S
2 is again quite simple. Indeed, using F1 and E

matrices of the Cxy
s example in Table 4 we find that these fixed points are defined as

j1 = −j2, j3 = 0 and v1 = 0, v3 = 0.

On the F -mode space CP 2 we look for a fixed point and a Cs-invariant sphere (see section 8.1).
In the particular case of the Cxy

s -invariant points we find that

t3 = 0, t1 = −t2 = τNf , s1 = s2 = σNf , x3 = 0.

Using the notation

n1 = n2 =
η

2
Nf ≥ 0, n3 = (1 − η)Nf ≥ 0, s3 = sNf ,

we obtain from relations (6.13) that

τ2 + σ2 = 2(1 − η)s = 2(1 − η)η,

η2 − s2 = τ(η − s) = σ(η − s) = 0.

These equations have two kinds of solutions: an isolated point with

η = 1, s = −1, σ = τ = 0,

which is listed in Table 27, and a 2-sphere defined by

η = s, 2τ2 + 2σ2 + (2η − 1)2 = 1.

8.3. Orbits of the Td × T action. To find the orbits of equivalent fixed points of the
Td × T action we take the fixed points found in the previous section for concrete stabilizers
in Table 4 and act on them by all symmetry operations of Td × T . We use the symmetry
properties of dynamical invariants (generators in Table 21) described in section 7.1.3. These
invariants are not symmetrized with regard to Td × T and their values (which play the role
of “coordinates” on CP 2 × CP 1 × S

2) differ for the points in the orbit. On the contrary, the
value and behavior of any Td × T invariant function, such as the reduced Hamiltonian Heff ,
remains the same.

Table 27 presents orbits of the Td×T action on CP 2×CP 1×S
2. The list of fixed points in

each orbit starts with the particular point found in section 8.2. Since time reversal images of
points can be easily found using (7.2), we omit them for brevity so that each orbit in Table 27

has twice the number of points listed. For example, the orbit A
(4)
1 with stabilizer S4 × T has

six equivalent fixed points, which correspond to three conjugate symmetry operations Sz
4 , Sx

4 ,

and Sy
4 of the Td group. The other six-point orbit A

(4)
2 differs from A

(4)
1 in the way the F2-

and E-mode coordinates are combined.
Invariant subspaces in Table 28 also are representatives of orbits of equivalent subspaces.

There are six 2-spheres with stabilizer C2, six S
2×S

2 spaces with the same stabilizer, and two
different orbits of twelve 2-spheres with stabilizer Cs. Explicit coordinate representations for
all these spaces can be obtained in the same way as obtained for the fixed points.
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Table 29
Further stratification of the invariant subspaces of CP 2 ×CP 1 ×S

2 with stabilizers Cxy
s and Cz

2 (Table 28)
due to residual group action.

Stabilizer Equations Topology

Cz
2 × T2 v1 = 0 S1

Cz
2 × Ts v2 = 0 S1

Cz
2 × T2 v1 = x3 = ξ = 0 T2 = S1 × S1

Cz
2 × Ts v2 = s3 = σ = 0 T2 = S1 × S1

Cxy
s × (T2, Ts) σ = 0 S1

8.4. Residual group action on invariant subspaces. Invariant subspaces of the Td group
action on CP 2 × CP 1 × S

2, which are characterized in Table 28, are not homogeneous spaces
with regard to the Td×T action. This has, of course, important consequences for the dynamics,
which we will analyze later.

First we can verify whether some of the fixed points of the Td×T group action in Table 27
lie on any of the invariant subspaces. The presence of fixed points indicates that there is some
nontrivial residual action of Td×T on the subspace. Continuing the Cz

2 example in Table 28,

we find that two points A
(4)
1 and A

(4)
2 lie on the C2-invariant E-mode sphere, and four points

B
(4)
1 , B

(4)
2 , C

(4)
1 , and C

(4)
2 lie on the C2-invariant space S

2 × S
2. In the particular case of Cz

2 ,
the residual Td action is equivalent to the rotation by π about axes t3 and v2 in the respective
ambient 3-spaces.

A complete study of all residual symmetries can be easily done by selecting all operations
of the Td×T group which map invariant subspaces into themselves. Such selection is, of course,
greatly simplified by the fact that many invariants take definite fixed values (see Table 28).
Thus when studying symmetry operations acting on the invariant space S

2×S
2 with stabilizer

Cz
2 , we consider only those operations of Td × T which leave j3 invariant (such as rotations

around axis 3) or change its sign (such as reflections Cs in the planes containing axis 3). In
the latter case, we should add the T operation to restore the sign of j3. Another simplifying
observation is that invariants used as coordinates on the subspaces often transform according
to (rows of) different irreducible representations of the Td group. In that case the residual
group can have only one-dimensional representations.

Residual group action of Td × T on the invariant subspaces of the action of the spatial
group Td on CP 2 ×CP 1 ×S

2 is characterized in Table 30. We can see that the residual action
on the C2 and Cs invariant spaces is equivalent to that of a C2v and a Ch group, respectively.
(As before we use point group analogies of groups which include reversing operations T , Ts, or
T2.) Due to the presence of this residual action, invariant subspaces contain lower-dimensional
strata in addition to just fixed points; see Tables 29 and 30.

9. Dynamics of the reduced system. Classical equations of motion for the reduced sys-
tem can, in principle, be obtained using initial dynamical variables (z, z̄) and the Poisson
bracket

{z, z̄} = {q + ip, q − ip} = −2i
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Table 30
Residual action of Td × T on the dynamical invariants used to represent invariant subspaces in Table 28;

note that T2 and Ts stand for C2 ◦ T and Cs ◦ T , respectively.

Spaces with stabilizer Cz
2 2-sphere with stabilizer Cxy

s

Dynamical Classes of Td × T
invariants I, C2 T2 S4 Ts

F
(3)
1u t3, j3 1 1 1 1

E
(1)
g v2, n3 1 1 1 1

E
(2)
g x3, v3 1 1 −1 −1

F
(3)
2g s3 1 −1 −1 1
A2u v1 1 −1 −1 1

Dynamical Classes
invariants I, Cs T2

E
(1)
g v2, n3 1 1

F1u
t1 − t2√

2
,
j1 − j2√

2
1 1

F2g
s1 + s2√

2
1 −1

if we consider the reduced Hamiltonian Heff as a function of (z, z̄). These equations of motion
should preserve all symplectic symmetries of Heff , i.e., remain invariant with regard to the
dynamical (oscillator) symmetry and to the action of the spatial group Td described in sec-
tion 7. We can, therefore, represent them in terms of invariants in Table 21 and thus obtain
equations of motion on CP 2 × CP 1 × S

2. A more elegant approach is to study the Poisson
algebra generated by the invariants and then obtain the same equations directly.

9.1. Poisson algebra of dynamical invariants. Invariants in Table 21 generate a multi-
plicative ring R of polynomials invariant with regard to the oscillator symmetry. The Poisson
bracket of any two generators in Table 21 is itself a dynamically invariant polynomial function,
which is a member of R. We say that R has a Poisson structure. Invariant polynomials in
Table 21 generate a Poisson algebra and can be used as dynamical variables. The integrals j,
ne, and nf are Casimirs. To compute the structure of the algebra, we can return to the (z, z̄)
representation.

For the E-mode invariants and, of course, for the angular momentum components, we
obtain the standard algebra so(3),

{jα, jβ} = εαβγ jγ , {vα, vβ} = εαβγ vγ ,

and the Euler–Poisson equations,

d

dt
jα = {Heff , jα} =

∂Heff

∂jγ
jβ − ∂Heff

∂jβ
jγ .(9.1a)

Dynamics on the CP 2 space is described by the system of equations for eight invariant poly-
nomials, which can be considered as independent dynamical variables. Since all these polyno-
mials are quadratic in (z, z̄), their Poisson brackets are also quadratic and can be expressed
as their linear combinations. Resulting Poisson algebra is characterized in Table 31. Given
the structure matrix M in this table, equations of motion can be written as

θ̇ = MT∇θHeff ,(9.1b)

where θ is a vector θ = (x3, s1, s2, s3, n3, t1, t2, t3) and MT = −M.
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Table 31
Poisson algebra of the invariants describing dynamics on CP 2 × CP 1 × S

2 (F2- and E-mode polyads and
rotational subsystem). Here x1 = n2 − n3, x3 = n1 − n2, x2 = n3 − n1, and x1 + x2 + x3 = 0.

s1 s2 s3 n3 t1 t2 t3
x3 −t1 −t2 2t3 0 s1 s2 −2s3
s1 −t3 t2 t1 2x1 −s3 s2
s2 −t1 −t2 s3 2x2 −s1
s3 0 −s2 s1 2x3

n3 s1 −s2 0
t1 t3 −t2
t2 t1

j2 j3
j1 j3 −j2
j2 j1

v2 v3
v1 v3 −v2
v2 v1

9.2. Canonical variables in the limit of linearization. In section 8.2 we found RE, or
equilibria of the reduced system, as isolated fixed points (critical orbits) of the Td×T action.
To study dynamics near these RE, and in particular to determine their stability, we should
linearize Heff near them. Linearization in terms of (z, z̄) variables was already introduced in
section 5.1.4.

Similarly to finding coordinates of RE in section 8.2, linearizing near an RE can be under-
stood on the example of a Ck symmetric RE whose symmetry axis is oriented as in section 7.1.1.

Axis Sz
4 (or C4) has such an orientation, and coordinates of the RE A

(4)
1,2 and B

(4)
1,2 on the CP 2

space and rotational sphere S
2 (see Table 27) define, in fact, fixed points and RE for any Cz

k

action on these spaces with k = 3, 4, . . . ,∞.
Consider first the familiar simple case of the rotational sphere S

2 described by (j1, j2, j3)
or by scaled variables

j̃i =
ji√
J
, i = 1, 2, 3.(9.2)

At the fixed point j3 = J , the only nonzero Poisson bracket is {j1, j2} = j3 (Table 31), and con-
sequently the scaled variables (j̃1, j̃2) become the standard canonical coordinate–momentum
pair in the limit of linearization near the relative equilibrium with j3 = J . Near the second
fixed point on S

2 with j3 = −J (which is the time reversal image of the first point) canonical
variables will be (j̃2, j̃1); i.e., j̃2 will play the role of coordinate and j̃1 the role of conjugate
momentum.

The E-mode space CP 1 is isomorphic to a sphere S
2 defined in the ambient 3-space with

coordinates (v1, v2, v3). We should scale these coordinates as follows:

ṽi =
vi
√

2√
Ne

, i = 1, 2, 3.(9.3)

The Sz
4 operation acts on the E-mode sphere as rotation by π about axis v2; the two fixed

points with v2 = ±Ne/2 lie on this axis. In the limit of linearization near these points we use
canonical coordinates (ṽ1, ṽ3) and (ṽ3, ṽ1).

On the F2-mode space CP 2 we proceed in a similar fashion [97]. We compute the Poisson
structure in Table 31 at each relative equilibrium and then find canonical variables of the
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Table 32
Standard canonical coordinates and conjugate momenta for the linearization near RE with stabilizer Sz

4 .

Space Mode48 A
(4)
1 B

(4)
1 B

(4)
1

CP 2 F2 t̃1, s̃1
s̃2 − t̃1√

2
,
s̃1 − t̃2√

2

s̃1 + t̃2√
2

,
s̃2 + t̃1√

2
s̃2, t̃2 x̃3, s̃3 s̃3, x̃3

CP 1 E ṽ1, ṽ3 ṽ1, ṽ3 ṽ1, ṽ3
S

2 rot j̃1, j̃2 j̃1, j̃2 j̃2, j̃1

linearization limit. After changing to scaled variables

ãi =
ai√
2Nf

, a = s, t, n, x, i = 1, 2, 3,(9.4)

we obtain the results in Table 32.
Another way to proceed is to find coordinates near each RE on CP 2 without demanding

that these coordinates be canonical. The set of coordinate invariants ζ
(c)
i (i = 1, . . . , 4) that

we use is selected from among the invariants ni, si, and ti (i = 1, 2, 3) such that the syzygy
relations (6.13), together with the constraint n1 + n2 + n3 = Nf , can be solved in order to

express the remaining invariants ζ
(r)
i (i = 1, . . . , 5) in terms of ζ

(c)
i and Nf .

We find a set of invariants with the above property by checking that the conditions of the
implicit function theorem are satisfied. Specifically, let Fi (i = 1, . . . , 9) be the left-hand sides

of the syzygy relations (6.13) and F10 = n1 + n2 + n3 −Nf . The invariants ζ
(r)
i are selected

in such a way that the 10 × 5 matrix

∂(Fi)

∂(ζ
(r)
j )

(9.5)

has rank 5. Then ζ
(r)
i can be expressed in terms of ζ

(c)
i and Nf . There is usually more than

one choice for ζ
(c)
i , but not all choices are equally acceptable. Since we need to actually solve

the equations Fi = 0, we must try to find a set ζ
(c)
i such that the solution takes a simple form.

This can be done only by inspecting the solutions in each case.

For example, for the A(4) point (1, 0, 0) with stabilizer D
(x)
2d × T , we find that ζ(c) =

(s2, s3, t2, t3) is a suitable set of invariants. The values of these invariants on the specific RE
are ζ(c)∗ = (0, 0, 0, 0). We define the displacement vector

dA
(4)

i = ζi = ζ
(c)
i − ζ

(c)∗
i , i = 1, . . . , 4.

Notice that near the RE we can express all the invariants in terms of the displacements ζi.
An important difference with regard to the previous discussion is that the displacements

here are not necessarily canonically conjugate variables. It is therefore important to calculate
the linearized Poisson structure near each RE. In order to do this we calculate each Poisson
bracket {ζi, ζj} using the invariants, and then we express the result as a function of the

48Notation as in Table 21 with n ≡ Nf .
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Table 33
Dynamically invariant local coordinates at the RE on the F2-mode space CP 2.

Type of RE Poisson algebra49

A(4) D
(x)
2d × T

ζ2 ζ3 ζ4
s2 = ζ1 0 −2n 0
s3 = ζ2 0 2n
t2 = ζ3 0
t3 = ζ4

A(2) C
(z)
2v × T

ζ2 ζ3 ζ4
n2 − 1

2
n = ζ1 0 0 n
s1 = ζ2 n 0
t1 = ζ3 0
t3 = ζ4

A(3) C
(z)
2v × T

ζ2 ζ3 ζ4
s2 − 2n/3 = ζ1 0 0 −2n/3
s3 − 2n/3 = ζ2 2n/3 0

t2 = ζ3 0
t3 = ζ4

B(3) C
[111]
3 ∧ T ‖

s

ζ2 ζ3 ζ4

s2 + n/3 = ζ1 −n/
√

3 0 n/3
s3 + n/3 = ζ2 −n/3 0

t2 − n/
√

3 = ζ3 n/
√

3

t3 − n/
√

3 = ζ4

B(4) S
(x)
4 ∧ T (y)

2

ζ2 ζ3 ζ4
n3 − 1

2
n = ζ1 −n 0 0
s1 = ζ2 0 0
s2 = ζ3 n
t2 = ζ4

displacements ζi, keeping terms only up to first order. We can follow the above program for
all the RE. The results are summarized in Table 33. Observe that for most cases in this table
it is immediately obvious how to define standard canonically conjugate variables. Thus in the
case of the A(3) point, we can define canonically conjugate variables (ξ, η),

ξ1 = αζ2, η1 = αζ3, ξ2 = αζ4, η2 = αζ1, α =
√

3
2Nf

,

such that the local 2-form is dξ1 ∧ dη1 + dξ2 ∧ dη2. The only case where the proper definition
of the canonical variables is not obvious is the case of the B(3) point.

To conclude this section, we should add one important remark. The above canonical (or
noncanonical) variables can only be used to study linear Hamiltonian equations of the reduced
system near the RE. This limitation is due to the fact that the symplectic form near the RE
has a standard matrix ( 0 1

−1 0
) only to the first order (in the limit of linearization). When

nonlinear equations of motion near the RE are sought (e.g., when bifurcations of the RE are
studied) this form should be further “flattened” in higher orders; see section V.8.2 of [11].

9.3. Dynamics on invariant subspaces of CP 2 ×CP 1 × S
2. In section 8.4 and Table 28

we describe three possible types of subspaces of the reduced phase space CP 2×CP 1×S
2 that

49Notation as in Table 21 with n ≡ Nf .
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are invariant with regard to the (symplectic) action of the spatial group Td and are therefore
dynamically invariant subspaces of the reduced system. These subspaces are either 2-spheres
S

2 ∼ CP 1 or a product of 2-spheres S
2 ×S

2. Dynamics on each S
2 can be described by Euler–

Poisson equations. The corresponding “angular momentum” algebras so(3) are constructed
below.

The construction is most straightforward in the case of the C2-invariant S
2 subspace of

CP 2 (which can be represented using complex coordinates (z1, z2) and z3 = 0). We can see
from Tables 21 and 28 that the three so(3) components can be chosen as

(Y1, Y2, Y3) =

(
s3
2
,
t3
2
,
x3

2

)
.

Restricting the Poisson algebra in Table 31 to the Cz
2 -invariant sphere defined in Table 28

shows that this is indeed so(3),

{Yα, Yβ} = εαβγYγ ,

with Casimir

Y 2
1 + Y 2

2 + Y 2
3 =

(
Nf

2

)2

.

Dynamics on the S
2 × S

2 invariant subspace in Table 28 is described using an so(3) × so(3)
algebra. The second so(3) is generated by (v1, v2, v3), commutes with (Y1, Y2, Y3), and has the
Casimir

v2
1 + v2

2 + v2
3 =

(
Ne

2

)2

.

Dynamical variables for the Cxy
s -invariant sphere in Table 28 are obtained analogously.

Restricting the Poisson algebra in Table 31, we find polynomials

(X1, X2, X3) =

(
t1 − t2

2
√

2
,
s1 + s2

2
√

2
,
2s3 −Nf

2

)

=

(
τ√
2
,
σ√
2
,
2η − 1

2

)
Nf ,

which form the so(3) algebra, such that

X2
1 +X2

2 +X2
3 =

(
Nf

2

)2

, {Xi, Xj} = εijkXk.

10. Existence and stability of RE. RE are special stationary solutions of the equations of
motion (9.1), which in many cases are defined entirely by symmetry and exist for any generic
small symmetry-preserving perturbation. Isolated fixed points of the Td × T group action
on the reduced phase space CP 2 × CP 1 × S

2 found in section 8 are necessarily stationary
solutions of (9.1) and are therefore representing RE. We show how to determine the stability
of these RE using the reduced Hamiltonian Heff defined as a function on CP 2 × CP 1 × S

2.
Subsequently, we search for other RE, which are not fixed by the action of the finite symmetry
group.
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10.1. Linear stability of fixed RE. Fixed RE of our system correspond to fixed points of
the group action found in sections 8.1 and 8.2 (see Table 10, 15, and 27). Stability of these RE
was already analyzed in section 5.1.4, where we studied analytical Poincaré surfaces of section
using initial phase space variables (z, z̄). Here we use invariants in Table 21 to study RE
stability directly on CP 2 × CP 1 × S

2, i.e., without lifting back to the initial phase space. As
before, we can explain our approach in the example of axial symmetry with axis Ck oriented
as Cz

4 (see sections 8.1 and 9.2).
Analysis on CP 2 is the most difficult [97]. Using canonical variables of the linearization

limit found in section 9.2 and Table 32, we come to the problem of determining linear stability
of a stationary point in different canonical planes. Each such plane has its origin at the relative
equilibrium, and the stabilizer Ck of the RE acts as a rotation Ck′ about the origin. In general,
the actions of Ck on the initial 3-space and on the particular canonical plane can differ. We
have shown in section 7 that these actions are the same, and k = k′ for all planes except
(x3, s3), where k′ = k/2.

In the case of C3 and Ck with k > 4, canonical coordinate–momentum pairs in each of the
four symplectic planes transform according to a pair of conjugate complex representations of
the symmetry group (which correspond to two representations of the SO(2) group of indexes
±m). Variables x3 and s3 in the case of C4 and all variables in the case of C2 transform
according to different real one-dimensional irreducible representations.

In order to take into account the full symmetry group Td×T , as in section 5.1.5 we should
find the action of the stabilizer of each RE on the local variables ζi, defined in section 9.2.
As before, we need to define the action of the elements R of the stabilizer G of each RE
on the displacement vector d = {ζi}i=1,...,4. For this we act with R on the original complex
variables (z1, z2, z3). This action induces a linear action LR on the invariants, and a nonlinear
action NR on the displacements ζi. The last action is computed by expressing ζi in terms of

the invariants ζ
(r)
i , acting on them with LR, and expressing the result again in terms of the

displacements ζi. The action N
(1)
R is then defined as the linearization of NR.

The results are presented in Table 34. We can find from this table that the reducible
representation of each stabilizer spanned by the variables ζi is decomposed into exactly the
same irreducible representations as the representation of the stabilizer spanned by the local
variables (x1, x2, y1, y2) of section 5.1.5.

10.2. Finding additional stationary points on invariant subspaces. In sections 8.4 and 9.3
and in Tables 28 and 30 we describe subspaces of CP 2×CP 1×S

2 whose stabilizers are purely
spatial subgroups of Td×T . Such subgroups are symplectic and the subspaces are dynamically
invariant subspaces of the reduced system. To find equations of motion on these subspaces
we can simply restrict the reduced Hamiltonian Heff using Table 28 and express it in terms
of dynamical variables (Y1, Y2, Y3) or (X1, X2, X3), defined in Table 33, and/or (v1, v2, v3).
Equations of motion then can be generated using the respective so(3) algebras. Before a gen-
eral solution is attempted, resulting equations first can be restricted to the one-dimensional
strata of the residual group action (see section 8.4). All stationary points found should satisfy
Morse conditions for the respective subspace.

As explained in section 5, we should study the Cs-invariant subspace, which is a 2-sphere
with no critical orbits of the symmetry group action (no RE fixed by symmetry). This sphere
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Table 34
Action of stabilizers on dynamically invariant local coordinates on CP 2 defined in Table 33.

Action of D
(x)
2d × T on Eg⊕Eu for the A(4) RE

R Rζ1 Rζ2 Rζ3 Rζ4
E ζ1 ζ2 ζ3 ζ4
Cx

2 −ζ1 −ζ2 −ζ3 −ζ4
Cy

2 ζ1 −ζ2 ζ3 −ζ4
Cz

2 −ζ1 ζ2 −ζ3 ζ4
σyz ζ2 ζ1 −ζ4 −ζ3
σyz −ζ2 −ζ1 ζ4 ζ3
Sx

4 −ζ2 ζ1 ζ4 −ζ3
(Sx

4 )−1 ζ2 −ζ1 −ζ4 ζ3

R Rζ1 Rζ2 Rζ3 Rζ4
T ζ1 ζ2 −ζ3 −ζ4

Cx
2 T −ζ1 −ζ2 ζ3 ζ4

Cy
2T ζ1 −ζ2 −ζ3 ζ4

Cz
2T −ζ1 ζ2 ζ3 −ζ4

σyzT ζ2 ζ1 ζ4 ζ3
σyzT −ζ2 −ζ1 −ζ4 −ζ3
Sx

4 T −ζ2 ζ1 −ζ4 ζ3
(Sx

4 )−1T ζ2 −ζ1 ζ4 −ζ3
Action of S

(x)
4 ∧ T (y)

2 on B1⊕B2⊕E for the B(4) RE

R Rζ1 Rζ2 Rζ3 Rζ4
E ζ1 ζ2 ζ3 ζ4
Cx

2 ζ1 ζ2 −ζ3 −ζ4
Sx

4 −ζ1 −ζ2 ζ4 −ζ3
(Sx

4 )−1 −ζ1 −ζ2 −ζ4 ζ3

R Rζ1 Rζ2 Rζ3 Rζ4
σyzT −ζ1 ζ2 −ζ4 −ζ3
σyzT −ζ1 ζ2 ζ4 ζ3
Cy

2T ζ1 −ζ2 ζ3 −ζ4
Cz

2T ζ1 −ζ2 −ζ3 ζ4

Action of C
(z)
2v × T on A2g⊕A2u⊕B1g⊕B1u for the A(2) RE

R Rζ1 Rζ2 Rζ3 Rζ4
E ζ1 ζ2 ζ3 ζ4
Cz

2 ζ1 −ζ2 −ζ3 ζ4
σxy −ζ1 ζ2 ζ3 −ζ4
σxy −ζ1 −ζ2 −ζ3 −ζ4

R Rζ1 Rζ2 Rζ3 Rζ4
T ζ1 ζ2 −ζ3 −ζ4

Cz
2T ζ1 −ζ2 ζ3 −ζ4

σxyT −ζ1 ζ2 −ζ3 ζ4
σxyT −ζ1 −ζ2 ζ3 ζ4

Action of C
[111]
3v × T on Eg⊕Eu for the A(3) RE

R Rζ1 Rζ2 Rζ3 Rζ4
E ζ1 ζ2 ζ3 ζ4

C
[111]
3 −ζ1 − ζ2 ζ1 −ζ3 − ζ4 ζ3

(C
[111]
3 )2 ζ2 −ζ1 − ζ2 ζ4 −ζ3 − ζ4
σyz ζ2 ζ1 −ζ4 −ζ3
σzx ζ1 −ζ1 − ζ2 −ζ3 ζ3 + ζ4
σxy −ζ1 − ζ2 ζ2 ζ3 + ζ4 −ζ4
T ζ1 ζ2 −ζ3 −ζ4

C
[111]
3 T −ζ1 − ζ2 ζ1 ζ3 + ζ4 −ζ3

(C
[111]
3 )2T ζ2 −ζ1 − ζ2 −ζ4 ζ3 + ζ4
σyzT ζ2 ζ1 ζ4 ζ3
σzxT ζ1 −ζ1 − ζ2 ζ3 −ζ3 − ζ4
σxyT −ζ1 − ζ2 ζ2 −ζ3 − ζ4 ζ4

Action of C
[111]
3 ∧ T ‖

s on E⊕E for the B(3) RE

R Rζ1 Rζ2 Rζ3 Rζ4
E ζ1 ζ2 ζ3 ζ4

C
[111]
3 −ζ1 − ζ2 ζ1 −ζ3 − ζ4 ζ3

(C
[111]
3 )2 ζ2 −ζ1 − ζ2 ζ4 −ζ3 − ζ4
σyzT ζ2 ζ1 ζ4 ζ3
σzxT ζ1 −ζ1 − ζ2 ζ3 −ζ3 − ζ4
σxyT −ζ1 − ζ2 ζ2 −ζ3 − ζ4 ζ4
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S
2 has an invariant circle S

1 with stabilizer T2, which is defined by X2 = 0 (or equivalently
s1 = s2 = σ = 0). The Morse requirements of two stationary points, a minimum and a
maximum, for both the sphere S

2 and its invariant subspace S
1 can be satisfied if the two

points lie on S
1. To find these points we first restrict Heff to the Cs sphere using Table 28 and

reexpress it as a function of dynamical variables (X1, X2, X3). If Heff(X) is a Morse function,
we will always find at least two stationary points of Heff(X) on the T2-invariant circle S

1.
Such points are particular solutions to the Euler–Poisson equations

Ẋ =

⎛
⎝ 0 X3 −X2

−X3 0 X1

X2 −X1 0

⎞
⎠
T

∇XHeff(X) = 0,(10.1)

where we should set X2 = 0.

11. Examples.

11.1. Vibrational structure of the F2-mode polyads. Possible configurations and differ-
ent types of stability of the RE of the F2-mode subsystem were studied in section 5.3.2. In
section 5.2.3 we emphasized the difference between simplest and nonsimplest Hamiltonians on
CP 2 and described the system of RE in each case. Below we study this system in more detail
on a model example, which is discussed in more detail in [98].

The Hamiltonian of a molecule, which has the F2 mode, can be written as ωHν3
vib + H ′,

where to order ε2

Hν3
vib =1

2(q21 + p2
1) + 1

2(q22 + p2
2) + 1

2(q23 + p2
3) + εK3q1q2q3 + ε2Kt

1
2(q41 + q42 + q43)

+ ε2Ks
1
2(q21 + q22 + q23)

2 + ε2Kl
1
2

[
p × q

]2
,(11.1a)

and H ′ represents other degrees of freedom and interaction of these degrees with the F2-
mode subsystem (cf. section 5.3.2). In order to study this subsystem, we should consider
H ′ explicitly, normalize the Hamiltonian ωHν3

vib +H ′, and then restrict the obtained normal
form on CP 2 by setting to zero all dynamical variables of other subsystems. This approach
was used in [13] for the case of the A4 molecule, where we set to zero integrals j, Ne, and
Na, angular momenta (j1, j2, j3), and E-mode vibrational variables (v1, v2, v3); see Table 21.
Furthermore, the simple atom–atom bond model of A4 used in [13] gives

Constant ω K3 Kl Ks Kt

Value
√

2 3/25/4 2−5/2λ −5/29/2 7/2−9/2
.(11.1b)

Here the parameter λ is introduced so that the value of Kl obtained in [13] corresponds to λ =
1. In the present study we focus on the F2-mode subsystem without taking interactions with
other subsystems into account. To this end we use a simplified model, where H ′ is neglected
before normalization. This model turns out to be sufficient for studying the transition from
the simplest to the nonsimplest Hamiltonian on CP 2.

The normal form of (11.1a) Hν3
eff = n + ε2Hν3

2 + · · · can be expressed using invariants in
Table 21. In the second order Hν3

2 we obtain
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Term Coefficient

ε2 n2 1
2
(K2

3/24 +Kl +Ks + 3Kt/4)

ε2 (s21 + s22 + s23)
1
2
(−K2

3/4 −Kl +Ks/2)

ε2 (2nn3 − 3n2
3 − x2

3)
1
2
(K2

3/24 +Kl −Ks/2 − 3Kt/4)

Taking the Td ×T symmetry into account (Table 25), we can verify that Hν3
2 has indeed only

three independent terms:

Term Coefficient

ε2 V A1
ffff (5Ks − 4Kl −K2

3 + 3Kt)/4

ε2 V E
ffff (Ks +Kl +K2

3/4 + 3Kt/2)/
√

2

ε2 V F2
ffff (Ks +Kl −K2

3/6)
√

3/2

In fact, the Hamiltonian Hν3
2 has been long suggested by Hecht [95] as a model Hamiltonian

for describing the internal structure of the F2-mode polyads. Hecht expressed his model Hν3
2

in terms of

n2 = V A1
ffff +

√
2V E

ffff +
√

3V F2
ffff ,(11.2a)

t2 = t21 + t22 + t23 =
[
p × q

]2
= n2 − 3V A1

ffff ,(11.2b)

m = n2
1 + n2

2 + n2
3 = V A1

ffff +
√

2V E
ffff ,(11.2c)

where the “vibrational angular momentum” t2 is often denoted as l2 [95, 96]. Considering
relations (6.13), we note an alternative to m or t,

s2 = s21 + s22 + s23 = 2n2 − 2m− t2.(11.2d)

Hecht’s representation

Hν3
2 = c0n

2 + clt
2 + cmm,(11.3)

or, alternatively,

Hν3
2 = c′0n

2 + c′lt
2 + css

2(11.3′)

is particularly convenient for the order ε2 classification of qualitatively different normal forms
Hν3

eff on CP 2
n . We remark that the term n2 is just an additive (“scalar”) energy constant (for

the reduced system on CP 2
n , i.e., within one n polyad). Neglecting this term, the energies of

RE of the F2-mode system with Hamiltonian (11.3) or (11.3′) are given below.

Type of RE H2n
−2 − c′0 H2n

−2 − c0

C2v × T A cs
1
2
cm

C3v × T A 4
3
cs

1
3
cm

C3 ∧ Ts B c′l + 1
3
cs cl + 1

3
cm

D2d × T A 0 cm

S4 ∧ T2 B c′l cl + 1
2
cm

Cs ∧ T2 (c′l)
2(c′l − 1

4
cs)

−1

It follows that reciprocal energies of RE of such system and, therefore, the structure of the
vibrational polyads of the F2 mode, are described (to the lowest order) by one parameter, the
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t2–limit m–limit s2–limit (−t2)

0 1/4 1/2 1
dimensionless parameter α = π−1 tan−1(cs/c

′
l)

A(3)

A(2)

A(4)

B(3)

B(4)

�
��

Cs

�� [96] � �this work

H2

n2

1

0

−1
l = n

n− 2

n− 4

Figure 17. Reciprocal energies (in units of n2 and without scalar part c′0n
2) of RE (bold lines) and the

structure of the n = 10 quantum polyad (thin blue lines) of the F2-mode system in the second order model
(Hecht’s Hamiltonian (11.3′)).

ratio of cl and cm or c′l and cs. To study all possibilities we set c′l and cs in (11.3′) to cos(απ)
and sin(απ), respectively. Resulting RE energies H2n

−2 − c′0 are shown in Figure 17.
We call the three principal limiting cases of the F2-mode system with α = 0, 1

4 , and
1 the t2, m, and (−t2) limits, respectively (see Figure 17). All these limits have continuous
symmetries and the system is integrable. The s2 limit shown in Figure 17 is indicated primarily
for convenience. It has no simple integrals and, probably, is not integrable.

The symmetry group of the t2 limit contains the spatial group SO(3). The energy in this
limit is a function of the vibrational angular momentum t2 = l2, which is zero for the A-type
RE and maximum l = n for the B-type RE. The corresponding quantum polyad is split into
multiplets with l = n, n − 2, . . . . The (−t2) limit is the same as the t2 limit, albeit for the
opposite sign of energies.

The spatial symmetry of the m limit is cubic, so this limit better represents the symmetry
of the system. However, this limit has continuous dynamical symmetry T 3 = S1 × S1 × S1.
The energy can be represented as a function of three integrals in involution (n1, n2, n3), i.e.,
actions of individual oscillators, such that n1 + n2 + n3 = n. The quantum states can be
labeled with the three corresponding quantum numbers. The number of degenerate states is
normally given by the number of permutations of the set of the three integers [N1, N2, N3]. In
the n = 10 example in Figure 17, it is either 3 or 6 (maximum).

Transition between the t2 and m limits has been studied by Patterson [96], who remarked
that F2-mode polyads of certain molecules, such as SiF4, SF6, and UF6, belong to the interval
of α = [0, 1

4 ]. On the other hand, our prediction for P4 suggests that the ν3 polyads of
this molecule fall into the α ≥ 1

2 category. A complimentary approach to classifying ν3-
mode systems is by specifying the intervals of α-values, where the second order normalized
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Hamiltonian (11.3′) represents particular classes of (Td×T )-invariant Morse functions on CP 2

introduced in section 5.2.3. We can see in Figure 17 that there are at least three such regions.
Furthermore, we notice that the Hν3

2 Hamiltonian is of the simplest Morse type only on the
interval α = (π−1 tan−1 2, 1

2), where the additional nonfixed RE of symmetry Cs∧T2 does not
exist.

In this paper we would like to uncover the precise role of the vibrational angular momentum
term (p× q)2 in the transition between the simplest and nonsimplest RE structures. To this
end we detail our example in section 5.3.2. Note that even though (p × q)2 enters in both
the initial Hamiltonian (11.1a) and the normalized (i.e., n-polyad) Hamiltonian (11.3′), the
actual vibrational angular momentum of the system is measured by the parameter Kl of
(11.1a) and not by the effective parameter cl or c′l. Therefore, we should take the vibrational
Hamiltonian (11.1a), replace Kl with λKl, use constants (11.1b) obtained in [13], and make
λ vary between, for example, 0 and 2. Normalizing and using the (s2, t2, n) representation
(11.3′) with parameters (11.1b) gives

cs
c′l

=
5K2

3 + 18Kt

18Kt + 12Ks −K2
3 − 24λKl

=
51

5 − 16λ
.

It follows that we study the F2-mode system near the s2 limit in the range α ≈ [0.469, 0.655];
see Figure 17.

The stability analysis of RE for λ = 0, i.e., without the vibrational angular momentum
term (p× q)2 in (11.1a), shows that the corresponding normal form Hν3

eff is a Morse function
on CP 2 of the simplest kind. In the A4 molecule model of [13] (with λ = 1 and α ≈ 0.567),
Hν3

eff is of the nonsimplest kind. The transition from the simplest to the nonsimplest case is
clearly related to the (p × q)2 term. The RE energy computed using the normal form of the
Hamiltonian (11.1) as a function of the parameter λ is shown in Figure 18, where we also
indicate the Morse signatures and stability types of the RE. As can be seen in this figure,
the B-type RE, which are shaped as loops in the configuration space (see Figure 16) and
thus induce the maximum vibrational angular momentum, respond largely to the change of λ,
while the energy of the A-type RE remains unchanged. As a consequence, the RE structure
as a whole has to change qualitatively. This change involves two bifurcations.

The first bifurcation happens at λ = 5/16 (α = 0). The B(4) relative equilibrium, which
was unstable with Morse index 1 (Poincaré index +2) for λ < 5/16, becomes stable with
index 0 (+4) for λ > 5/16. At the moment of bifurcation the energies of the B(4) and A(4)

RE are equal, then as λ increases, the energy of B(4) becomes greater. At the same time,
the A(4) relative equilibrium, which was stable with Morse index 0 (+4), becomes doubly
unstable with Morse index 2 (0). In order for the Morse conditions to be satisfied globally, a
new relative equilibrium bifurcates from A(4). This is the Cs ∧ T2 symmetric RE described in
section 5.2.3. The new relative equilibrium is unstable with Morse index 2 (0). Part of the
described bifurcation can be regarded as a so-called “pitchfork bifurcation,” or a bifurcation
with broken symmetry Z2. Indeed, the system restricted to the Cs sphere (see section 5.2.3)
undergoes such bifurcation. Taken to the whole four-dimensional space, this phenomenon is
more complex because it involves the B(4) relative equilibrium.

The second bifurcation happens at λ = 11/8 (α ≈ 0.1). The moment of bifurcation is easy
to notice because the second normal form energies of the B(3) and A(4) RE (i.e., values of the
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Figure 18. Quantum (grey lines) and classical RE (bold lines) correlation diagram for the F2-mode system
described by the one-parameter family of Hamiltonians (11.1) with fixed ε = 1 and classical action n = 10 3

2
.

Quantum polyads are computed for Nf = 10. Morse index and Hamiltonian stability are indicated for each RE;
EE, EH, HH, and FF stand for elliptic–elliptic (stable), elliptic–hyperbolic (unstable), hyperbolic–hyperbolic
(doubly unstable), and focus–focus (complex unstable), respectively. Circles mark level clusters discussed in the
text. To compare to Figure 17, inverse the energy axis.

Hamiltonian (11.3′) shown in Figures 18 and 17) become equal. The B(3) relative equilibrium
undergoes a Hamiltonian Hopf bifurcation [97, 98], and from a focus–focus (complex unstable)
relative equilibrium at λ < 11/8 it becomes elliptic (linearly stable) at λ > 11/8. The Morse
index does not change. Unlike the previous case, the Morse requirements remain satisfied
globally and there is no need for changing the number and/or stability of other RE.

Information on the RE of the system with Hamiltonian (11.1) can be used to characterize
the spectrum of the corresponding quantum system as proposed in section 5.4.3. We consider
the RE energies as functions of the action n and compare them to the quantum energy levels
(see Figure 19). Levels with the same quantum number Nf form a polyad whose structure can
be related to the reciprocal RE energies for corresponding classical action n = Nf + 3

2 . Like
RE, polyads are described using the normalized Hamiltonian Hν3

eff , where we can distinguish
between “scalar” and “splitting” terms. The former depend only on n and describe an average
increase in energy; the latter describe the internal structure of polyads. In the simplest
approximation given by the second order normal form (11.3′), or the Hecht Hamiltonian, the
internal structure of polyads is described by one-parameter α; see Figure 18.

Provided that the model potential of the P4 molecule [13] is qualitatively correct, the ν3

polyads of P4 should correspond to the value of α ≈ 0.6 near the so-called s2 limit. The
most characteristic feature of the ν3 polyads with such α is the presence of level clusters at
the A(3) end (maximum in Figure 17 and minimum in Figures 18 and 19). The limiting A(3)

cluster has four levels and in the case of Nf = 10 decomposes into symmetry components
A+F (Figure 18). At higher Nf = 15 (Figure 19) we can even see the second cluster of eight
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text, and classical RE energy is plotted for n = Nf + 3

2
.

levels with components F + F + E. As can be seen in Figures 18 and 19, the A(3) clusters
remain insensitive to large variations of the structure parameter α or λ. The situation is more
unclear at the opposite energy end of the ν3 polyads. If, as predicted, α > 1

2 , then the B(4)

clusters of six levels should appear as shown in Figure 18 (top right) and 19 (topmost level
of the Nf = 10, . . . , 15 polyads). They decompose as A+ F + E for Nf = 10 and F + F for
Nf = 15. If, however, α for P4 turns out to be sufficiently smaller than 1

2 , then we should

expect A(4) clusters of three levels (such as the lowest energy levels of the Nf = 10 polyad
for α = 0.4 in Figure 17). Furthermore, if the B(3) relative equilibrium becomes sufficiently
stable, a corresponding eight-fold cluster might also show up.

Several aspects should be taken into account in order to continue our analysis of the ν3

polyad structure presented in this paper. A simple analysis based on energy separation fails as
different systems of localized states overlap, and complimentary information on expectation
values of characteristic dynamical invariants should be used. Degeneracy of quantum states
caused by symmetry can either enhance or obscure the presence of level clusters. The position
of the limiting localized state and the corresponding RE depends on the stability of the RE
and the relation between n and Nf .

11.2. Rotational structure of the F2-mode polyads. Consider an effective Hamiltonian
Heff commonly used to describe rotational structure of low excited F2-mode vibrations. In
the spectroscopic notation of Table 25, this Hamiltonian can be written as

Heff = ωfnf +Bj2 −Dj4 − h
2(0,A1)
ff

4

3
nf j

2(11.4a)

+ h
1(1,F1)
ff H

1(1,F1)
ff +

∑
Γ=E,F2

h
2(2,Γ)
ff H

2(2,Γ)
ff(11.4b)
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+
∑

K=1,3

h
3(K,F1)
ff H

3(K,F1)
ff −

√
30

8
DtH

4(4,A1),(11.4c)

where ωf is harmonic frequency of the F2 mode, B is the rotational constant of the molecule
(for a tetrahedral molecule A4 with four atoms of mass m whose equilibrium positions lie at
a distance R from the center of mass, the constant B equals 1/(2mR2)), and hff , D, and Dt

are parameters of higher order terms in the reduced Hamiltonian. We can omit the terms
(11.4a), which have constant value in the reduced system. The energies of fixed RE can be
found straightforwardly as values of the Heff in (11.4) at the points listed in Table 27.

To find the two remaining RE, we restrict Heff in (11.4) to the Cs-invariant sphere using
the definition of this sphere in Table 28 and express the result as a function of dynamical
variables X of the Cs restricted system,

HCs
eff = b(J)X1 − a(J)X3 + c(J,Nf ),(11.5)

where

a =
√

2h
2(2,E)
ff J2 − 2√

3
h

2(2,F2)
ff J2,

b = −2
√

2√
3
h

1(1,F1)
ff J +

[
8
√

2√
3
h

3(1,F1)
ff +

4√
5
h

3(3,F1)
ff

]
J3

√
3
,

c = DtJ
4 +

√
2

6
h

2(2,E)
ff NfJ

2 +
1√
3
h

2(2,F2)
ff NfJ

2.

Note that HCs
eff is linear in X and that it is invariant with regard to Td × T and to its

subgroup T2 and therefore cannot depend linearly on X2. Equations of motion (10.1) for this
Hamiltonian are very simple:

Ẋ = (−aX2, bX3 + aX1,−bX2).

Setting X2 = 0 in these equations gives the condition for an equilibrium point of HCs
eff on the

T2-invariant circle,

bX3 + aX1 = 0,

which should be satisfied together with the defining equation of the circle

X2
1 +X2

3 =
1

4
N2

f .

Since a(J) and b(J) depend differently on J ; the two solutions

(X1, X2, X3) = ± Nf

2
√
b2 + a2

(b, 0,−a)

move along the circle when J changes: when J is small and b� a they are close to the point
where X3 = 0; at large J they approach X1 = 0. The energies of these RE are

±Nf

2

√
b(J)2 + a(J)2 + c(J,Nf ).(11.6)
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Table 35
Energy of rotation–vibration RE in the case of low excited F2-mode vibrations of a tetrahedral molecule A4.

Point50 Energy of RE (values of Heff)

A(2) −
√

2

3
h

2(2,E)
ff NfJ

2 − 2√
3
h

2(2,F2)
ff NfJ

2 +DtJ
4

A(3) −8
√

3

9
h

2(2,F2)
ff NfJ

2 +
8

3
DtJ

4

A(4) −4
√

2

3
h

2(2,E)
ff NfJ

2 − 4DtJ
4

B,C(3) ∓
√

2√
3
h

1(1,F1)
ff NfJ +

4
√

3

9
h

2(2,F2)
ff NfJ

2

±4
√

2

3

(
h

3(1,F1)
ff +

2
√

2√
15
h

3(3,F1)
ff

)
NfJ

3 +
8

3
DtJ

4

B,C(4) ∓
√

2√
3
h

1(1,F1)
ff NfJ +

2
√

2

3
h

2(2,E)
ff NfJ

2

±4
√

2

3

(
h

3(1,F1)
ff −

√
2√
15
h

3(3,F1)
ff

)
NfJ

3 − 4DtJ
4

The simplest way to compare the energies of RE in Table 35 and (11.6) to molecular energy
levels is to plot all of them in a form of an energy-momentum diagram for fixed vibrational
integral Nf . In the lowest excited vibrational quantum state of the ν3 mode, also called the

fundamental or harmonic state, the quantum number N̂f , equals 1 which corresponds to the
classical value Nf = 1 + 3

2 .
We illustrate our results using the Hamiltonian Heff (without the scalar part (11.4a)),

which describes the ν3 vibration of the CH4 molecule. Parameters of this Hamiltonian can be
taken from [92].

h
1(1,F1)
ff −0.706007 Dt 4.42516 × 10−6

h
2(2,E)
ff 1.5760 × 10−2 h

2(2,F2)
ff −0.7220 × 10−2

h
3(1,F1)
ff −0.635 × 10−4 h

3(3,F1)
ff −0.187 × 10−4

The quantum energy level spectrum of the ν3 = 1 state is shown schematically by the shaded
area. This spectrum exhibits three characteristic branches formed due to the first order
Coriolis interaction [81]. As shown in section 7.2.5 and Table 25, the term describing this
interaction in the reduced system is the scalar product (t, j), which has spherical symmetry,
i.e., to the first order; the energy depends on the angle between the 3-vectors t and j. Assuming
H1 ∝ (t, j), as in the case of CH4, the energy is maximal, minimal, or zero when t and
j are parallel (RE of type B), antiparallel (RE of type C), or orthogonal (RE of type A),
respectively. Since the quantity (t, j) is (approximately) conserved, we can introduce another
angular momentum r = j − t and represent the first order energy as function of r2, t2, and j2

called “rotational,” “vibrational,” and total angular momenta, respectively. In the quantum

50Fixed points of the Td × T group action on CP 2 × CP 1 × S
2 defined in Table 27; signs + and − in the

notation ± (equivalently, − and + in ∓) correspond to points B and C, respectively.
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Figure 20. Energies of rotation–vibration RE for the ν3 mode of the CH4 molecule. Colored lines show
classical energies (see Table 35 and equation (11.6)) with Nf set to 5

2
; indices (2, 3, 4) on the right give the

symmetry of the corresponding RE. Thin black lines show the same energies with Nf = 1; shaded area represents
quantum multiplets.

state with N̂f = 1, the quantum number t̂ equals 1 and the quantum number r̂ takes the
values of ĵ− 1, ĵ, and ĵ+1. These values label the three Coriolis branches of the ν3 = 1 state.

Bold lines in Figure 20 represent energies of the nine RE (two noncritical orbits are given
in (11.6) and seven critical orbits in Table 35) with Nf set to its classical value 1+ 3

2 . The same
energies—but with Nf = 1—are shown by thin lines, which border exactly the three rotational
branches of quantum levels. This suggests a straightforward semiclassical interpretation. The
RE energy with Nf = 5

2 gives classical limit (classical extremum) energy for rotation–vibration
levels; with Nf = 1 we approximate vibrational quantum energy of the state localized near
the corresponding RE and obtain classical limit energy for the rotational structure only. In
the case of the Hamiltonian (11.4) whose vibrational part is quadratic, this approximation
matches exactly the extrema of the so-called “rotational energy surfaces” [32, 36, 35], which
are obtained when all rotational operators in Heff are replaced by their quantum analogues.
Further examples can be found in [58, 13, 12].

12. Discussion of the results. This paper, together with [13], reports on the first sub-
stantial attempt to extend the analysis of molecular energy levels based on RE (also known as
nonlinear normal modes and, in some cases, local modes, principal periodic orbits, stationary
axes of rotation, etc.) from simple, often model systems to complex rotation–vibration Hamil-
tonians of real molecules. Our predecessors (see section 1) studied classical vibrational systems
with two or three degrees of freedom [14, 15, 16, 77, 70], notably a great number of triatomic
molecules [19, 22, 23, 24, 25, 26, 27, 99, 100, 101, 102, 103, 104, 105, 106], and rotational sys-
tems [31, 32, 33, 34, 37, 38, 55, 28, 29, 12]. Generalization of these studies to combined systems
led to “hybrid” quantum classical systems [36, 35, 41, 42, 43, 56, 107, 108, 109]. We take the
next step by studying the whole of the combined system classically and using the results for
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the interpretation and prediction of the corresponding quantum system. We consider the ex-
ample of the rotating tetahedral molecule A4 with six internal vibrational degrees of freedom,
a system which is, arguably, at the limit of molecular systems whose rotation–vibration energy
levels have already been studied in detail.

Our principal molecular result is the relation of rotation–vibration RE and the structure
of the rotation–vibration energy level spectrum. Thus, we show how extremal quantum states
in the rotation–vibration multiplet are associated with particular periodic rotation–vibration
motion of the molecule. We took advantage of the simplicity of the classical RE description in
order to analyze the structure of highly excited energy levels in different limits. In particular,
we compared the structure of rotationally excited polyads to that in the case of high purely
vibrational excitation. We found that when the interaction of the rotational and vibrational
subsystems is significant, RE become qualitatively different from what can be expected for
(or deduced from) the separable system. We predicted qualitative modifications of the system
of RE and then followed it with a concrete example. This is our main mathematical result.

We also took advantage of the rich topological structure and high symmetry of our exam-
ple system in order to predict and explain many important basic qualitative features of this
complex system. Subsequently, we confirmed our predictions quantitatively. In particular we
analyzed existence and stability of rotation–vibration RE. We extend this study to different
parametric limits of molecular potential and corresponding limiting cases of the normalized
system (polyads). Our more specialized mathematical results concern group-theoretical as-
pects of combining two subsystems, in particular the analysis of the group action on the
combined phase space on the basis of the action on individual subspaces. The last, but not
least, is the dynamically invariant formulation of the theory in section 9, which is the weapon
of choice for further analysis of the hidden regular structures of seemingly irregular highly
excited molecular states.
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[54] D. A. Sadovskíi and B. I. Zhilinskíi, Counting levels within vibrational polyads. Generating function

approach, J. Chem. Phys., 103 (1995), pp. 10520–10536.
[55] I. N. Kozin and I. M. Pavli�chenkov, J. Chem. Phys., 104 (1996), pp. 4105–4113.
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[100] C. Jaffé and W. P. Reinhardt, Uniform semiclassical quantization of regular and chaotic classical
dynamics on the Henon–Heiles surface, J. Chem. Phys., 77 (1982), pp. 5191–5203.

[101] A. B. McCoy and E. L. Sibert, Calculation of infrared intensities of highly excited vibrational states
of HCN using Van Vleck perturbation theory, J. Chem. Phys., 95 (1991), pp. 3488–3493.

[102] A. B. McCoy and E. L. Sibert, Perturbative calculations of vibrational (J = 0) energy levels of linear
molecules in normal coordinate representations, J. Chem. Phys., 95 (1991), pp. 3476–3487.

[103] A. B. McCoy and E. L. Sibert, An algebraic approach to calculating rotation-vibration spectra of
polyatomic molecules, Molecular Phys., 77 (1992), pp. 697–708.

[104] A. B. McCoy and E. L. Sibert, Determining potential energy surfaces from spectra: An iterative
approach, J. Chem. Phys., 97 (1992), pp. 2938–2947.

[105] E. L. Sibert and A. B. McCoy, Quantum, semiclassical and classical dynamics of the bending modes
of acetylene, J. Chem. Phys., 105 (1996), pp. 469–478.

[106] M. Joyeux, Gustavson’s procedure and the dynamics of highly excited vibrational states, J. Chem. Phys.,
109 (1998), pp. 2111–2122.

[107] D. Sugny and M. Joyeux, On the application of canonical perturbation theory to floppy molecules, J.
Chem. Phys., 112 (2000), pp. 31–39.

[108] D. Sugny, M. Joyeux, and E. L. Sibert, Investigation of the vibrational dynamics of the HCN/CNH
isomers through high order perturbation theory, J. Chem. Phys., 113 (2000), pp. 7165–7177.

[109] D. Sugny and M. Joyeux, New canonical perturbation procedure for studying nonadiabatic dynamics,
Chem. Phys. Lett., 337 (2001), pp. 319–326.

[110] R. P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math.
Soc., 1 (1979), pp. 475–511.

[111] B. Sturmfels, Algorithms in Invariant Theory, Springer-Verlag, Berlin, 1993.



SIAM J. APPLIED DYNAMICAL SYSTEMS c© 2004 Society for Industrial and Applied Mathematics
Vol. 3, No. 3, pp. 352–377

Tippe Top Inversion as a Dissipation-Induced Instability∗

Nawaf M. Bou-Rabee†, Jerrold E. Marsden‡, and Louis A. Romero§

Abstract. By treating tippe top inversion as a dissipation-induced instability, we explain tippe top inversion
through a system we call the modified Maxwell–Bloch equations. We revisit previous work done on
this problem and follow Or’s mathematical model [SIAM J. Appl. Math., 54 (1994), pp. 597–609].
A linear analysis of the equations of motion reveals that the only equilibrium points correspond to
the inverted and noninverted states of the tippe top and that the modified Maxwell–Bloch equations
describe the linear/spectral stability of these equilibria. We supply explicit criteria for the spectral
stability of these states. A nonlinear global analysis based on energetics yields explicit criteria for
the existence of a heteroclinic connection between the noninverted and inverted states of the tippe
top. This criteria for the existence of a heteroclinic connection turns out to agree with the criteria
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1. Introduction. Tippe tops come in a variety of forms. The most common geometric
form is a cylindrical stem attached to a truncated ball, as shown in Figure 1.1. On a flat
surface, the tippe top will rest stably with its stem up. However, spun fast enough on its
blunt end, the tippe top momentarily defies gravity, inverts, and spins on its stem until
dissipation causes it to fall over. This spectacular sequence of events occurs because, and in
spite of, dissipation.

Tippe top inversion is an excellent example of a dissipation-induced instability. Tippe
top inversion is described by a system we call the modified Maxwell–Bloch equations. These
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Figure 1.1. From left: a sketch of the noninverted and inverted states of the tippe top.

equations are a generalization of a previously derived normal form describing dissipation-
induced instabilities in the neighborhood of the 1:1 resonance [4]. We will show in section 2
that the modified Maxwell–Bloch equations are the normal form for rotationally symmetric,
planar dynamical systems.

A dissipation-induced instability describes a neutrally stable equilibrium becoming spec-
trally (and hence nonlinearly) unstable with the addition of dissipation. Dissipation-induced
instability itself has a long history, which goes back to Thomson and Tait; see [14]. In its
modern form, dissipation-induced instability was shown both to be a general phenomenon
for gyroscopically stabilized systems and to provide a sharp converse to the energy momen-
tum stability method by Bloch et al. in [1] and [2]. We refer the reader to these papers for
additional examples and basic theory.

By considering tippe top inversion as a dissipation-induced instability, we observe pre-
cisely how tippe top inversion relates to well-understood dissipation-induced instabilities in
gyroscopic systems.

History and literature. Tippe top inversion has been much investigated in the literature
but never satisfactorily resolved. In what follows we survey a selection of theoretical results
relevant to this paper. We refer the reader to the work of Cohen [5] and Or [11] for more
comprehensive surveys of the literature.

Analysis of the tippe top dates back to the last century with Routh’s commentary on the
rising of tops. Routh’s simple physical analysis made it clear that dissipation was fundamental
in understanding the physics of tippe top inversion [12]. In 1977, Cohen confirmed Routh’s
physical analysis through numerical simulation [5]. Cohen modeled the tippe top as a holo-
nomic ball with an inhomogeneous, axisymmetric mass distribution on a fixed plane. Thus,
the ball’s center of mass was on its axis of symmetry, but not coincident with its geometric
center. Tippe top inversion corresponded to the ball’s center of gravity moving above its ge-
ometric center. Cohen’s mathematical model, derived using Newtonian mechanics, is written
in terms of Euler angles and assumed a sliding friction law.

In reality, tippe top inversion is a transient phenomenon because of dissipation. How-
ever, by neglecting frictional torque, the spinning inverted state becomes a steady-state phe-
nomenon. With a sliding friction law that neglects frictional torque, Cohen’s equations of
motion were amenable to a linear-stability analysis about the spinning inverted and nonin-
verted states, but he did not carry out such an analysis in his work. In this sense the fact
that the model neglects frictional torque is a feature rather than a defect of the friction law.

Cohen concluded that a sliding friction law based on Coulomb friction explains tippe top
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inversion. Moreover, Cohen showed that the inviscid ball (no sliding friction) does not invert.
Coulomb friction is proportional to the normal force exerted by the surface at the point of
contact and opposes the motion of the tippe top at the point of contact. This nonlinear
friction law drops out of a standard linear-stability analysis.

In 1994, Or extended Cohen’s work by generalizing his friction law, performing a dimen-
sional analysis of the equations of motion, writing the equations of motion in convenient
coordinates, and exploring the linearized behavior of the ball. To further facilitate a linear-
stability analysis, Or added viscous friction to Cohen’s friction law. The viscous friction is
linearly related to the slip velocity at the point of contact.

Or’s work showed that inversion could occur because of viscous or Coulomb friction. Or’s
analysis of tippe top inversion by Coulomb friction and viscous friction demonstrated viscous
friction flips the top more rapidly than Coulomb friction. His analysis mentioned first integrals
in the no-slip problem, but did not use them to explain the global behavior of the tippe top.

There was good reason to avoid a global analysis of the tippe top: the theoretical model
of a ball did not accurately model the contact effects of the tippe top stem. However, the
fundamental physics behind the global behavior of the tippe top was still reasonably described
by the equations of motion for a ball with an eccentric center of mass, i.e., a gyroscopic,
axisymmetric rigid body rising from a gravitationally favorable position to an unfavorable one
because of dissipation. This observation motivated some aspects of the present study and
possibly Ebenfeld’s thesis on tippe top inversion from a Lyapunov perspective.

In 1995, Ebenfeld and Scheck applied a Lyapunov method to a dimensional version of Or’s
mathematical model. Using the energy as a Lyapunov function, they analyzed the orbital sta-
bility of the spinning, sliding ball. They showed that, starting with nonzero slip, the standing,
spinning tippe top tends to manifolds of constant energy with no-slip and no tangential surface
force. Moreover, they showed that without slip the tippe top cannot invert. They classified
all possible asymptotic solutions as either tumbling (precession, spin, and no nutation) or
rotating (pure spin) solutions. They provide criteria for determining the Lyapunov stability
of these solutions [6].

We have applied some techniques of the present work to the related, but different, “rising
egg” problem. (See Bou-Rabee, Marsden, and Romero [3].) In that paper we address the
contributions of Moffatt [10] and Ruina [13] to that problem.

Main goals of this paper. The main result of this paper asserts that the stability of the
noninverted and inverted tippe top (cf. Figure 1.1) and the existence of a heteroclinic connec-
tion between these states is completely described by the modified Maxwell–Bloch equations:
a normal form for rotationally symmetric, planar dynamical systems. This result is important
because (1) it shows how tippe top inversion relates to well-studied dissipation-induced insta-
bilities in gyroscopic systems; (2) it integrates the linear and nonlinear analysis; and (3) it
simplifies the analysis of tippe top inversion and yields explicit criteria for when the tippe top
inverts.

We use Or’s mathematical model with viscous friction to obtain equations of motion for
the tippe top in a convenient set of coordinates. We locate and analyze the stability of all
equilibrium points of the equations of motion. As Ebenfeld observed, the viscous problem
conserves ΥQ, the angular momentum about the vector connecting the center of mass of the
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ball to the surface point of contact. For a fixed value of ΥQ, the only equilibrium points of
the equations of motion correspond to the noninverted and inverted states of the tippe top.
We extend Or’s linear analysis by linearizing about both of these equilibrium points.

By assuming that the translation of the center of mass is negligible, we derive a reduced
system for the tippe top in terms of only angular variables. We show that this reduced equation
is of the form of a modified Maxwell–Bloch equation and give reasons to support this approx-
imation. Analysis of explicit stability criteria for the reduced system shows that the reduced
system accurately describes the linearized behavior of the tippe top. Thus, the paper shows
that the stability of the noninverted and inverted tippe top is completely determined by the
modified Maxwell–Bloch equations. Moreover, these equations are the normal form for tippe
top inversion; i.e., they are the simplest possible equations that can capture tippe top inversion.

We extend the nonlinear analysis by proving the existence of a heteroclinic connection be-
tween the noninverted and inverted states of the tippe top. Application of LaSalle’s invariance
principle repeats/simplifies Ebenfeld’s energy arguments. Like Ebenfeld, we use the energy as
a Lyapunov function. For the viscous problem, we show that the energy’s orbital derivative is
negative semidefinite and a constant multiple of the �2-norm of the slip velocity. Thus, when
the slip velocity vanishes, the energy is conserved. We identify the largest invariant set on
this manifold characterized by no-slip and no tangential surface force.

The largest invariant set on this manifold extremizes the energy subject to the surface
and angular momentum constraint: ΥQ = constant. For certain parameter values, we find
that the noninverted and inverted equilibrium states are the only extrema of the energy and
are, in fact, the absolute maxima and minima of the energy, respectively. By the theorems
of Barbashin and Krasovskii, trajectories starting in the neighborhood of the asymptotically
unstable, noninverted state approach the asymptotically stable, inverted state as t → ∞;
i.e., the inverted state is globally asymptotically stable [8]. Outside this range of parameter
values, the inverted and noninverted states become asymptotically unstable and a limit cycle
corresponding to Ebenfeld’s tumbling solution minimizes the energy.

Thus, the asymptotic states of the tippe top approach either (i) an isolated asymptotically
stable equilibrium point or (ii) a neutrally stable limit cycle. The second case corresponds to
the inverted and noninverted states being asymptotically unstable. In this case trajectories
starting in the neighborhood of the noninverted, asymptotically unstable state will tend to
limit cycles upon which total energy, magnitude of the angular momentum, nutation angle,
and angular momentum about the vertical are conserved. We refer the reader to Ebenfeld for
conditions for Lyapunov stability of this limit cycle. When the inverted state is asymptotically
stable, a heteroclinic connection between the asymptotically unstable and stable states of the
tippe top exists. We derive explicit criteria to determine the range of parameter values for
which the heteroclinic connection exists.

A comparison of the existence criteria for the heteroclinic connection and the linear-
stability criteria derived from the modified Maxwell–Bloch system for the tippe top shows
they are explicitly related. Thus, the modified Maxwell–Bloch equations fully explain tippe
top inversion.

Without dissipation, linear theory concludes that the equilibria are linearly (or neutrally)
stable, which does not imply nonlinear stability. With dissipation, however, it is no surprise
that the linear analysis provides the correct local nonlinear dynamics (since dissipation moves
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eigenvalues off of the imaginary axis).

Organization of the paper. In section 2, we present the modified Maxwell–Bloch equa-
tions. We derive these equations and supply specific stability criteria for the system’s char-
acteristic polynomial. We also discuss the ability of this model to capture the fundamental
physics in tippe top inversion.

In section 3, we derive and discuss the mathematical model of the tippe top. Specifically,
we write the dimensional equations of motion of the theoretical tippe top using Newtonian
mechanics, discuss the friction law, and nondimensionalize these equations. We also explicitly
compare the model in this paper to others in the literature.

In section 4, we apply linear theory to the nonlinear model. In particular, we locate the
equilibria of the governing dimensionless equations, linearize about these states, as well as
review and extend Or’s numerical stability analysis.

In section 5, we cast the linearized equations for the tippe top in the form of the modified
Maxwell–Bloch equations. We mention a direct derivation to these equations and analyze
the stability of the modified Maxwell–Bloch equations. In particular, we show that these
equations are the simplest possible equations that can capture the fundamental physics in
tippe top inversion.

In section 6, we explain tippe top inversion from an energy landscape perspective. We
apply LaSalle’s invariance principle to determine the asymptotic state of the tippe top, study
the behavior of solutions on this asymptotic state, and determine when this asymptotic state
corresponds to the inverted tippe top. We also compare the criteria for the existence of a
heteroclinic connection with the linear-stability criteria for the tippe top modified Maxwell–
Bloch equations provided in section 5.

In section 7, we discuss data from simulations which verify the local and global analysis
in the paper. We conclude the paper with a discussion of future directions inspired by this
work.

2. Modified Maxwell–Bloch equations. This section introduces an important extension
of the Maxwell–Bloch equations and studies their stability.

Derivation. Consider a planar ODE of the form

q̈ = f(q, q̇), q =

[
x
y

]
.

Linearization of these equations yields

q̈ = Aq̇ + Bq.

The characteristic polynomial of this system

det

([
σ2 0
0 σ2

]
+ Aσ + B

)
= 0

shows that the ODE will have time-reversal symmetry; i.e., if σ is a solution, then so is −σ,
when A is skew-symmetric and B is symmetric.
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We define the rotation matrix

R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]

as well as the identity and elementary skew-symmetric matrix in R
2:

I =

[
1 0
0 1

]
, S =

[
0 −1
1 0

]
.

The necessary and sufficient condition for a 2× 2 matrix in R
2 to commute with the rotation

matrix is that the matrix be a linear combination of I and S.
Thus, if this ODE is rotationally symmetric, i.e., the ODE is invariant under SO(2) rota-

tion, then the matrices A and B can be expressed as

A = −αS − βI, B = −γS − δI,

where α, β, γ, and δ are real scalars. Because α and γ can destroy time-reversal symmetry in
A and B, we call these terms dissipative.

Given the particular form of the rotationally symmetric ODE, we can write the two-
dimensional real system as a one-dimensional complex system,

z̈ + iαż + βż + iγz + δz = 0, z = x + iy,(2.1)

which we call the modified Maxwell–Bloch equations. We observe that (2.1) is the basic
harmonic oscillator with the two complex terms iαż and iγz. In physical systems, the first
term arises from Coriolis effects, and hence is known as the gyroscopic term. The second
term typically arises from dissipation in rotational variables. This damping force is different
from the usual damping term proportional to absolute velocity, βż. Physically the complex
damping term models viscous effects caused by, for example, motion in a fluid, while the usual
damping term models internal dissipation.

Proposition 2.1. The modified Maxwell–Bloch equations are the linearized normal form for
planar, rotationally symmetric dynamical systems.

Stability criteria. The characteristic polynomial of the modified Maxwell–Bloch equations
is

λ4 + 2βλ3 + (α2 + β2 + 2δ)λ2 + 2(αγ + βδ)λ + (γ2 + δ2) = 0.

We now write the necessary and sufficient conditions for this polynomial to be Hurwitz [7].
Proposition 2.2. The zero solution of the modified Maxwell–Bloch equations is asymptoti-

cally stable provided that the following inequalities hold:

β > 0,

αβγ − γ2 + β2δ > 0,

α2β + β3 − αγ + βδ > 0.

(2.2)

There are two especially interesting physical cases of these equations:



358 NAWAF M. BOU-RABEE, JERROLD E. MARSDEN, AND LOUIS A. ROMERO

1. When δ > 0, γ = β = 0, the system is neutrally stable with or without the presence
of the gyroscopic term. Adding usual dissipation (β > 0) makes the neutrally stable
zero solution asymptotically stable. Adding, however, damping in rotational variables
can stabilize or destabilize the neutrally stable zero solution.

2. When δ < 0, α > −4δ > 0, β = γ = 0, the system is gyroscopically, and hence
neutrally, stable. Adding usual damping makes the neutrally stable zero solution
asymptotically unstable since the second inequality in (2.2) can never hold. This case
corresponds to the classical dissipation-induced instability [1]. If β = 0 and β > 0,
the neutrally stable zero solution becomes asymptotically unstable. Adding damping
in both variables, i.e., β > 0 and γ > 0, can stabilize or destabilize the zero solution
depending on the ratio of β to γ.

For the tippe top, we will show that dissipation in rotational variables (or complex damping)
is essential to understanding inversion. In fact, the remarks above point out some limitations
of usual damping: usual damping can only predict instability in the case of a gyroscopically
stable system and stability in the case of a gravitationally stable system.

Consider the modified Maxwell–Bloch equations as a possible model of the linearized
behavior of the tippe top. In particular, suppose that the noninverted and inverted states
of the tippe top correspond to the zero solution of (2.1). In the inviscid case, we observe a
noninverted state which is gravitationally stable with or without gyroscopic effects. Remark 1
above shows that the addition of usual damping cannot destabilize this gravitationally stable,
noninverted state. The complex damping term, however, can destabilize this state. Therefore,
the complex damping term can explain why the gravitationally stable tippe top becomes
asymptotically unstable.

Moreover, after the tippe top inverts we have a gyroscopically stabilized inverted state.
We have shown that the addition of usual damping would make such a system asymptotically
unstable. Thus, usual damping cannot explain why the tippe top spins stably in its inverted
state. Remark 2 shows that the complex and usual damping term in the right ratio can,
however, stabilize this state. Thus, the complex damping term can also explain why the tippe
top spins stably on its stem. We will revisit this analysis when we cast the linearized equations
of the tippe top in the form of the modified Maxwell–Bloch equations.

3. Tippe top governing equations. This section contains a pedagogical derivation of the
tippe top governing equations following Or [11], given mainly for the reader’s convenience.
The section concludes with a brief discussion of how to explicitly obtain the equations derived
by Or [11] and Ebenfeld and Scheck [6] from our form of the equations and how to formulate
the equations of motion using Lagrangian mechanics.

Derivation. We write the equations of motion of the tippe top from first principles. We
idealize the tippe top as a ball of radius R and mass M on a fixed plane. The mass distribution
of the ball is inhomogeneous, but symmetric about an axis through the ball’s geometric center.
Thus, the ball’s center of mass is located on the axis of symmetry k, which is pointing in the
direction (l,m, n), but at a distance Re� above the geometric center, where e� is the center of
mass offset (0 ≤ e� ≤ 1).

Let the points Q, O, and C represent the point of contact, the geometric center, and the
center of mass of the ball, respectively (cf. Figure 3.1). We define ex, ey, ez to be unit vectors
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of a nonrotating Cartesian frame attached to O. We define principal axes as i, j,k with axis of
symmetry k. Let L,ω, (X,Y, Z) be the ball’s angular momentum about O, angular velocity,
and absolute position of its center of mass, respectively. We define Ik and I = Ii = Ij to be
the inertias about the respective principal axes attached to O.

Let the vector Q represent the position of the point of contact Q with respect to the center
of mass O given by

Q = R(−e�k − ez).(3.1)

We assume that the only external forces acting on the tippe top are due to gravity and the
surface force FQ at the point of contact Q. Conservation of linear momentum yields

MẌ = FQ · ex,
MŸ = FQ · ey,
MZ̈ = FQ · ez −Mg.

(3.2)

By the translation theorem of angular momentum, we have

L̇ = MR2(e�)2k × k̈ + Q × FQ.(3.3)

Since the axis of symmetry undergoes pure rotation, we have

k̇ = ω × k,

which is known as the attitude equation. By projecting the angular momentum on the prin-
cipal coordinate frame, we can relate ω and L as follows:

L = Iω +
Ik − I

Ik
(L · k)k.

Solving for ω we obtain

ω =
1

I

(
L +

Ik − I

Ik
(L · k)k

)
.

Substituting this expression into the attitude equation, we obtain

k̇ =
1

I
L × k.(3.4)

We also have the constraint that keeps the ball on the fixed plane (no hopping or penetration
into the surface):

Q · ez + z = 0.(3.5)

Together, (3.2), (3.3), (3.4), and (3.5) represent the dimensional equations of motion of the
ball once the force FQ has been specified.
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Figure 3.1. We model the tippe top as a ball with an eccentric center of mass C, geometric center O, and
point of contact Q. Vectors q and k represent the dimensionless position of the contact point with respect to
the center of mass and the unit vector in the direction of the axis of symmetry, respectively.

Friction law. The force exerted on the body at the contact point Q is due to surface
frictional and normal reaction forces: FQ = Ff +Fzez. It is well understood that sliding fric-
tion is the main mechanism behind tippe top inversion. To facilitate the linear and nonlinear
analysis, we assume a sliding frictional force proportional to the slip velocity, i.e., the velocity
of the contact point on the rigid body relative to the center of mass VQ:

Ff = −cVQ.

A more complete friction law would include rotational, pure rolling, and Coulomb friction. We
neglect frictional torque so that the spinning, standing ball is a steady-state solution of the
equations of motion. Addition of nonlinear Coulomb friction would result in algebraic rather
than exponential divergence of the unstable equilibrium solution [11]. Pure rolling friction
would be important in the limit to a perfectly rough surface.

The slip velocity, i.e., the velocity of the contact point on the rigid body relative to the
center of mass, is

VQ = VC + ω × Q,(3.6)

where VC = (Ẋ, Ẏ , Ż) is the absolute velocity of the center of mass. The slip velocity in
terms of the angular momentum is given by

VQ = VC +
R

I

(
(e�k + ez) × L +

Ik − I

Ik
(L · k)(ez × k)

)
.

Dimensionless equations. We introduce the following dimensionless variables:

x =
X

R
, y =

Y

R
, z =

Z

R
, t = TΩ, fQ =

RFQ

IkΩ2
, Υ =

L

IkΩ
, q =

Q

R
,
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and parameters

σ =
Ik
I
, Fr−1 =

g

Ω2R
, µ =

MR2

I
, ν =

cR2

IΩ
,

where Ω is the spin rate of the initially standing equilibrium solution we will linearize about
and T represents dimensional time. The dimensionless parameters σ, Fr, µ, and ν are the
inertia ratio, Froude number, dimensionless mass, and friction factor, respectively.

The governing equations follow:

µẍ = σfx = −ν[ẋ− e� l̇ − σΥy + (σ − 1)(Υ · k)m],

µÿ = σfy = −ν[ẏ − e�ṁ + σΥx − (σ − 1)(Υ · k)l],

Υ̇ =

[
σ2µ(e�)2(Υ · k)(k × Υ) + e�σfz(ez × k) + σq × ff − σµ(e�)2(ff · (k × ez))k

]
(1 − µ(e�)2)σ

,

k̇ = σΥ × k.

(3.7)

Equation (3.7) describes the translational (x, y) and rotational (Υ,k) motion of the ball.
To determine the normal reaction force fz we use the constraint that keeps the ball on

the surface,

z = 1 + e�(ez · k),(3.8)

together with the vertical translation equation,

z̈ =
σ

µ
fz − Fr−1.(3.9)

The appendix gives an explicit expression for the normal reaction force.
Observe that the angular momentum about the vector connecting the center of mass to

the contact point q is a conserved quantity for (3.7):

ΥQ = Υcg · q = −σe�(Υ · k)(1 + σµe�n) − σ(1 − σµ(e�)2)Υz, (ΥQ)t = 0.(3.10)

This first integral, known in the literature as the Jellett invariant, can be derived geometrically
from a momentum map. The Jellett invariant corresponds to an S

1 action on the configuration
space Q = SO(3) × R

2, which can be computed by formula (12.2.1) of [9]. Specifically, the
action for θ ∈ S

1 is given by simultaneous rotation about the axis of symmetry by the angle
−σe�(1 + σµe�n)θ and about the vertical by the angle (1 − σµ(e�)2)θ. Because the force at
the point of contact does no virtual work under this action, dissipation does not destroy this
conservation law.

We briefly compare this model with others in the literature. Writing the absolute velocity
of the center of mass in terms of the absolute velocity of the center of curvature leads to the
form of the equations that can be found in Or’s work [11, eqs. (1) and (2), p. 600]:

V0 = vC − e�σΥ × k,

ω =
1

σ
(ω + (σ − 1)(ω · k)k).
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We choose to write the governing equations in terms of the velocity of the center of mass
because we are interested in the translational effects of the ball’s center of mass. Writing the
angular momentum with respect to the center of mass C leads to the form of the equations
found in Ebenfeld’s work [6, eq. (14), p. 201]:

Υcg = (1 − σµ(e�)2)Υ + σµ(e�)2(Υ · k)k.

In accordance with Or’s equations, we choose to write the angular momentum with respect
to the center of curvature O.

The basic phase space is TQ, which is typically parametrized by rotational and transla-
tional coordinates and their conjugate momenta. The body angular velocity is R−1Ṙ, where
R is the attitude matrix of the body and (R, Ṙ), together with translational coordinates,
is a point in TQ. The body angular momentum coordinates are then related to the body
angular velocity coordinates by constant factors given by the principal moments of inertia.
The Lagrangian L : TQ → R in terms of these variables is given explicitly by

L = µ

(
ẋ2

2
+

ẏ2

2
+

ż2

2

)
+ σ(1 − σµ(e�)2)

Υ · Υ
2

+
(1 − σ + σµ(e�)2)(Υ · k)2

2
− µFr−1z.

The equations of motion can then be formulated by the Lagrange d’Alembert principle with
generalized forces given by the specified sliding friction force. The surface reaction force is a
force of constraint that is an intrinsic part of the Euler–Lagrange operator.

4. Linear theory.

Equilibria. Equilibria of (3.7) satisfy

Υ × k = 0 =⇒ Υ and k are collinear,
ez × k = 0 =⇒ ez and k are collinear.

Therefore, equilibria satisfy

ẋ = ẏ = x = y = Υx = Υy = l = m = 0, Υz = constant, n = ±1.

If we restrict the angular momentum about q (cf. (3.10)) to a certain value, i.e., ΥQ =
−(1 + e�)σ, we have two equilibria given by

ẋ = ẏ = x = y = Υx = Υy = l = m = 0, Υz = 1,
1 + e�

1 − e�
, n = ±1.(4.1)

These equilibria correspond to the noninverted and inverted states of the tippe top shown in
Figure 1.1.

Linearization. Linearizing the equations of motion about these states (n = no = ±1,
Υz = Υo

z) and writing the resulting equations in terms of the complex variables

VC = ẋ + iẏ, Λ = Υx + iΥy, Φ = l + im,
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we obtain

V̇C = −νAVC − iνBΛ + iνCΦ,

Λ̇ = iνDVC + (νE + iF )Λ + (νG + iH)Φ,

Φ̇ = −inoσΛ + iσΥo
zΦ,

(4.2)

where we have introduced the following real parameters to ensure clarity of (4.2):

A =
1

µ
, B =

1

µ
σ(e�no + 1), C =

(σe� + no(σ − 1))Υz
o

µ
, D =

(e�no + 1)

σ(1 − µ(e�)2)
,

E =
(e�no + 1)2

1 − µ(e�)2
, F =

noµ(e�)2σ

1 − µ(e�)2
,

G =
(e�no + 1)(σe� + no(σ − 1))Υz

o

σ(1 − µ(e�)2)
, H =

−µ(e�)2σ2Υz
o + µe�Fr−1

σ(1 − µ(e�)2)
.

To obtain Or’s linearized model, set no = 1, Υz
o = 1 in (4.2) and express the equations in

terms of the velocity of the center of curvature, V0, and the angular velocity, ω, through the
following change of dependent variables: VC = V0 + e�i(Φ − ω), and σΛ = ω + (σ − 1)Φ [11,
eq. (11), p. 602].

If we assume a solution of the form eλtφ, we obtain the following eigenvalue problem:

λφ = νCφ + iKφ,(4.3)

where

C =


 −A −iB iC

iD E G
0 0 0


 , K =


 0 0 0

0 iF iH
0 −noσ Υz

oσ


 .

Numerical stability analysis. Here we briefly confirm Or’s numerical stability results and
discuss the stability of the inverted state: no = −1,Υz

o = 1+e�

1−e� . A numerical linear stability

analysis of the governing equation reveals the effect of the Froude number Fr−1, the inertia
ratio σ, and the friction factor ν as a function of the eccentricity e�. Figure 4.1 shows the
growth factor of the eigenvalue with largest real part. When the center of mass is below the
center of curvature, we see that a high Froude number destabilizes the noninverted state.
A low Froude number implies that gravitational effects are more important than rotational
effects, and therefore if the center of mass is below the center of curvature, a low Froude
number stabilizes the standing spinning solution. When the center of mass moves above the
center of curvature, we see that the Froude number has the opposite effect.

Figure 4.3 shows that the inertia ratio σ destabilizes the standing spinning solution for
σ < 1.14 when the center of mass is below the center of curvature. As Cohen notes, the inertia
ratio of most commercial tippe tops is less than 1, i.e., σ < 1.

Figure 4.5 shows that the inviscid problem is neutrally stable, as expected. As ν increases,
the magnitude of the real part of the eigenvalue initially becomes larger until the friction
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Figure 4.1. The growth factor of the eigenvalue of (4.3) with largest real part is plotted here for varying
Froude numbers (Fr−1 = 0, 0.3, 0.5, 1.0) as functions of e� for the noninverted equilibrium state no = 1,
Υz

o = 1.
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Figure 4.2. The growth factor of the eigenvalue of (4.3) with largest real part is plotted here for vary-
ing Froude numbers (Fr−1 = 0, 0.3, 0.5, 1.0) as functions of e� for the inverted equilibrium state no = −1,
Υz

o = 1+e�

1−e�
.

becomes so large that the ball ceases to slip. The real part of the eigenvalue then begins
to decay as the ball tends to roll without slip. In the limit to pure rolling, we see that the
nonholonomic problem is also neutrally stable. For ν > 0, we also observe that the real part
of the eigenvalue is positive (or negative) when the center of gravity of the ball is below (or
above) the geometric center. This explains why the inverted state is linearly stable. All of
these findings agree with those of Or [11].

Figures 4.2, 4.4, and 4.6 show that the behavior of the inverted state when e� < 0 is
qualitatively similar to the behavior of the noninverted state with e� > 0; however, they are
not quantitatively the same. In all of these figures, we see ranges of parameter values where
the inverted state is asymptotically stable and unstable when e� < 0. We will show later that
for parameter values where the inverted state is asymptotically stable and the noninverted
state is asymptotically unstable, a heteroclinic orbit exists, and the inverted state is globally
asymptotically stable.



TIPPE TOP INVERSION 365

−0.4 −0.2 0 0.2 0.4
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

e*

G
ro

w
th

 R
at

e

0.8 

1.0 

1.1 

1.2 

Figure 4.3. The growth factor of the eigenvalue of (4.3) with largest real part is plotted here for varying
inertia ratios (σ = 0.8, 1.0, 1.1, 1.2) as functions of e� for the noninverted equilibrium state no = 1, Υz

o = 1.
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Figure 4.4. The growth factor of the eigenvalue of (4.3) with largest real part is plotted here for varying
inertia ratios (σ = 0.8, 1.0, 1.1, 1.2) as functions of e� for the inverted equilibrium state no = −1, Υz

o = 1+e�

1−e�
.
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Figure 4.5. The growth factor of the eigenvalue of (4.3) with largest real part is plotted here for Fr−1 = 0
as functions of e� for ν varying from 0.1 (blue) to 5.0 (green) for the noninverted equilibrium state no = 1,
Υz

o = 1.
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Figure 4.6. The growth factor of the eigenvalue of (4.3) with largest real part is plotted here for Fr−1 = 0
as functions of e� for ν varying from 0.1 (blue) to 5.0 (green) for the inverted equilibrium state no = −1,
Υz

o = 1+e�

1−e�
.

5. Tippe top modified Maxwell–Bloch equations. If we ignore translational effects, the
linearized equations (4.2) simplify:

Λ̇ = (νE + iF )Λ + (νG + iH)Φ,

Φ̇ = −inoσΛ + iσΥz
oΦ.

(5.1)

To obtain these equations more directly, we can ignore translational effects from the outset.
The derivation based on this assumption is closely related to deriving the equations of mo-
tion for the standard top in a gravitational field. There is ample evidence supporting this
assumption:

1. The assumption is rigorously true for small friction. Equation (4.2) shows that when
the friction is zero the velocity of the center of mass is fixed. Now consider a perturba-
tion of an inviscid, initially restating state in terms of the dissipation ν. To first order
in ν, it is sufficient to use only the zeroth-order velocity of the center of mass, which is
by assumption zero. Thus, to first order the center of mass can be assumed to remain
fixed. This reasoning can be borne out by application of rigorous perturbation theory.
We do not attempt such an analysis in this work.

2. Numerical evidence shows that application of the perturbation theory of eigenvalues
with or without the effect of translation produces the same stability results.

3. We will show that the position of the center of mass remains fixed for all extrema of
the constrained energy (see section 6). Thus, translational effects are negligible in the
steady-state behavior of trajectories in the neighborhood of equilibria (critical points
of the constrained energy).

4. Simulation shows that the translational energy of the tippe top is negligible (see Fig-
ure 7.2) and that the tippe top rotates much more than it translates.

Equation (5.1) can be rewritten in terms of Φ alone:

Φ̈ + iaΦ̇ + bΦ̇ + icΦ + dΦ = 0,(5.2)
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where

a =
σ(Υz

o − (Υz
o − no)(e�)2µ)

−1 + (e�)2µ
,

b = −(1 + noe�)2ν

−1 + (e�)2µ
,

c =
νΥz

o(1 + noe�)(−(no)2(−1 + σ) + σ)

−1 + (e�)2µ
,

d =
Fr−1e�µno

−1 + (e�)2µ
.

Notice that (5.2) is in the form of the modified Maxwell–Bloch equations (2.1).
Now let us check the stability criteria for modified Maxwell–Bloch systems given in (2.2).

The stability criteria for the noninverted state (no = 1, Υz
o = 1) are

1 − µ(e�)2 > 0,

(1 + e�)ν(Fr−1e�(1 + e�)µ(−1 + µ(e�)2) + (1 + e�)5ν2 + σ(−1 + σ + e�(e�µ + σ))) > 0,

−(1 + e�)2ν2(1 + Fr−1e�(1 + e�)2µ− σ − e�(e�µ + σ)) > 0.

(5.3)

Likewise, the stability criteria for the inverted state (no = −1, Υz
o = 1+e�

1−e� ) are

1 − µ(e�)2 > 0,

ν
(−Fr−1(−1 + e�)3e�µ(−1 + µ(e�)2) + (−1 + e�)7ν2)

(1 − e�)(−1 + µ(e�)2)

+ ν
(−1 − e� + 2(e�)2µ)σ(−1 − e� + σ + (e�)2(µ− σ − 2µσ) + (e�)3(µ + 2µσ))

(1 − e�)(−1 + µ(e�)2)
> 0,

ν2(−1 + σ + e�(−2 + Fr−1µ + σ))

+ ν2((e�)2(−1 + (1 + e�)2 + Fr−1(−2 + e�)(2 + (−2 + e�)e�))µ− σ − e�σ) > 0.

(5.4)

For the parameter values explored, the first two inequalities are always satisfied. The last
inequality is satisfied precisely in the regions where the growth rate of the eigenvalue of (4.3)
with largest real part is negative. We observe that this inequality is independent of the friction
factor unless ν = 0. Thus, we conclude that stability is independent of the magnitude of ν.
Figures 5.1 and 5.2 superpose plots of the growth rate with the value of the last inequality
in (5.3).

Can we reduce (5.2) any further? The answer is no because of the remarks made in
section 2. In particular, it can be shown that, without the complex and usual damping terms,
i.e., b = 0 and c = 0 or ν = 0, the gravitationally stable noninverted state cannot become
asymptotically unstable. Moreover, the gyroscopically stabilized state can be asymptotically
stable if and only if the complex and usual damping terms are present and in the right ratio.
In summary, the normal form for the tippe top in the neighborhood of inversion (a dissipation-
induced instability) is described by the modified Maxwell–Bloch equations.
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Figure 5.1. The growth factor of the eigenvalue of (4.3) with largest real part (cyan curves) and the
third inequality in the stability criteria given in (5.3) (red curves) are plotted here for varying Froude numbers
(Fr−1 = 0, 0.3, 0.5, 1.0) as functions of e�. Here we consider the noninverted state no = 1, Υz

o = 1.
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Figure 5.2. The growth factor of the eigenvalue of (4.3) with largest real part (cyan curves) and the
third inequality in the stability criteria given in (5.3) (red curves) are plotted here for varying inertia ratios
(σ = 0.8, 1.0, 1.1, 1.2) as functions of e�. Here we consider the noninverted state no = 1, Υz

o = 1.

6. Heteroclinic connection.

Tippe top asymptotic states. To establish the existence of a heteroclinic orbit connecting
the asymptotically stable and unstable states of the theoretical tippe top, we will invoke
LaSalle’s invariance principle. Consider a vector field χ on a manifold P . Let V be a Lyapunov
function with negative semidefinite orbital derivative: Vt ≤ 0 for all z ∈ P . We define the set
ℵ := {z ∈ P |Vt(z) = 0}.

Theorem 6.1 (LaSalle’s principle). Let z : [0,∞) → P be an integral curve of a vector field χ
with initial condition z(0) = z0. Suppose there is a positively invariant set (trapping region) M
such that z(t) ∈ M for all t ≥ 0. Then z(t) converges to the largest subset of ℵ ∩M that is
invariant under the flow of χ for all t, positive and negative.

We will now apply this principle to (3.7), the governing equation of the viscous ball. We
write the energy of the viscous ball as

E = µ

(
ẋ2

2
+

ẏ2

2
+

ż2

2

)
+ σ(1 − σµ(e�)2)

Υ · Υ
2

+
(1 − σ + σµ(e�)2)(Υ · k)2

2
+ µFr−1z,(6.1)
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which is a sum of translational, rotational, and gravitational effects. The energy’s orbital
derivative is given by

Et = −ν‖vQ‖2,(6.2)

where ‖vQ‖ is the �2-norm of the dimensionless slip velocity. The energy’s orbital derivative
implies that the energy decreases monotonically until the slip velocity vanishes.

No-slip no-force problem. We now mention some properties of the asymptotic state,
where the slip velocity vanishes and energy is conserved. The governing equations (3.7)
without slip reduce to the system

ẍ = 0,

ÿ = 0,

Υ̇ =
1

1 − σµ(e�)2
(
σµ(e�)2(Υ · k)(k × Υ) + e�fz(ez × k)

)
,

k̇ = σΥ × k,

(6.3)

where there is no tangential surface force. Clearly, this system is Hamiltonian, i.e., it conserves
energy. It is readily shown that

v̇Q = 0 =⇒ ṅ = 0 =⇒ Υ̇z = 0 =⇒ Υ · (ez × k) = 0 =⇒ ẋ = ẏ = 0.

Solutions are therefore defined by level sets of l2 + m2 and (Υx)
2 + (Υy)

2 [6]. For n 
= ±1
these solutions are described by precession, spin about the axis of symmetry, and no nutation.
These are Ebenfeld’s tumbling solutions [6].

The abundance of invariant quantities in the no-slip, no-force problem severely limits the
behavior of solutions to (6.3). In fact, the analysis above shows that the angular momentum
about the vertical and the nutation angle fully determine solutions of (6.3). The nutation
angle θ is the angle which the axis of symmetry makes with the vertical ez:

n = cos(θ).

We reasonably suppose that the initially sliding, viscous tippe top will tend to an asymptotic
state, where Υz and n extremize the energy subject to the constraints in the problem. Thus,
we suppose that ℵ is the set of all energy-conserving asymptotic solutions defined by Υz and n
which extremize the constrained energy.

6.1. Energy-momentum minimization. We now determine all minima of the total energy
subject to the angular momentum constraint, ΥQ = −σ(1 + e�) (cf. (3.10)), and the attitude
constraint, k · k = 1. In other words, we find the extrema of the augmented energy h =
E + λΥQ + λ̂k · k, where λ and λ̂ are Lagrange multipliers. Extrema of h satisfy

ẋ = ẏ = ż = 0,

which indicates that the center of mass and nutation angle remain fixed. The angular mo-
mentum in terms of n takes the form

Υ =
λ

σ2
(((σ − 1)n + e�σ)k + ez) ,
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where

λ =
(1 + e�)σ2

(−1 + n2)(−1 + µ(e�)2) + (n + e�)2σ
.

Once the angular momentum takes the above form, the slip velocity vanishes: vQ = 0. This
result is expected since extrema of the energy should have the same properties as the no-slip,
no-force problem. With an angular momentum of this form, extrema of the energy satisfy

λ2

σ2

[
(µ(e�)2 − 1)((σ − 1)n + e�σ)2

]
k + 2λ̂k

+
λ2

σ2

[
(1 − σ)n− e�σ − µ(e�)2n

]
ez + µe�Fr−1ez = 0.

When ez and k are linearly dependent, we obtain the solutions n = ±1 and Υ = Υzez with
Υz = 1, 1+e�

1−e� , which correspond to the inverted and noninverted states, respectively. When

the two vectors are linearly independent, we can choose λ̂ so that the coefficient of k vanishes.
The coefficient of ez vanishes when the following polynomial equation in n is satisfied:[

(1 − σ)n− e�σ − µ(e�)2n +
σ2

λ2
µe�Fr−1

]
= 0.

This reduction to a one-dimensional problem in terms of components of the energy that are
independent of the friction factor ν, and in terms of quantities in the plane defined by the
vertical and the axis of symmetry, agrees with Ebenfeld’s result [6]. This equation can be
rewritten as a quartic polynomial of the form

a0n
4 + a1n

3 + a2n
2 + a3n + a4 = 0,(6.4)

where the coefficients are functions of the parameters µ, Fr−1, σ, and e�.

Heteroclinic connection existence criteria. We are not interested in explicitly solving
the quartic equation (6.4). Rather, we are interested in knowing if all of the roots of this
equation are outside the unit disc in the complex plane, since if |n| > 1, the extrema violates
the constraint k · k = 1. We can determine whether all roots satisfy this criterion by the
following transformation in the complex domain:

n =
−1 + z

1 + z
,

which describes a mapping from the region outside the open disc |n| > 1 to the open left
half-plane in z. In terms of z the quartic polynomial becomes

r0z
4 + r1z

3 + r2z
2 + r3z + r4 = 0.

Specific values of these coefficients are provided in the appendix.
We now invoke the Liénard–Chipart criterion for the stability of quartic polynomials [7,

p. 221].
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Theorem 6.2 (Liénard–Chipart criterion). Necessary and sufficient conditions for all the roots
of r0z

4 + r1z
3 + r2z

2 + r3z + a4 = 0 to have negative real parts can be given by

r0 > 0, r1 > 0, r2 > 0, r3 > 0, r4 > 0, d = r1r2r3 − r0r
2
3 − r4r

2
1 > 0.

In Figures 6.1, 6.2, and 6.3, we show the values of the coefficients and d for the cases
Fr−1 = 0.3, 0.2, 0.1, σ = 1, µ = 2.28, and variable e�. Comparing these figures with the
linear-stability plot for the noninverted and inverted equilibria in Figure 7.3, we observe that
there are no other extrema in which the noninverted state is asymptotically unstable and
the inverted state is asymptotically stable. In particular, for Fr−1 = 0.3, 0.2, 0.1 and e� < 0,
we observe that there are no other extrema in these ranges, respectively: −0.1 < e� < 0.0,
−0.2 < e� < 0.0, and −0.35 < e� < 0. By evaluating the energy at the noninverted and
inverted states, it can be shown that in these parameter ranges the inverted and noninverted
states are absolute minima and maxima of the constrained energy, respectively.

In this regime of parameter values, the inverted state is the only point that remains in ℵ.
By the theorems of Barbashin and Krasovskii, the inverted state is globally asymptotically
stable in the parameter ranges, where the only extrema are the inverted and noninverted
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Figure 6.1. Here we plot the coefficients of the quartic in z = n+1
1−n

for µ = 2.28, Fr−1 = 0.3, σ = 1.0, and
variable e�.
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Figure 6.2. Here we plot the coefficients of the quartic in z = n+1
1−n

for µ = 2.28, Fr−1 = 0.2, σ = 1.0, and
variable e�.
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Figure 6.3. Here we plot the coefficients of the quartic in z = n+1
1−n

for µ = 2.28, Fr−1 = 0.1, σ = 1.0, and
variable e�.

states [8]. When the extrema include the tumbling solution, where 1−n2 
= 0, the heteroclinic
connection does not exist. Ebenfeld provides specific criteria for the Lyapunov stability of
this limit cycle. By the properties of the asymptotic states of the no-slip, no-force problem,
it is clear this limit cycle should be neutrally stable.

The correspondence between the linear and nonlinear results is much more profound.
We observe that the Hurwitz coefficients, which dictate stability of the polynomial in z, and
hence determine the allowable nutation angles of extrema, are always r0 and r4. The appendix
provides explicit expressions for these terms. Comparing the expressions for r0 and r4 with the
stability criteria for the tippe top modified Maxwell–Bloch system equations (5.3) and (5.4),
we observe that r0 and r4 are constant multiples of the third inequalities in (5.3) and (5.4). In
section 5, we showed that these inequalities determine the linear stability of the noninverted
and inverted states of the tippe top. Thus, because of dissipation the linear analysis supplies
all of the information needed to determine existence of the heteroclinic connection.

7. Simulation. We first reproduce some results in the literature by numerical integration
of the governing equations (3.7). We time-integrate the equations of motion using the adaptive
Runge–Kutta method. Plots of the nutation angle, precessional velocity, and spin velocity of
the ball from Cohen’s pioneering work are shown in Figure 7.1. The spin velocity figure
illustrates conservation of angular momentum as the spin velocity changes direction when
the axis of symmetry becomes horizontal. Figure 7.2 shows plots of nutation angle, spin
velocity, and total energy as functions of time from Or’s seminal work. The plot of the total,
rotational, translational, and potential energies revealed that rotational, gravitational, and
dissipative effects dominate translational effects.

We will now discuss data from simulations which confirm the local and global stabil-
ity analysis in this paper. We consider tippe top inversion and tumbling for three cases:
Fr−1 = 0.1 (high Froude number), Fr−1 = 0.2 (moderate Froude number), and Fr−1 = 0.3
(low Froude number). Other parameters are valued at µ = 2.28, σ = 1.0, and ν = 0.5. Initial
conditions for inversion are Υx = Υy = 0.0, Υz = 1.0, l = m = 0.0676, n = 0.9954, x = y =
−0.0101, ẋ = 0.1010, and ẏ = 0.0309. Initial conditions for tumbling are Υx = Υy = 0.0,
Υz = (1.0 + e�)/(1.0 − e�), 1.0, l = m = 0.0676, n = ∓0.9954, x = y = −0.0101, ẋ = 0.1010,
and ẏ = 0.0309.
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Figure 7.1. From left: we show the nutation angle, the precessional velocity, and the spin rate as functions
of time from Cohen’s pioneering work [5].
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Figure 7.2. From left: we show the nutation angle, the spin velocity, and the total energy and its components
as functions of time from Or’s seminal work [11].
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Figure 7.3. Here we plot the growth factor of the eigenvalue of (4.3) with largest real part for both equilibria:
the cyan curve corresponds to the noninverted state (no = 1, Υz

o = 1), and the green curve corresponds to the
inverted state (no = −1, Υz

o = 1+e�

1−e�
) for varying Froude numbers (Fr−1 = 0.1, 0.2, 0.3). We use this stability

plot to select appropriate parameter values for simulation of inversion and tumbling.

The center-of-mass offset values e� are chosen so that the noninverted state is asymptot-
ically unstable and the inverted state is asymptotically stable (for inversion) and asymptoti-
cally unstable (for tumbling). We determine these values of e� using the linear-stability plot
in Figure 7.3. For low, moderate, and high Froude numbers, we pick e� = (−0.05,−0.2),
(−0.1,−0.3), (−0.2,−0.37), respectively. The first e� in the ordered pair corresponds to tippe
top inversion and the second to tumbling. Figures 7.4, 7.6, and 7.8 show trajectories of the
axis of symmetry on the unit ball for tippe top inversion. Figures 7.5, 7.7, and 7.9 show
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Figure 7.4. Here we show the heteroclinic connection between the asymptotically unstable and stable states
of the tippe top for Fr−1 = 0.1. Specifically, we show the trajectory of the axis of symmetry for a case when χ,
the largest invariant set, is the isolated, asymptotically stable equilibrium point. Clicking on the above image
displays the associated movie (60135 01.mpg).
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Figure 7.5. This figure shows the trajectory of the axis of symmetry for a case when χ are only limit cycles
defined by curves of constant energy, nutation angle, and angular momentum about the vertical for Fr−1 = 0.1.
The parameter values for this case yield asymptotically unstable inverted and noninverted states. Clicking on
the above image displays the associated movie (60135 02.mpg).

trajectories of the axis of symmetry on the unit ball for tippe top tumbling. Like Or, we
observe that when the Froude number is small (weak spin relative to gravity) the tippe top
takes longer to invert. As the Froude number increases, we observe that the tippe top flips
more rapidly.

Six animations that correspond to each case above and that illustrate the phenomenon
of tippe top inversion and tumbling can be found at http://www.acm.caltech.edu/˜nawaf/
tippetop.html. The animations show the evolution of the axis of symmetry and center of mass.
It is very clear from these animations that the tippe top rotates much more than it translates:
numerical evidence that translation of the mass center is not necessary to understand the
linearized behavior of the ball.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60135_01.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60135_01.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60135_02.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60135_02.mpg
http://www.acm.caltech.edu/~nawaf/tippetop.html
http://www.acm.caltech.edu/~nawaf/tippetop.html
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Figure 7.6. Here we show the heteroclinic connection between the asymptotically unstable and stable states
of the tippe top for Fr−1 = 0.2. Specifically, we show the trajectory of the axis of symmetry for a case when χ,
the largest invariant set, is the isolated, asymptotically stable equilibrium point. Clicking on the above image
displays the associated movie (60135 03.mpg).
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Figure 7.7. This figure shows the trajectory of the axis of symmetry for a case when χ are only limit cycles
defined by curves of constant energy, nutation angle, and angular momentum about the vertical for Fr−1 = 0.2.
The parameter values for this case yield asymptotically unstable inverted and noninverted states. Clicking on
the above image displays the associated movie (60135 04.mpg).
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Figure 7.8. Here we show the heteroclinic connection between the asymptotically unstable and stable states
of the tippe top for Fr−1 = 0.3. Specifically, we show the trajectory of the axis of symmetry for a case when χ,
the largest invariant set, is the isolated, asymptotically stable equilibrium point. Clicking on the above image
displays the associated movie (60135 05.mpg).

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60135_03.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60135_03.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60135_04.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60135_04.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60135_05.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60135_05.mpg
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Figure 7.9. This figure shows the trajectory of the axis of symmetry for a case when χ are only limit cycles
defined by curves of constant energy, nutation angle, and angular momentum about the vertical for Fr−1 = 0.3.
The parameter values for this case yield asymptotically unstable inverted and noninverted states. Clicking on
the above image displays the associated movie (60135 06.mpg).

8. Future directions. Possible future directions include investigating other axisymmetric
physical systems described by the modified Maxwell–Bloch equations (e.g., rotating beam
and levitron). For a discussion of the related, but different, rising egg, please see Bou-Rabee,
Marsden, and Romero [3].

Appendix.

Normal reaction force. An explicit expression for the surface normal reaction force fol-
lows:

fz =
µe�σ

1 − µ(e�)2n2

(
(Υ · k)Υz − (Υ · Υ)(1 − µ(e�)2)n− µ(e�)2n(Υ · k)2

)
+

µe�

1 − µ(e�)2n2
(1 + e�n)(k · ff ) +

µ(1 − µ(e�)2)

σ(1 − µ(e�)2n2)
Fr−1.

Governing equations in component form. The attitude equations are

l̇ = (−Υzm + Υyn)σ,
ṁ = (Υzl − Υxn)σ,
ṅ = (−Υyl + Υxm)σ.

The translational equations are

ẍ = −ν

µ
(ẋ− e� l̇ + (σ − 1)(Υ · k) − σΥy) =

σ

µ
fx,

ÿ = −ν

µ
(ẏ − e�ṁ− (σ − 1)(Υ · k) + σΥx) =

σ

µ
fy.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60135_06.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60135_06.mpg
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The rotational equations are

Υ̇x =
1

σ(1 − µ(e�)2)
(−µ(e�)2σ(Υ · k)l̇ − e�σfzm + σ(e�n + 1)fy − µ(e�)2σ(−mfx + lfy)l),

Υ̇y =
1

σ(1 − µ(e�)2)
(−µ(e�)2σ(Υ · k)ṁ + e�σfzl − σ(e�n + 1)fx − µ(e�)2σ(−mfx + lfy)m),

Υ̇z =
1

σ(1 − µ(e�)2)
(−µ(e�)2σ(Υ · k)ṅ− e�σ(−mfx + lfy)(1 + µe�n)).

Hurwitz coefficients. The values of the parameters in the polynomial

r0z
4 + r1z

3 + r2z
2 + r3z + a4 = 0,

where z = n+1
1−n , are

r0 = (1 + e�)2σ2(1 + Fr−1e�(1 + e�)2µ− σ − e�(e�µ + σ)),

r1 = −2(1 + e�)2σ(2Fr−1e�µ(−2 + (e�)2(2µ− σ) + σ) + σ(−1 + (e�)2µ + σ + 2e�σ)),

r2 = 2e�(−3(1 + e�)2σ3 + Fr−1µ(8(−1 + (e�)2µ)2

− 8(−1 + (e�)2)(−1 + (e�)2µ)σ + 3(−1 + (e�)2)2σ2)),

r3 = −2σ(2Fr−1(−1 + e�)2e�µ(−2 + (e�)2(2µ− σ) + σ) − (1 + e�)2σ(−1 + (e�)2µ + σ − 2e�σ)),

r4 = σ2(−1 + σ + e�(−2 + Fr−1µ + σ + e�(−1 + ((1 + e�)2

+ Fr−1(−2 + e�)(2 + (−2 + e�)e�))µ− σ − e�σ))).
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[2] A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden, and T. S. Ratiu, The Euler–Poincaré equations
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Breathing Pulses in an Excitatory Neural Network∗
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Abstract. In this paper we show how a local inhomogeneous input can stabilize a stationary-pulse solution
in an excitatory neural network. A subsequent reduction of the input amplitude can then induce
a Hopf instability of the stationary solution resulting in the formation of a breather. The breather
can itself undergo a secondary instability leading to the periodic emission of traveling waves. In one
dimension such waves consist of pairs of counterpropagating pulses, whereas in two dimensions the
waves are circular target patterns.

Key words. traveling waves, excitatory neural network, breathers, integro-differential equations
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1. Introduction. Various in vitro experimental studies have observed waves of excitation
propagating in cortical slices when stimulated appropriately [7, 12, 35]. The propagation ve-
locity of these synaptically generated waves is of the order 0.06m/s, which is much slower
than the typical speed of 0.5m/s found for action-potential propagation along axons. Travel-
ing waves of electrical activity have also been observed in vivo in the somatosensory cortex of
behaving rats [24], turtle and mollusk olfactory bulbs [18, 21], turtle cortex [27], and visuomo-
tor cortices in the cat [29]. Often these traveling waves occur during periods without sensory
stimulation, with the subsequent presentation of a stimulus inducing a switch to synchronous
oscillatory behavior [11]. This suggests that determining the conditions under which cortical
wave propagation can occur is important for understanding the normal processing of sensory
stimuli as well as more pathological forms of behavior such as epileptic seizures and migraines.

A number of theoretical studies have established the occurrence of traveling fronts [8, 15]
and traveling pulses [36, 1, 19, 25, 30] in one-dimensional excitatory neural networks modeled
in terms of nonlinear integro-differential equations. Such equations are infinite dimensional
dynamical systems and can be written in the general form [10]

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x|x′)f(u(x′, t))dx′ − βq(x, t) + I(x),

1

ε

∂q(x, t)

∂t
= −q(x, t) + u(x, t),(1.1)

where u(x, t) is a neural field that represents the local activity of a population of excitatory
neurons at position x ∈ R, I(x) is an external input current, f(u) denotes the output firing
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rate function, and w(x|x′) is the strength of connections from neurons at x′ to neurons at x.
The neural field q(x, t) represents some form of negative feedback mechanism such as spike
frequency adaptation or synaptic depression, with β, ε determining the relative strength and
rate of feedback. The nonlinear function f is typically taken to be a sigmoid function f(u) =
1/(1 + e−γ(u−κ)) with gain γ and threshold κ. It can be shown [25] that there is a direct
link between the above model and experimental studies of wave propagation in cortical slices
where synaptic inhibition is pharmacologically blocked [7, 12, 35]. Since there is strong vertical
coupling between cortical layers, it is possible to treat a thin cortical slice as an effective one-
dimensional medium. Analysis of the model provides valuable information regarding how
the speed of a traveling wave, which is relatively straightforward to measure experimentally,
depends on various features of the underlying cortical circuitry.

One of the common assumptions in the analysis of traveling wave solutions of (1.1) is that
the system is spatially homogeneous; that is, the external input I(x) is independent of x and
the synaptic weights depend only on the distance between presynaptic and postsynaptic cells,
w(x|x′) = w(x − x′). The existence of traveling waves can then be established for a class of
weight distributions w(x) that includes the exponential function e−|x|/d. The waves are in the
form of traveling fronts in the absence of any feedback [8], whereas traveling pulses tend to
occur when there is significant feedback [25]. The real cortex, however, is more realistically
modeled as an inhomogeneous medium. Inhomogeneities in the synaptic weight distribution w
may arise due to the patchy nature of long-range horizontal connections in superficial layers of
cortex. For example, in the primary visual cortex the horizontal connections tend to link cells
with similar stimulus feature preferences such as orientation and ocular dominance [23, 37, 3].
The variation of the feature preferences across the cortex is approximately periodic, and this
induces a corresponding periodic modulation in the horizontal connections. It has previously
been shown that an inhomogeneous periodic modulation in the strength of synaptic interac-
tions induced by long-range patchy connections can lead to wavefront propagation failure [4].
If the wavelength of the periodic inhomogeneity is much shorter than the characteristic wave-
length of the front, then averaging theory can be used to achieve an effective homogenization
of the neural medium along similar lines to that previously developed for a model of calcium
waves [16] and for a model of chemical waves in a bistable medium [17].

Another important source of spatial inhomogeneity is the external input I(x). Such inputs
would arise naturally from sensory stimuli in the case of the intact cortex and could be
introduced by external stimulation in the case of cortical slices. We have recently shown
how a monotonically varying input can induce wave propagation failure due to the pinning
of a stationary-front solution [5, 6]. More significantly, the stationary front can subsequently
destabilize via a Hopf bifurcation as the degree of input inhomogeneity is reduced, resulting
in an oscillatory back-and-forth pattern of wave propagation. Analogous breather -like front
solutions have previously been found in inhomogeneous reaction-diffusion systems [28, 31, 13,
14, 2, 26] and in numerical simulations of a realistic model of fertilization calcium waves [22].

In this paper we extend our work on fronts by analyzing the effects of input inhomogeneities
on the stability of stationary pulses, since these better reflect the types of neural activity
patterns observed in the cortex. In order to construct exact wave solutions, we follow previous
treatments [1, 25] and consider the high gain limit γ → ∞ of the sigmoid function f such
that f(u) = H(u− κ), where H is the Heaviside step function; that is, H(u) = 1 if u ≥ 0 and
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H(u) = 0 if u < 0. As a further simplification, we also assume that the weight distribution w
is homogeneous so that (1.1) reduces to the form

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− x′)H(u(x′, t) − κ)dx′ − βq(x, t) + I(x),

1

ε

∂q(x, t)

∂t
= −q(x, t) + u(x, t).(1.2)

We first construct explicit traveling wave solutions of (1.2) in the case of a constant input
(section 2). We then analyze the existence and stability of stationary pulses in the presence
of a unimodal input (section 3). We show that (i) a sufficiently large input inhomogeneity
can stabilize a stationary pulse and (ii) a subsequent reduction in the level of inhomogeneity
can induce a Hopf instability of the stationary pulse leading to the formation of a breather-
like oscillatory wave. Numerically we find that a secondary instability can occur beyond
which the breather periodically emits pairs of traveling pulses (section 4). Moreover, there is
mode-locking between the oscillation frequency of the breather and the rate of wave emission.
Analogous forms of oscillatory wave are also shown to occur in a more biophysically realistic
conductance-based model (section 4). Finally, we extend our analysis to radially symmetric
pulses in a two-dimensional network (section 5).

2. Traveling pulses in a homogeneous network. We begin by briefly outlining the con-
struction of traveling pulse solutions of (1.2) in the case of zero input I(x) = 0, following
the approach of Pinto and Ermentrout [25]. We assume that the weight distribution w(x) is
a positive even function of x, is a monotonically decreasing function of |x|, and satisfies the
normalization condition

∫∞
−∞w(x)dx <∞. For concreteness, w is taken to be an exponential

weight distribution

w(x) =
1

2d
e−|x|/d.(2.1)

The length scale is fixed by setting d = 1. Translation symmetry implies that we can consider
traveling pulse solutions of the form u(x, t) = U(x − ct) with U(±∞) = 0 and U(−a) =
U(0) = κ. Without loss of generality, we take c > 0. Substituting into (1.2) with I(x) = 0
and differentiating with respect to ξ lead to the second-order boundary value problem

− c2U ′′(ξ) + c[1 + ε]U ′(ξ) − ε[1 + β]U(ξ) = c[w(ξ + a) − w(ξ)] + ε[W (ξ + a) −W (ξ)],

U(0) = U(−a) = κ,

U(±∞) = 0,(2.2)

where W (ξ) =
∫ ξ
0 w(x)dx. Equation (2.2) is solved by considering separately the domains

ξ ≤ −a, −a ≤ ξ ≤ 0, and ξ ≥ 0 and matching the solutions at ξ = −a, 0. On the domain
ξ > 0, with w given by the exponential function (2.1),

− c2U ′′(ξ) + c(1 + ε)U ′(ξ) − ε(1 + β)U(ξ) =
c+ ε

2

(
e−ξ − e−(ξ+a)

)
,

U(0) = κ,

U(∞) = 0.(2.3)
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This has the solution U>(ξ) = κe−ξ provided that

κ =
(c+ ε)(1 − e−a)

2(c2 + c(1 + ε) + ε(1 + β))
≡ f(c, a).(2.4)

On the other two domains we have solutions consisting of complementary and particular parts:

U0(ξ) = A+eµ+ξ + A−eµ−ξ + U+eξ + U−e−ξ(2.5)

for −a < ξ < 0 and

U<(ξ) = A′
+eµ+ξ + A′

−eµ−ξ + U ′
+eξ(2.6)

for ξ < −a, where

µ± =
1

2c

[
1 + ε±

√
(1 + ε)2 − 4ε(1 + β)

]
.(2.7)

The coefficients U± and U ′
+ are obtained by direct substitution into the differential equation

for U , whereas the four coefficients A± and A′± are determined by matching solutions at
the boundaries. This leads to the five boundary conditions (i) U0(0) = κ, (ii) U0(−a) = κ,
(iii) U<(−a) = κ, (iv) U ′

0(0) = −κ, and (v) U ′
0(−a) = U ′

<(−a). Since there are five equations
in four unknowns, we generate a second constraint on the speed and size of the wave that is
of the form g(c, a) = κ. A full solution to the wave equation can then be found for just those
values of c, a which satisfy both f(c, a) = κ and g(c, a) = κ.

Pinto and Ermentrout [25] used a shooting method to show that for sufficiently slow
negative feedback (small ε) and large β there exist two pulse solutions, one narrow and slow
and the other wide and fast. Numerically, the fast solution is found to be stable [25]. It is
also possible to construct an explicit stationary-pulse solution by setting c = 0 in (2.2):

U(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−ξ

2(1 + β)

(
1 − e−a

)
for ξ > 0,

1

2(1 + β)

[
2 − eξ − e−(ξ+a)

]
for −a < ξ < 0,

eξ

2(1 + β)
(ea − 1) for ξ < −a

(2.8)

with

κ =
1

2(1 + β)

(
1 − e−a

)
.(2.9)

It turns out that stationary-pulse solutions are unstable in the case of homogeneous inputs
(see section 3), acting as separatrices between a zero activity state and a traveling wavefront.
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3. Stationary pulses in an inhomogeneous network. We now investigate the existence
and stability of one-dimensional stationary pulses in the presence of a unimodal input I(x)
which, for concreteness, is taken to be a Gaussian of width σ centered at the origin

I(x) = Ie−x2/2σ2
.(3.1)

As in section 2, we take w to be a positive even function of x and a monotonically decreasing
function of |x|, and we choose the normalization

∫∞
−∞w(x)dx = 1. For illustrative purposes,

the exponential weight distribution (2.1) will be used as a specific example.

3.1. Stationary-pulse existence. From symmetry arguments there exists a stationary-
pulse solution U(x) of (1.2) centered at x = 0, satisfying

U(x) > κ, x ∈ (−a, a); U(±a) = κ,

U(x) < κ, x ∈ (−∞,−a) ∪ (a,∞); U(±∞) = 0.

In particular,

(1 + β)U(x) =

∫ a

−a
w(x− x′)dx′ + I(x).(3.2)

The threshold κ and width a are related according to the self-consistency condition

κ̂ = [I(a) +W (2a)] ≡ G(a),(3.3)

where κ̂ = (1+β)κ and W (2a) =
∫ 2a
0 w(x)dx. The existence or otherwise of a stationary-pulse

solution can then be established by finding solutions to (3.3). Consider, for example, the ex-
ponential weight distribution (2.1) with d = 1 such that W (2a) = (1 − e−2a)/2. Furthermore,
suppose that the amplitude I of the Gaussian input (3.1) is treated as a bifurcation parameter
with the range σ kept fixed. (The effect of varying σ will be discussed below.) It is straight-
forward to show that there always exists a critical amplitude Ic, below which G(a) is strictly
monotonically increasing and above which G(a) has two stationary points. Consequently, as
κ̂ varies, we have the possibility of zero, one, two, or three stationary-pulse solutions. The
function G(a) is plotted in Figure 1 for a range of input amplitudes I, with horizontal lines
indicating different values of κ̂: intersection points determine the existence of stationary-pulse
solutions. Let κc denote the value of G(a) for which G′(a) has a double zero. Anticipating
the stability results of section 3.2, we obtain the following results. If κ̂ < κc, then there is
only a single pulse solution branch which is always unstable. On the other hand, if κ̂ > κc,
then there are two distinct bifurcation scenarios (see Figure 2), both of which can support a
stable pulse solution.

Scenario (i): κc < κ̂ < 1/2. There exist three solution branches with the lower (narrow
pulse) and upper (wide pulse) branches unstable. If ε > β, then the middle (intermediate
pulse) branch is stable along its entire length, annihilating in a saddle-node bifurcation at the
endpoints S, S′. On the other hand, if ε < β, then only a central portion of the middle branch
is stable due to the existence of two Hopf bifurcation points H,H ′. In the limit ε→ β we have
H → S and H ′ → S′ leading to some form of degenerate bifurcation. Note that as κ̂ → 1/2,
aS′ → ∞, thus causing the upper branch to collapse.
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Figure 1. Plot of G(a) in (3.3) as a function of pulse width a for an exponential weight distribution
and various values of input amplitude I with σ = 0.25. Horizontal lines (gray) represent different values of
κ̂ = κ(1 + β). Intersections of black and gray curves indicate the existence of stationary-pulse solutions.
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384 STEFANOS E. FOLIAS AND PAUL C. BRESSLOFF

Scenario (ii): κ̂ > 1/2. There exist two solution branches with the lower branch unstable
and the upper branch stable for sufficiently large I. If ε > β, then the upper branch is stable
along its entire length, annihilating in a saddle-node bifurcation at its endpoint S. On the
other hand, if ε < β, then the upper branch loses stability via a Hopf bifurcation at the
point H with H → S as ε→ β.

In both of the above scenarios there also exists a stable subthreshold solution U(x) =
I(x)/(1+β) when I < κ̂. This is coexistent with the lower suprathreshold pulse, and the pair
annihilate at I = κ̂. To address the effect of varying the input σ, consider the case where κ̂ < 1

2 .
As σ decreases, κc decreases, widening the κ̂-interval for which there exist three stationary-
pulse solutions: in particular, κc → 0 as σ → 0. Conversely, as σ increases, κc increases
toward 1

2 , thus decreasing the size of the three-pulse regime. For κ̂ > 1
2 , qualitatively, the

bifurcation scenario remains unchanged; the effect of increasing σ is simply to widen the pulse
width a. Finally, note that the qualitative behavior of the function G(a), which determines
the existence of stationary-pulse solutions, follows from the fact that both w(x) and I(x) are
monotonically decreasing functions of |x| and are symmetric about x = 0.

3.2. Stability analysis. The stability of a stationary pulse of width a is determined by
writing u(x, t) = U(x)+ϕ(x, t) and q(x, t) = Q(x)+ψ(x, t) with Q(x) = U(x) and expanding
(1.2) to first-order in (ϕ,ψ). This leads to the linear equation

∂ϕ(x, t)

∂t
= −ϕ(x, t) +

∫ ∞

−∞
w(x− x′)H ′(U(x′))ϕ(x′, t)dx′ − βψ(x, t),

1

ε

∂ψ(x, t)

∂t
= −ψ(x, t) + ϕ(x, t).(3.4)

We assume that ϕ,ψ ∈ L1(R). The spectrum of the associated linear operator is found by
taking ϕ(x, t) = eλtϕ(x) and ψ(x, t) = eλtψ(x) and using the identity

dH(U(x))

dU
=
δ(x− a)

|U ′(a)| +
δ(x+ a)

|U ′(−a)| ,(3.5)

where

U ′(x) =
1

1 + β

[
I ′(a) + w(x+ a) − w(x− a)

]
(3.6)

and U ′(−a) = −U ′(a) > 0. We then obtain the eigenvalue equation

(
λ+ 1 +

εβ

λ+ ε

)
ϕ(x) =

w(x+ a)

|U ′(−a)|ϕ(−a) +
w(x− a)

|U ′(a)| ϕ(a).(3.7)

Note that we have formally differentiated the Heaviside function, which is permissible since it
arises inside a convolution. One could also develop the linear stability analysis by considering
perturbations of the threshold crossing points along the lines of Amari [1]. Since we are
linearizing about a stationary rather than a traveling pulse, we can analyze the spectrum of
the linear operator without the recourse to Evans functions.
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There exist three types of solutions to (3.7). The first consists of functions ϕ(x) that

vanish at x = ±a and λ = λ
(0)
± with λ

(0)
± given by

λ
(0)
± =

−(1 + ε) ±
√

(1 + ε)2 − 4ε(1 + β)

2
.(3.8)

Note that λ
(0)
± belong to the essential spectrum since they have infinite multiplicity and that

they are always real and negative. Thus they do not contribute to instabilities. The second
consists of solutions of the form ϕ(x) = A[w(x+ a) − w(x− a)] with λ given by the roots of
the equation

λ+ 1 +
εβ

λ+ ε
=
w(0) − w(2a)

|U ′(a)| .(3.9)

It follows that λ = λ±, where

λ± =
−Λ ±

√
Λ2 − 4(1 − Γ)ε(1 + β)

2
(3.10)

with

Λ = 1 + ε− (1 + β)Γ, Γ =
w(0) − w(2a)

w(0) − w(2a) +D
,(3.11)

and D = |I ′(a)|. Finally, the third type of solution is ϕ(x) = A[w(x+ a) + w(x− a)] with λ
given by the roots of the equation

λ+ 1 +
εβ

λ+ ε
=
w(0) + w(2a)

|U ′(a)| .(3.12)

This yields λ = λ̂±, where

λ̂± =
−Λ̂ ±

√
Λ̂2 − 4(1 − Γ̂)ε(1 + β)

2
(3.13)

with

Λ̂ = 1 + ε− (1 + β)Γ̂, Γ̂ =
w(0) + w(2a)

w(0) − w(2a) +D
.(3.14)

A stationary-pulse solution will be stable provided that Reλ±,Re λ̂± < 0.
In the limiting case of a homogeneous input, for which D = 0, (3.10) and (3.13) become

λ− = 0, λ+ = β − ε,(3.15)

and

λ̂± =
−Λ̂0 ±

√
Λ̂2

0 + 4ε(1 + β)(Γ̂0 − 1)

2
(3.16)
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with

Λ̂0 = ε+ 1 − (1 + β)Γ̂0,(3.17)

Γ̂0 =
w(0) + w(2a)

w(0) − w(2a)
.(3.18)

Since Γ̂0 > 1 for finite pulse width a, it follows that λ̂+ > 0 for all parameter values, and,
hence, a stationary pulse (if it exists) is unstable in the case of the homogeneous network
described by (1.2). This result is consistent with Amari’s previous analysis [1]. He showed
that in order to stabilize a stationary pulse within a homogeneous network, it is necessary
to include some form of lateral inhibition. If a weak input inhomogeneity is subsequently
introduced into the network, then the peak of the activity profile moves to a local maximum
of the input where it is pinned.

For a nonzero Gaussian input, the gradient of a stationary pulse is given by D(a), where

D(a) =
aI
σ2

e−(a/σ)2/2.(3.19)

Using the gradient, we wish to determine the stability of the pulse in terms of the pulse
width a, with a = a(I) given by one of the solutions of (3.3) for fixed κ, β. Stability of the
stationary pulse corresponds to the following conditions:

Γ, Γ̂ < 1, Λ, Λ̂ > 0.

However, there are redundancies. First, by inspection of (3.11), the condition Γ < 1 is
automatically satisfied. The conditions Λ, Λ̂ > 0 are equivalent to

Γ, Γ̂ <
1 + ε

1 + β
,

and, since Γ < Γ̂, it follows that the condition on Γ is redundant. Hence, stability of the
stationary pulse reduces to the conditions

Γ̂ < 1, Γ̂ <
1 + ε

1 + β
,

in which the latter is redundant for ε > β, while the former is redundant for ε < β. These
conditions translate in terms of the gradient D as

ε > β : D(a) > 2w(2a) ≡ DSN(a),(3.20)

ε < β : D(a) > Dc(a),(3.21)

where

Dc(a) = 2w(2a) +

(
β − ε

1 + ε

)
(w(0) + w(2a)).(3.22)
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We now relate stability of the stationary pulse to the gradient D on different branches of the
existence curves shown in Figure 2 for w(x) given by the exponential distribution (2.1).

Stability for ε > β. Equation (3.3) implies that D(a) = 2w(2a) −G′(a). Thus, stability
condition (3.20) is satisfied when G′(a) < 0 and not satisfied when G′(a) > 0. Saddle-node
bifurcation points occur when G′(a) = 0, i.e., when D(a) passes through DSN, due to the
vanishing of a single real eigenvalue λ̂+. We can make the following conclusions about the
solution branches. In scenario (i) there are three solution branches. On the lower and upper
solution branches, G′(a) > 0, while G′(a) < 0 on the middle branch, indicating that the
former are always unstable and that the latter is stable for ε > β. In scenario (ii) there are
two solution branches: using the same arguments, the lower branch is always unstable while,
for ε > β, the upper branch is stable.

Hopf curves for ε < β. If ε < β, then a Hopf bifurcation can occur due to a complex
pair of eigenvalues λ̂± crossing into the right half complex plane. The Hopf bifurcation point
is determined by the condition Γ̂ = (1 + ε)/(1 + β) < 1, which is equivalent to the gradient
condition D(a) = Dc(a) > DSN(a). It follows that only branches determined to be stable for
ε > β can undergo a Hopf bifurcation when ε < β. Moreover, the Hopf bifurcation points
coincide with saddle-node bifurcation points precisely at the point β = ε, where there is a
pair of zero eigenvalues suggestive of a codimension 2 Takens–Bogdanov bifurcation. As ε
decreases from β, we expect the Hopf bifurcation point(s) to traverse these previously stable
branches from the saddle-node point(s). In order to illustrate this, we find a relationship for
D(a) which does not depend explicitly on I. Using (3.3), the input gradient D can be related
as

D(a) = |I ′(a)|
=

a

σ2
I(a)

=
a

σ2

(
κ(1 + β) −W (2a)

)
.(3.23)

We restrict a here depending on which branch of the existence curve we are considering. In
each of the scenarios discussed in section 3.1, we examine graphically the crossings of the
curves D(a), Dc(a): stability corresponds to D(a) > Dc(a) with Hopf points at D(a) = Dc(a).
Figure 3 illustrates the generic behavior in these scenarios. The left column presents the graphs
of D and of Dc for different values of ε spanning the interval [0, β]; intersection points indicate
Hopf bifurcation points. The right column graphs the corresponding Hopf curves in (a, ε)-
parameter space. Note that the upper branch in scenario (ii) is always stable for sufficiently
large input I, that is, for large pulse width a, for (3.3) implies that I(a) ∼ (1 + β)κ − 1/2,
and hence D ∼ [(1+β)κ−1/2](a/σ2) as a→ ∞. Since D̂c(a) → (β− ε)/(1+ ε) and e−2a → 0
as a → ∞, it follows that both stability conditions (3.20) and (3.21) are satisfied in this
limit. Varying σ does not affect the qualitative behavior of the Hopf bifurcation curves. Since
σ appears only in (3.23), the effect of increasing σ is to shrink the graph of D by a factor
1/σ2, causing the Hopf curves in the right column of Figure 3 to be stretched downward, thus
increasing the size of the stability region in the (a, ε)-plane.

4. Numerical results. In our numerical simulations we use a Runge–Kutta (RK4) scheme
with 4000–10000 spatial grid points and time step dt = 0.02, evaluating the integral term by
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Figure 3. Left column: Gradient curves for the two bifurcation scenarios shown in Figure 2: (i) κc < κ̂ < 1
2

and (ii) κ̂ > 1
2
. The thick solid curve shows the input gradient D(a) as a function of pulse width a. The lighter

curves show the critical gradient Dc(a) as function of a for ε = 0.0, 0.5, 1.0 and β = 1. For a given value of
ε < β, a stationary pulse of width a is stable provided that D(a) > Dc(a). A pulse loses stability via a Hopf
bifurcation at any intersection points D(a) = Dc(a). The Hopf bifurcation point(s) for ε = 0.5 are indicated by
H,H ′. In the limit ε → β, we have H,H ′ → S, S′. Right column: Corresponding Hopf stability curves in the
(a, ε)-plane.

quadrature. Boundary points freely evolve according to the scheme rather than by prescrip-
tion, and the size of the domain is chosen so that the stationary pulse is unaffected by the
boundaries.

4.1. Hopf bifurcation to a breather. Numerically solving the one-dimensional rate equa-
tion (1.2), we find that the Hopf instability of the upper solution branch in bifurcation sce-
nario (ii) induces a breather-like oscillatory pulse solution; see Figures 4 and 5. As the input
amplitude I is slowly reduced below IHB, the oscillations steadily grow until a new instability
point is reached. Interestingly, the breather persists over a range of inputs beyond this sec-
ondary instability, except that it now periodically emits pairs of traveling pulses, as illustrated
in Figure 6. In fact, such a solution is capable of persisting even when the input is below
threshold, that is, for I < (1+β)κ. Note that although the homogeneous network (I = 0) also
supports the propagation of traveling pulses, it does not support the existence of a breather
that can act as a source of these waves.

Our simulations suggest both supercritical and subcritical Hopf bifurcations can occur
for scenario (ii). The conclusion of supercriticality is based on the evidence that there is
continuous growth of the amplitude of the oscillations from the stationary solution as I is
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Figure 4. Breather-like solution arising from a Hopf instability of a stationary pulse due to a slow reduction
in the amplitude I of the Gaussian input inhomogeneity (3.1) for an exponential weight distribution. Here
I = 5.5 at t = 0 and I = 1.5 at t = 250. Other parameter values are ε = 0.03, β = 2.5, κ = 0.3, σ = 1.0. The
amplitude of the oscillation steadily grows until it undergoes a secondary instability at I ≈ 2, beyond which the
breather persists and periodically generates pairs of traveling pulses (only one of which is shown). The breather
itself disappears when I ≈ 1.

reduced through the predicted bifurcation point, and, moreover, that the frequency of the
oscillatory solution near the bifurcation point is approximately equal to the predicted Hopf
frequency

ωH = Im λ̂± =
√
ε(β − ε).

For example, the Hopf bifurcation of the stationary pulse for the parameter values given in
Figure 4 was determined numerically to be supercritical. Conversely, the Hopf bifurcation
in scenario (i) appears to be subcritical. Furthermore, the basin of attraction of the stable
pulse on the middle branch seems to be small, rendering it, as well as any potential breather,
difficult to approach. Hence, we did not investigate this case further.

As mentioned above, a secondary instability occurs at some I < IHB, whereupon traveling
pulses are emitted: this behavior appears to occur only for values of ε that support traveling
pulses in the homogeneous model (I = 0). As the point of secondary instability is approached,
the breather starts to exhibit behavior suggestive of pulse emission, except that the recovery
variable q increases rapidly enough to prevent the nascent waves from propagating. On the
other hand, beyond the point of instability, recovery is not fast enough to block pulse emis-
sion; we also find that the activity variable u always drops well below threshold after each
emission. Interestingly, for a range of input amplitudes we observe frequency-locking between
the oscillations of the breather and the rate at which pairs of pulses are emitted from the
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Figure 5. Snapshots of the oscillatory behavior of (a) the breathing pulse (I = 2.2) and (b) the pulse
emitter (I = 1.3) far beyond the bifurcation point. The graphs of U and Q are indicated in blue and gold,
respectively, with the horizontal axis representing space in units of d, the spatial extent associated with the
exponential weight function. Other parameters are β = 2.5, κ = 0.3, ε = 0.03. Clicking on the above images
displays the associated movies.
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Figure 6. Mode-locking in the transition from breather to pulse emitter. (a) 0:1 mode-locking for I = 2.3,
(b) 1:4 mode-locking for I = 2.1, (c) 1:2 mode-locking for I = 1.3.

breather. Two examples of n : m mode-locked solutions are shown in Figure 6, in which there
are n pairs of pulses emitted per m oscillation cycles of the central breather. As I is reduced
further, the only mode that is seen is 1:2, which itself ultimately vanishes, and the system is
attracted to the subthreshold solution.

4.2. Breathers in a biophysical model. Although the rate model is very useful as an an-
alytically tractable model of neural tissue, it is important to determine whether or not its pre-
dictions regarding spatio-temporal dynamics hold in more biophysically realistic conductance-
based models. For concreteness, we consider a version of the Traub model, in which there is
an additional slow potassium M-current that produces the effect of spike-rate adaptation [9].
We also discretize space by setting x = j∆x for j = 1, . . . , N and label neurons by the in-
dex j. The membrane potential of the jth neuron satisfies the following Hodgkin–Huxley-like

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60262_01.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60262_02.gif
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dynamics [9]:

C
dVj
dt

= −Iion(Vj ,m, n, h, q) − Isyn
j (t) + Ij

with synaptic current

Isyn
j (t) = gsyn

∑
k

w(|j − k|)sk(t)(V − Vsyn),

dsj
dt

= K(Vj(t))(1 − sj) −
1

τ
sj

and ionic currents

Iion(V,m, n, h) = gL(V − VL) + gKn
4(V − VK) + gNam

3h(V − VNa) + gqq(V − VK),

τp(V )
dp

dt
= p∞(V ) − p, p ∈ {m,n, h, q}.

The various biophysical model functions and the parameters used in the numerics are listed
in Appendix A. Note that we have also included an external Gaussian input current Ij in
order to investigate the behavior predicted by the rate model. Without this external input,
the biophysical model has previously been shown to support a traveling pulse, consisting of
either a single action-potential or a packet of action-potentials [9]. Since the firing rate model
describes the average activity, we interpret high activity as repetitive firing of neurons and low
activity as neurons that are subthreshold or quiescent. Hence, we expect that the application
of a strong unimodal input should generate a stationary pulse, i.e., a localized region of neurons
that are repetitively firing, surrounded by a region of neurons that are quiescent. Subsequent
reduction of the input should lead to oscillations in this localized region followed by emission
of action-potentials or packets of action-potentials.

One obvious difference between this biophysical model and the rate model discussed in
section 3 is that the gating variable associated with spike-rate adaptation evolves according
to more complicated nonlinear dynamics, while that of the firing rate model evolves according
to simple linear dynamics. Nevertheless, the behavior of the rate model appears to carry over
to the biophysical model, thus lending support to the ability of rate models to describe the
averaged behavior of spiking biophysical models. For large input amplitude I, the system
approaches a solution in which a region, localized about the input, is repetitively firing, while
the outer region is quiescent; moreover, the firing rate is maximal in the center of this region
and decreases toward the boundaries, which is analogous to the stationary pulse of the firing
rate model. As I is subsequently decreased, there is a transition to breather-like behavior:
periodically, packets or bursts of action-potentials begin to propagate from the active region
and, shortly thereafter, fail to propagate as the newly excited region recovers. As in the rate
model, further reduction of the amplitude I leads to a transition to a state in which packets of
persistent action-potentials are emitted. Two examples are shown in Figure 7. The first is in
a regime where the breather still dominates with the occasional emission of wave packets. The
second corresponds to regular pulse emission, in which periodic bursts of persistent action-
potentials are emitted, each followed by an interlude of subthreshold behavior in the vicinity
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Figure 7. Breathers in a biophysical model with an exponential weight distribution. (a) I = 75mA/cm2,
(b) I = 50mA/cm2, where I is the amplitude of the Gaussian input. Other parameter values are specified in
Appendix A.

of the input; this is similar to the 1:2 pulse emitter of the firing rate model shown in Figure 6.
We expect similar behavior to occur in other biophysical models that have some form of
sufficiently slow negative feedback.

5. Two-dimensional pulses. We now extend our analysis to derive conditions for the
existence and stability of radially symmetric stationary-pulse solutions of a two-dimensional
version of (1.2):

∂u(r, t)

∂t
= −u(r, t) +

∫
R2

w(|r − r′|)H(u(r′, t) − κ)dr′ − βq(r, t) + I(r),

1

ε

∂q(r, t)

∂t
= −q(r, t) + u(r, t),(5.1)

where r = (r, θ) and r′ = (r′, θ′). Both the input I(r) and the weight distribution w(r) are
taken to be positive monotonically decreasing functions in L1(R+). As in the one-dimensional
case, stationary-pulse solutions are unstable in a homogeneous excitatory network but can be
stabilized by the local input. Our analysis should be contrasted with a number of recent studies
of two-dimensional stationary pulses [32, 34, 20]. These latter studies consider homogeneous
networks with uniform external inputs and include both excitatory and inhibitory synaptic
coupling. Thus the inhibition is nonlocal rather than local as in our model.

5.1. Stationary-pulse existence. We begin by developing a formal representation of the
two-dimensional stationary-pulse solution for a general monotonically decreasing weight func-
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tion w. We then generate stationary-pulse existence curves for the specific case of an exponen-
tial weight function and analyze their dependence on the parameters of the system. Since we
cannot obtain a closed form for the solution in the case of the exponential weight distribution,
we also derive an explicit solution for the case of a modified Bessel weight function that ap-
proximates the exponential. For concreteness, we consider a Gaussian input I(r) = Ie−r2/2σ2

.
Pulse construction for a general synaptic weight function. A radially symmetric station-

ary-pulse solution of (5.1) is u = q = U(r) with U depending only upon the spatial variable r
such that

U(r) > κ, r ∈ (0, a); U(∞) = 0,

U(a) = κ; U(0) <∞,

U(r) < κ, r ∈ (a,∞).

Substituting into (5.1) gives

(1 + β)U(r) = M(a, r) + I(r),(5.2)

where

M(a, r) =

∫
R2

w(|r − r′|)H(U(r′) − κ)dr′

=

∫ 2π

0

∫ a

0
w(|r − r′|)r′dr′dθ.(5.3)

In order to calculate the double integral in (5.3) we use the Fourier transform, which for
radially symmetric functions reduces to a Hankel transform. To see this, consider the two-
dimensional Fourier transform of the radially symmetric weight function w, expressed in polar
coordinates,

w(r) =
1

2π

∫
R2

ei(r·k)w̆(k)dk

=
1

2π

∫ ∞

0

(∫ 2π

0
eirρ cos(θ−φ)w̆(ρ)dφ

)
ρdρ,

where w̆ denotes the Fourier transform of w and k = (ρ, φ). Using the integral representation

1

2π

∫ 2π

0
eirρ cos(θ−ϕ)dθ = J0(rρ),

where Jν(z) is the Bessel function of the first kind, we express w in terms of its Hankel
transform of order zero,

w(r) =

∫ ∞

0
w̆(ρ)J0(rρ)ρdρ,(5.4)

which, when substituted into (5.3), gives

M(a, r) =

∫ 2π

0

∫ a

0

(∫ ∞

0
w̆(ρ)J0(ρ|r − r′|)ρdρ

)
r′dr′dθ′.



394 STEFANOS E. FOLIAS AND PAUL C. BRESSLOFF

Switching the order of integration gives

M(a, r) =

∫ ∞

0
w̆(ρ)

(∫ 2π

0

∫ a

0
J0(ρ|r − r′|)r′dr′dθ′

)
ρdρ.(5.5)

In polar coordinates |r − r′| =
√
r2 + r′2 − 2rr′ cos(θ − θ′),

∫ 2π

0

∫ a

0
J0(ρ|r − r′|)r′dr′dθ′ =

∫ 2π

0

∫ a

0
J0

(
ρ

√
r2 + r′2 − 2rr′ cos(θ − θ′)

)
r′dr′dθ′

=
1

ρ2

∫ 2π

0

∫ aρ

0
J0

(√
R2 +R′2 − 2RR′ cos(θ′)

)
R′dR′dθ′,

where R = rρ and R′ = r′ρ. To separate variables, we use the addition theorem

J0

(√
R2 +R′2 − 2RR′ cos θ′

)
=

∞∑
m=0

εmJm(R)Jm(R′) cosmθ′,

where ε0 = 1 and εn = 2 for n ≥ 1. Since
∫ 2π
0 cosmθ′dθ′ = 0 for m ≥ 1, it follows that

∫ 2π

0

∫ a

0
J0(ρ|r − r′|)r′dr′dθ′ =

1

ρ2

∞∑
m=0

εmJm(R)

∫ aρ

0
Jm(R′)R′dR′

∫ 2π

0
cosmθ′dθ′

=
2π

ρ2
J0(R)

∫ aρ

0
J0(R

′)R′dR′

=
2πa

ρ
J0(rρ)J1(aρ).

Hence for general weight w, M(a, r) has the formal representation

M(a, r) = 2πa

∫ ∞

0
w̆(ρ)J0(rρ)J1(aρ)dρ.(5.6)

We now wish to show that for a general monotonically decreasing weight function w(r),
the function M(a, r) is necessarily a monotonically decreasing function of r. This will ensure
that the radially symmetric stationary-pulse solution (5.2) is also a monotonically decreasing
function of r in the case of a Gaussian input. Differentiating M with respect to r using (5.3)
yields

∂M

∂r
(a, r) =

∫ 2π

0

∫ a

0
w′(|r − r′|)

(
r − r′ cos(θ′)√

r2 + r′2 − 2rr′ cos(θ′)

)
r′dr′dθ′.(5.7)

By inspection of (5.7), ∂M
∂r (a, r) < 0 for r > a, since w′(z) < 0. To see that it is also negative

for r < a and, thus, monotonic, we instead consider the equivalent Hankel representation of
(5.6). Differentiation of M in this case yields

∂2M(a, r) ≡ ∂M

∂r
(a, r) = −2πa

∫ ∞

0
ρw̆(ρ)J1(rρ)J1(aρ)dρ(5.8)
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implying that

sgn
(
∂2M(a, r)

)
= sgn

(
∂2M(r, a)

)
.

Consequently ∂M
∂r (a, r) < 0 also for r < a. Hence U is monotonically decreasing in r for any

monotonic synaptic weight function w.
Exponential weight function. Consider the radially symmetric exponential weight func-

tion and its Hankel representation

w(r) =
1

2π
e−r, w̆(r) =

1

2π

1

(1 + ρ2)
3
2

.(5.9)

The condition for the existence of a stationary pulse is then given by

(1 + β)κ = M(a) + I(a) ≡ G(a),(5.10)

where

M(a) ≡M(a, a) = a

∫ ∞

0

1

(ρ2 + 1)
3
2

J0(aρ)J1(aρ)dρ.(5.11)

The function G(a) is plotted in Figure 8 for a range of input amplitudes I, with horizontal lines
indicating different values of κ̂; intersection points determine the existence of stationary pulse
solutions. Note that the integral expression on the right-hand side of (5.11) can be evaluated
explicitly in terms of finite sums of modified Bessel and Struve functions; see Appendix B.

0
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0.4

0.6

0.8

G(a)

1 2 3 4 5 6 7
width a

Figure 8. Plot of G(a) defined in (5.10) as a function of pulse width a for various values of input ampli-
tude I and for fixed input width σ = 1.

We proceed in the same fashion as in the one-dimensional case and generate stationary-
pulse existence curves for the exponential weight function. Qualitatively the catalogue of
bifurcation scenarios is similar, although there is now an additional case. In one dimension
we have G′(0) > 0 so that there are always at least two solution branches when κ̂ > 1/2. On
the other hand, in two dimensions we have G′(0) < 0 for sufficiently large input amplitude I
so that it is possible to find only one solution branch for large κ̂, that is, when κ̂ > κ0 for
some critical value κ0 > 1/2. Hence, there are three distinct cases as shown in Figure 9. The
effect of varying σ identically follows the one-dimensional case.
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Figure 9. Two-dimensional stationary-pulse existence curves for an exponential weight distribution:
(i) κc < κ̂ < 1

2
, (ii) 1

2
< κ̂ < κ0, and (iii) κ0 < κ̂. Other parameter values are β = 1, σ = 1.0. Black

indicates stability, whereas gray indicates instability of the stationary pulse. Saddle-node bifurcation points are
indicated by S, S′ and Hopf bifurcation points by H,H ′.

Modified Bessel weight function. In the case of the exponential weight function w we do
not have a closed form for the integral in (5.6). Here we consider a nearby problem where we
are able to construct the stationary-pulse solution explicitly. Consider the radially symmetric
weight function, normalized to unity,

w(r) =
2

3π

(
K0(r) −K0(2r)

)
,(5.12)

where Kν is the modified Bessel function of the second kind, whose Hankel transform is

w̆(r) =
2

3π

(
1

ρ2 + 1
− 1

ρ2 + 22

)
.(5.13)

The coefficient 2/3π is chosen so that there is a good fit with the exponential distribution as
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shown in Figure 10(a). Note that

w(0) =
1

2π

4 ln(2)

3
≈ 1

2π
(0.924), w(r) ∼ 1

3

(√
2e−r − e−2r

√
r

)
for large r.

Substituting (5.13) into (5.3), we can explicitly compute the resulting integral using Bessel
functions:

a

∫ ∞

0

1

ρ2 + s2
J0(rρ)J1(aρ)dρ =

{
a
s I1(sa)K0(sr) for r ≥ a,

1
s2

− a
s I0(sr)K1(sa) for r < a,

where Iν is the modified Bessel function of the first kind. Substituting into (5.3) shows that

M(a, r) = 2πa

∫ ∞

0
w̆(ρ)J0(rρ)J1(aρ)dρ

=
4

3
a

∫ ∞

0

(
1

ρ2 + 1
− 1

ρ2 + 22

)
J0(rρ)J1(aρ)dρ

=

{
4
3

(
aI1(a)K0(r) − a

2I1(2a)K0(2r)
)

for r ≥ a,

1 − 4
3

(
aI0(r)K1(a) + a

2I0(2r)K1(2a)
)

for r < a.

The condition for the existence of a stationary pulse of radius a is thus given by (5.10) with

M(a) =
4

3

(
aI1(a)K0(a) −

a

2
I1(2a)K0(2a)

)
.(5.14)

An example of an exact pulse solution is shown in Figure 10(b).
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Figure 10. (a) Synaptic weight functions, exponential weight in black and modified Bessel weight in gray.
(b) Stationary-pulse solution with half-width, a = 1, generated by the modified Bessel weight function with
κ = 0.4, β = 1, I = 1.

5.2. Stability analysis. We now analyze the evolution of small time-dependent perturba-
tions of the stationary-pulse solution through linear stability analysis. We investigate saddle-
node and Hopf bifurcations of the stationary pulse by relating the eigenvalues to the gradient
of the Gaussian input I. The behavior of the system near and beyond the Hopf bifurcation is
then studied numerically as in one dimension.
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Spectral analysis of the linearized operator. Equation (5.1) is linearized about the
stationary solution (U,Q) by introducing the time-dependent perturbations

u(r, t) = U(r) + ϕ(r, t),

q(r, t) = Q(r) + ψ(r, t)

with Q = U and expanding to first-order in ϕ,ψ. This leads to the linearized system of
equations

∂ϕ

∂t
(r, t) = −ϕ(r, t) +

∫
R2

w(|r − r′|)H ′(U(r′) − κ)ϕ(r′, t)dr′ − βψ(r, t),

1

ε

∂ψ

∂t
(r, t) = −ψ(r, t) + ϕ(r, t).

We separate variables

ϕ(r, t) = ϕ(r)eλt,

ψ(r, t) = ψ(r)eλt

to obtain the system

λϕ(r) = −ϕ(r) +

∫
R2

w(|r − r′|)H ′(U(r′) − κ)ϕ(r′)dr′ − βψ(r),

λ

ε
ψ(r) = −ψ(r) + ϕ(r).(5.15)

Solving (5.15), we find(
λ+ 1 +

βε

λ+ ε

)
ϕ(r) =

∫
R2

w(|r − r′|)H ′(U(r′) − κ)ϕ(r′)dr′.(5.16)

Introducing polar coordinates r = (r, θ) and using the result

H ′(U(r) − κ) = δ(U(r) − κ) =
δ(r − a)

|U ′(a)| ,

we obtain (
λ+ 1 +

εβ

λ+ ε

)
ϕ(r) =

∫ 2π

0

∫ ∞

0
w(|r − r′|)δ(r

′ − a)

|U ′(a)| ϕ(r′)r′dr′dθ′

=
a

|U ′(a)|

∫ 2π

0
w(|r − a′|)ϕ(a, θ′)dθ′,(5.17)

where a′ = (a, θ′)
We consider the following two cases. (i) The function ϕ satisfies the condition∫ 2π

0
w(|r − a′|)ϕ(a, θ′)dθ′ = 0
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for all r. The integral equation reduces to

λ+ 1 +
βε

λ+ ε
= 0,

yielding the eigenvalues

λ
(0)
± =

−(1 + ε) ±
√

(1 + ε)2 − 4ε(1 + β)

2
.

This is part of the essential spectrum and is identical to the one-dimensional case: it is negative
and does not cause instability. (ii) ϕ does not satisfy the above condition, and we must study
the solutions of the integral equation

µϕ(r, θ) = a

∫ 2π

0
W(a, r; θ − θ′)ϕ(a, θ′)dθ′,

where

λ+ 1 +
εβ

λ+ ε
=

µ

|U ′(a)|(5.18)

and W(a, r;φ) = w
(√

r2 + a2 − 2ra cosφ
)
. This equation demonstrates that ϕ(r, θ) is deter-

mined completely by its values ϕ(a, θ) on the restricted domain r = a. Hence we need only
consider r = a, yielding the integral equation

µϕ(a, θ) = a

∫ 2π

0
W(a, a;φ)ϕ(a, θ − φ)dφ.(5.19)

The solutions of this equation are exponential functions eγθ, where γ satisfies

a

∫ 2π

0
W(a, a;φ)e−γφdφ = µ.

By the requirement that ϕ is 2π-periodic in θ, it follows that γ = in, where n ∈ Z. Thus the
integral operator with kernel W has a discrete spectrum given by

µn = a

∫ 2π

0
W(a, a;φ)e−inπφdφ

= a

∫ 2π

0
w
(√

a2 + a2 − 2a2 cosφ
)
e−inφdφ

= 2a

∫ π

0
w (2a sin(φ)) e−2inφdφ(5.20)

(after rescaling φ). Note that µn is real since

Im{µn(a)} = −2a

∫ π

0
w(2a sin(φ)) sin(2nφ)dφ = 0;
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i.e., the integrand is odd-symmetric about π/2. Hence,

µn(a) = Re{µn(a)} = 2a

∫ π

0
w(2a sin(φ)) cos(2nφ)dφ

with the integrand even-symmetric about π
2 . Since w(r) is a positive function of r, it follows

that

µn(a) ≤ 2a

∫ π

0
w(2a sin(φ)) |cos(2nφ)|dφ ≤ 2a

∫ π

0
w(2a sin(φ))dφ = µ0(a).

Given the set of solutions {µn(a), n ≥ 0} for a pulse of width a (assuming that it exists),
we obtain from (5.18) the following pairs of eigenvalues:

λ±n =
1

2

(
−Λn ±

√
Λ2
n − 4ε(1 + β)(1 − Γn)

)
,(5.21)

where

Λn = 1 + ε− Γn(1 + β), Γn =
µn(a)

|U ′(a)|(1 + β)
.(5.22)

Stability of the two-dimensional pulse requires that

Λn > 0, Γn < 1 for all n ≥ 0.

This reduces to the stability conditions

ε > β : Γn < 1 for all n ≥ 0,

ε < β : Γn <
1 + ε

1 + β
for all n ≥ 0.(5.23)

Next we rewrite the stability conditions in terms of the gradient of the input D(a) = |I ′(a)|.
From (5.2), (5.8), and (5.9) we have

U ′(a) =
1

1 + β

(
−Mr(a) + I ′(a)

)
,

where

Mr(a) ≡ − ∂

∂r
M(a, r)

∣∣∣∣
r=a

= 2πa

∫ ∞

0
ρw̆(ρ)J1(aρ)J1(aρ)dρ.(5.24)

We have already established in section 5.1 that Mr(a) > 0. Hence,

∣∣U ′(a)
∣∣ = ( 1

1 + β

) ∣∣−Mr(a) + I ′(a)
∣∣

=

(
1

1 + β

)(
Mr(a) +D(a)

)
.(5.25)
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The stability conditions (5.23) thus become

ε > β : D(a) > µn(a) −Mr(a) for all n ≥ 0,

ε < β : D(a) >

(
1 + β

1 + ε

)
µn(a) −Mr(a) for all n ≥ 0.

Finally, using the fact that µ0(a) ≥ µn(a) for all n ≥ 1 and Mr(a) > 0, we obtain the reduced
stability conditions

ε > β : D(a) > µ0(a) −Mr(a) ≡ DSN(a),(5.26)

ε < β : D(a) >

(
1 + β

1 + ε

)
µ0(a) −Mr(a) ≡ Dc(a).(5.27)

We now relate stability of the stationary pulse to the gradient D on different branches of the
existence curves shown in Figure 9 for w(r) given by the exponential distribution (5.9). In
this case the integral expressions for µ0(a), Mr(a), and M(a) can be evaluated explicitly in
terms of finite sums of modified Bessel and Struve functions; see Appendix B.

Stability for ε > β. Equation (5.10) implies that G′(a) = M′(a) + I ′(a). Since M(a) =
M(a, a), it follows from (5.3), (5.20), and (5.24) that

M′(a) = ∂1M(a, a) + ∂2M(a, a)

= µ0(a) −Mr(a),(5.28)

and hence

G′(a) = µ0(a) −Mr(a) −D(a).(5.29)

We now see that the stability condition (5.26) is satisfied when G′(a) < 0 and is not satisfied
when G′(a) > 0. Saddle-node bifurcations occur when G′(a), that is, when D(a) passes
through DSN(a) = µ0(a) − Mr(a). This establishes the stability of the middle branch in
case (i) and the upper branch of cases (ii) and (iii) shown in the left-hand column of Figure 9.

Hopf curves for ε < β. A Hopf bifurcation occurs when Λ0 = 0 and Γ0 < 1, or
equivalently, when D(a) = Dc(a). Since µ0(a) > 0 it follows from (5.26) and (5.27) that
Dc(a) > DSN(a), and hence Hopf bifurcations occur only on the branches that are stable
when ε > β. As in the one-dimensional case, the Hopf and saddle-node points coincide when
ε = β, and so we expect, as ε decreases from β, the Hopf bifurcation point(s) to traverse these
previously stable branches from the saddle-node point(s). Again, in order to show this more
explicitly, we find a relationship for D(a) that is independent of the input amplitude I. Using
(5.10), the input gradient D can be related as

D(a) = |I ′(a)|
=

a

σ2
I(a)

=
a

σ2
(κ(1 + β) − M(a)) .(5.30)

For each of the cases discussed in section 3.1, we examine graphically the crossings of the
curves D(a), Dc(a): stability corresponds to D(a) > Dc(a) with Hopf points at D(a) = Dc(a).
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Figure 11. Left column: Gradient curves for the various bifurcation scenarios shown in Figure 9: (i) κc <
κ̂ < 1

2
, (ii) 1

2
< κ̂ < κ0, and (iii) κ0 < κ̂. The thick solid curve shows the input gradient D(a) as a function

of pulse width a. The lighter curves show the critical gradient Dc(a) as function of a for ε = 0.0, 0.5, 1.0 and
β = 1. For a given value of ε < β, a stationary pulse of width a is stable provided that D(a) > Dc(a). A pulse
loses stability via a Hopf bifurcation at the intersection points D(a) = Dc(a). The Hopf bifurcation points for
ε = 0.5 are indicated by H; in the first scenario there are no Hopf points at this particular value of ε. In the
limit ε→ β, we have H → S. Right column: Corresponding Hopf stability curves in the (a, ε)-plane.

The results are displayed in Figure 11. Note that as in one dimension, sufficiently wide pulse
solutions are always stable, as can be established by studying the asymptotic behavior of D(a)
and Dc(a); see Appendix B.

Two-dimensional breathers. Analogous to the one-dimensional case, we find numerically
that the upper branch in scenarios (ii) and (iii) can undergo a supercritical Hopf bifurcation
leading to the formation of a two-dimensional breather. An example is shown in Figure 12,
which was obtained using a Runge–Kutta scheme on a 300×300 grid with a time step of 0.02.
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0

 0.4

 0.8

Figure 12. Two-dimensional breather with β = 4, κ = 0.25, ε = 0.1, I = 0.26. Clicking on the above image
displays the associated movie.

0

 0.4

 0.8

Figure 13. Two-dimensional pulse emitter with β = 4, κ = 0.2, ε = 0.1, I = 0.2. Clicking on the above
image displays the associated movie.

Moreover, the breather can undergo a secondary instability, resulting in the periodic emission
of circular target waves; see Figure 13.

6. Discussion. In this paper we have shown that a localized external input can induce
oscillatory behavior in an excitatory neural network in the form of breathing pulses and that
these breathers can subsequently act as sources of wave emission. Interestingly, following some
initial excitation, breathers can be supported by subthreshold inputs. From a mathematical
perspective, there are a number of directions for future work. First, one could try to develop
some form of weakly nonlinear analysis in order to determine analytically whether or not
the Hopf instability of the stationary pulse is supercritical or subcritical. It would also be
interesting to explore more fully the behavior around the degenerate bifurcation point ε = β,
where there exists a pair of zero eigenvalues of the associated linear operator that is suggestive
of a Takens–Bogdanov bifurcation. The latter would predict that for certain parameter values
around the degenerate bifurcation point, the periodic orbit arising from the Hopf bifurcation
could be annihilated in a homoclinic bifurcation associated with another unstable stationary
pulse. This could provide one mechanism for the disappearance of the breather as the ampli-
tude of the external input is reduced. (A pulse-emitter does not occur when ε ≈ β.) Another
extension is to consider a smooth nonlinear output function f(u) = 1/(1 + e−γ(u−κ)), which
reduces to the Heaviside function in the high gain limit γ → ∞. In the case of sufficiently
slow adaptation (small ε), it might be possible to use singular perturbation methods along
the lines of Pinto and Ermentrout [25], who established the existence of traveling pulses in a
homogeneous network with smooth f . Finally, it would be interesting to extend our analysis
to the case of traveling waves locking to a moving stimulus; the associated stability analysis

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60262_03.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60262_04.gif
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would then involve Evans functions. From an experimental perspective, our results could be
tested by introducing an inhomogeneous current into a cortical slice and searching for these
oscillations. One potential difficulty of such an experiment is that persistent currents tend to
burn out neurons. An alternative approach might be to use some form of pharmacological
manipulation of NMDA receptors, for example, or an application of an external electric field
that modifies the effective threshold of the neurons. Note that the usual method for inducing
traveling waves in cortical slices (and in corresponding computational models) is to intro-
duce short-lived current injections; once the wave is formed it propagates in a homogeneous
medium.

Appendix A. We used the following biophysical model functions and parameter values in
section 4.2:

Vsyn = −45 mV, gsyn = 20 mS/cm2,

VK = −100 mV, gK = 80 mS/cm2,

VNa = 50 mV, gNa = 100 mS/cm2,

VL = −67 mV, gL = 0.2 mS/cm2,

F = 1µF/cm2, gq = 3 mS/cm2,

αm(v) = 0.32(54 + v)/(1 − exp(−(v + 54)/4)),

βm(v) = 0.28(v + 27)/(exp((v + 27)/5) − 1),

αh(v) = 0.128 exp(−(50 + v)/18),

βh(v) = 4/(1 + exp(−(v + 27)/5)),

αn(v) = 0.032(v + 52)/(1 − exp(−(v + 52)/5)),

βn(v) = 0.5 exp(−(57 + v)/40),

where

p∞(v) =
αp(v)

αp(v) + βp(v)
, τp(v) =

1

αp(v) + βp(v)
, p ∈ {m,n, h},

q∞(v) =
1

1 + e(−(v+35)/20)
, τq(v) =

1000

3.3e(v+35)/20 + e−(v+35)/20
,

τ = 1, K(V ) =
1

1 + e−(V +50)
.

Appendix B. In this appendix we evaluate the gradient functions D(a) and Dc(a) of (5.30)
and (5.27) for the exponential weight distribution (5.9). We then determine their asymptotic
behavior for large pulse width a, thus establishing the stability of stationary pulses in the
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limit a→ ∞. First, from (5.20), we can write

µ0(a) =
a

π

∫ π

0
exp(−2a sinφ)dφ

=
2a

π

∫ π
2

0
exp(−2a cosφ)dφ

= a

(
2

π

∫ π
2

0
cosh(−2a cosφ)dφ

)
− a

(
2

π

∫ π
2

0
sinh(−2a cosφ)dφ

)
(B.1)

= a
(
I0(2a) − L0(2a)

)
,(B.2)

where Iν is a modified Bessel function and Lν denotes a modified Struve function [33]. Second,
from (5.24),

Mr(a) = a

∫ ∞

0

ρ

(ρ2 + 1)
3
2

J1(aρ)J1(aρ)

= a
(
L0(2a) − I0(2a)

)
−
(
L1(2a) − I1(2a)

)
,(B.3)

where

I1(2a) =
4a

π

∫ π/2

0
cosh(2a cos θ) sin2 θdθ

and

L1(2a) =
4a

π

∫ π/2

0
sinh(2a cos θ) sin2 θdθ.

Equation (5.27) then implies that

Dc(a) =
β + ε+ 2

1 + ε
a
(
I0(2a) − L0(2a)

)
−
(
I1(2a) − L1(2a)

)
.(B.4)

Using the asymptotic expansions for large a,

I0(2a) − L0(2a) ∼
1

π

(
1

a
+

1

4a2

)
,

I1(2a) − L1(2a) ∼
2

π

(
1 − 1

4a2

)
,(B.5)

we deduce that

Dc(a) ∼
1

π

(
β − ε

1 + ε

)
+

(
1

4

(
β − ε

1 + ε

)
+ 1

)
1

πa2
.(B.6)

Similarly, from (5.11) we have

M(a) = a

∫ ∞

0

1

(ρ2 + 1)
3
2

J0(aρ)J1(aρ)dρ

=

(
1

2
+ aI1(2a) −

1

2
I0(2a)

)
−
(

2a

π
+ aL1(2a) −

1

2
L0(2a)

)
.(B.7)
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Equation (5.30) and the asymptotic expansions (B.5) then imply that

D(a) ∼ a

σ2

(
(1 + β)κ− 1

2

)
+

1

πσ2
− 1

8πa2
.(B.8)

Finally, combining (B.6) and (B.8),

D(a) −Dc(a) ∼
a

σ2

(
(1 + β)κ− 1

2

)
+

1

πσ2
−
(
β − ε

1 + ε

)
+ O(a−2).(B.9)

From this we conclude that for all σ > 0, a stationary-pulse solution (if it exists) is stable in
the limit a→ ∞, provided that κ̂ > 1/2.
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Abstract. For slowly evolving, discrete-time–dependent systems of difference equations (iterated maps), we
believe that the simplest means of demonstrating the validity of the averaging method at first order
is by way of a lemma that we call the Besjes inequality. In this paper, we develop the Besjes
inequality for identity maps with perturbations that are (i) at low-order resonance (periodic with
short period) and (ii) far from low-order resonance in discrete time. We use these inequalities to
prove corresponding first-order averaging principles, together with a principle of adiabatic invariance
on extended timescales, and we generalize and apply these mathematical results to model problems
in accelerator beam dynamics and to the Hénon map.

Key words. averaging method, averaging principle, difference equations, iterated maps, small divisors, adia-
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1. Introduction. In broadest terms, the method of averaging (or “averaging principle”)
may be described as follows: to approximate the evolution of a system with motions occurring
on both fast and slow timescales, one uses a simpler system (often loosely called a “normal
form”) obtained by somehow averaging over the fast motion of the original system. In the
context of difference equations (or “iterated maps”), the most elementary situation to which
the method applies occurs in periodic systems of the form

xn+1 = xn + εf(xn, n),(1.1)

where xn ∈ U ⊆ Rd, n ∈ N, ε > 0 is a small parameter, and f : U × N → Rd is a bounded,
locally x-Lipschitz, discrete-time–dependent function of period p in n. Solutions of system
(1.1) are approximated by solutions of the associated averaged system

yn+1 = yn + εf̂(yn),(1.2)

where the autonomous function f̂ : U → Rd (the average of f) is given by f̂(y) := (1/p)
∑p−1

n=0

f(y, n). In this context the averaging principle asserts that solutions xn of (1.1) and yn of (1.2)
that start at the same initial condition remain O(ε)-close on a discrete timescale of O(1/ε). It
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is also often useful to use the continuous-time solutions of the corresponding averaged ODE

dy

dt
= εf̂(y)(1.3)

to approximate the discrete-time solutions of (1.2) and hence also those of (1.1), so that
we obtain the two approximation relations xn = yn + O(ε) and xn = y(n) + O(ε) for 0 ≤
n ≤ O(1/ε) (note that yn and y(n) have different meanings). A more precise formulation
appears below in Theorem 1, followed by a very elementary proof that makes no use of the
usual transformation that appears in textbooks. (It is not always recognized that first-order
averaging may be justified without a near-identity transformation of variables.)

Equation (1.1) is a special case of a more general problem on which we focus in this paper.
Let ν ∈ R, U ⊆ Rd, and f : U × R → Rd be periodic with period 1 in its second argument.
We then consider the system

xn+1 = xn + εf(xn, nν).(1.4)

The analysis of this problem is similar to the analysis of the flow problem dx/dt = εf(x, t)
when f is quasiperiodic in t with two base frequencies, since small divisors enter both problems
in the same way. Clearly (1.4) reduces to (1.1) when ν = q/p is rational. For ν irrational,
we know from Weyl’s equidistribution theorem that the average of f(x, nν) over n exists and
equals f(x) :=

∫ 1
0 f(x, t) dt. It is therefore natural to ask for what values of ν the solutions of

(1.4) can be approximated by solutions of the two systems

yn+1 = yn + εf(yn)(1.5)

and

dy

dt
= εf(y).(1.6)

In answering this question, it also seems natural (from the mathematical viewpoint) to intro-
duce Diophantine conditions on ν, but these conditions in their usual form are problematic
in applications, and not wholly necessary, as we shall see. In fact, we present approximation
theorems that are both theoretically satisfying and suited to applications by weakening the
usual small divisor conditions on ν (in which ν satisfies infinitely many Diophantine con-
ditions), requiring instead only finitely many conditions at appropriately low order. These
conditions exclude ν from zones centered on low-order rationals, and in this “far-from-low-
order-resonance case” (where ν satisfies only “truncated Diophantine conditions” and is not
necessarily irrational), we again find that xn = yn + O(ε) = y(n) + O(ε) for 0 ≤ n ≤ O(1/ε)
(see Theorem 2 below). Under the additional hypothesis that the average of the perturbation
vanishes, we are able to show adiabatic invariance of solutions of system (1.4) on extended
timescales up to O(1/ε2) (see Theorem 3). We thus have results both for low-order resonant
(or rational) ν and for ν far from low-order resonance.

Finally, a simple procedure permits us to explore O(ε) neighborhoods of low-order reso-
nances ν = q/p : we set ν = q/p+ εa (where the displacement parameter a ∈ R) and rewrite
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(1.4) as the system (
xn+1

τn+1

)
=

(
xn + ε f(xn,

q
pn+ τn)

τn + εa

)
.(1.7)

This is in the form of (1.1) with xn replaced by (xn, τn)T. Writing f̂(x, τ) = 1/p
∑p−1

n=0 f(x,
nq/p+ τ), the averaged problem reduces to(

yn+1

τn+1

)
=

(
yn + ε f̂(yn, τn)

τn + εa

)
,(1.8)

and we recapture the relations xn = yn +O(ε) = y(n) +O(ε) for 0 ≤ n ≤ O(1/ε), where y(t)
is the solution of the system

d

dt

(
y
τ

)
= ε

(
f̂(y, τ)
a

)
,(1.9)

which is equivalent to the nonautonomous system dy/dt = εf̂(y, εat) ; see Proposition C
below. This method of exploring the neighborhoods of resonances generalizes to the case
where ν (hence also a) is a vector (see [EDSV]); on the other hand, in higher dimensions it is
also possible to use “resonant blocks” à la Nekhoroshev theory, as we do in [DE].

Initially, we state Theorems 1, 2, and 3 under the hypothesis that the perturbation εf
has compact support in its x-domain, which is assumed to be all of Rd; this avoids a priori
restrictions on ε and permits clear proofs. To obtain results better suited to applications, we
then give propositions that extend our theorems to more general perturbations on more general
domains, and also to more general Diophantine conditions in which the zones mentioned above
are allowed to depend on ε; this in turn allows ν to come within O(ελ) of low-order rationals,
but with loss of accuracy in the approximation (see Propositions A and B below). Using the
generalized versions of our theorems (provided by Propositions A, B, and C), we obtain an
essentially complete description of solutions of system (1.4) on O(1/ε) timescales for various
values of ν. (However, there may be thin gaps at the boundaries between the ν for which the
resonant and nonresonant normal forms (1.5), (1.6) and (1.8), (1.9) are valid; cf. Remark 2.7
below.)

From the viewpoint of applied mathematics, perhaps the most interesting aspect of our
results is that Theorems 2 and 3 have physically realistic nonresonance conditions in their
hypotheses yet provide approximations valid on full O(1/ε) time intervals. In more general
situations, such nice hypotheses lead to passage through resonance and thus to approximations
that are valid only on somewhat shorter time intervals (cf. [ABG]); but we have identified an
important class of simpler problems (arising, e.g., in accelerator beam dynamics) in which
both the realistic hypotheses and the full O(1/ε) validity times can coexist.

More generally, averaging principles for maps are not new; results in this direction have
been available since the 1960’s (cf., for example, [Bel],[Dr1],[Dr2]). However, a detailed theory
of (1.4) suitable for applications appears to be missing from the literature, and we proceed
in this paper to fill that gap. We do not, however, illustrate the full range of applicability
of our theorems; instead we discuss an important class of problems which motivated this
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investigation, namely, the so-called kick-rotate models from accelerator dynamics, represented
by wn+1 = M

(
wn + εK(wn)

)
, where M is a stable linear symplectic map. The kick-rotate

model takes the form of (1.4) under the transformation wn = Mnxn. We emphasize this
model’s application to the so-called weak-strong beam-beam (WSBB) interaction (see section
3.1 below), but kick-rotate models also apply to other localized perturbations in accelerators.

We stress that our discussion below in section 3 is the first mathematically rigorous treat-
ment of this important class of models in the sense of asymptotics. There are of course many
related discussions in the literature; beam dynamics treatments often begin with a smooth
Hamiltonian formulation and apply canonical perturbation theory (see, e.g., [Ruth]), but with-
out rigorous error analysis. Although perturbation theory is often viewed as inappropriate
for treating resonances (cf. section 7 of [Ruth]), the paper [ES] examines both the nonreso-
nant and resonant cases for flows using a perturbation theory complete with error bounds.
However, the treatment of the small divisor problem there was crude; improvements along
the lines of the present paper have since been developed and preliminary results are presented
in [DE] and [DEV2]. Delta function perturbations are also often introduced into the (other-
wise) smooth Hamiltonian framework, negating the possibility of error analysis and making
the validity of approximations hard to assess. (The paper [CBW] gives a nice introduction to
the beam-beam interaction and uses this Hamiltonian/delta function approach.) Formulating
such problems as maps and rigorously analyzing the effect of delta function perturbations
were important motivations for developing the methods in the present paper.

A notable exception to the smooth Hamiltonian treatment of beam dynamics is the work
on maps using Lie operators, a good discussion of which may be found in [Fo], where the
author carries this approach quite far—to realistic machine models—but without focusing on
rigorous asymptotics. We are also aware of a research group working on highly mathematical
perturbation treatments of beam dynamics in the context of maps [BGST], but our work here
is quite distinct from theirs. Our perturbation parameter is the size of the “kick” (cf. section
3.1), whereas they study the long time stability of the origin (which is assumed to be a linearly
stable elliptic fixed point), using the distance from the origin as a perturbation parameter.
Futhermore, their analysis is quite complex, as they pursue Nekhoroshev-type results using
many successive coordinate transformations which give rise to restrictive hypotheses that may
be difficult to verify in practice. In our approach, resonances are treated in a simple yet rigor-
ous way, and we obtain a natural partition of “tune space” into regions with distinct resonance
properties. We believe this is an important new feature, both conceptually and practically.
Of course, our method gives approximations to leading order only using no transformations;
this accounts for much of its radical simplicity. It also allows us to use simple hypotheses
and should eventually permit meaningful comparison of the kick-rotate approximation with
numerical experiments. We have preliminary results on the size of the kicks (i.e., the values
of ε) for which our approximations are valid, but we believe that this should be presented
in the more realistic two-degree-of-freedom case (where ν is a vector). A progress report on
this work appears in [EDSV]. We believe that our treatment provides the starting point for
a simple effective means of studying mathematical models of beam dynamics rigorously and
that its development will complement previous theoretical and mathematical work.

The remainder of this paper is organized as follows. In section 2 we present the details
of our averaging results described informally above. In section 3 we apply the averaging
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principles to model problems in accelerator beam dynamics, showing that solutions of a class
of “kick-rotate” models are well approximated by solutions of the corresponding averaged
models. We also apply the adiabatic invariance principle to the Hénon map (often used to
model sextupole magnets in accelerators). In section 4, we formulate the main technical
tools required to prove the results in section 2. These are the so-called Besjes inequality for
periodic functions (Lemma 1, section 4.1) and its generalization to functions far from low-
order resonance (Lemma 2, section 4.2.2). After formulating and proving these inequalities,
we use them to prove the mathematical results from section 2. Finally, in the appendix we
give two elementary results used in earlier proofs.

We end this introduction with a few words about notation. We use the symbols N, Z, R+,
and R to denote, respectively, the counting numbers {0, 1, 2, . . . }, the integers, the positive
real numbers, and the real numbers. The symbol | | indicates the Euclidean norm on Rd (or
the absolute value |k| of an integer k), and ‖ ‖S denotes the uniform norm of a function over
the set S; i.e., ‖F‖S := supx∈S |F (x)|. We denote the open ball of radius r > 0 centered on x
in Rd by Br(x). Given positive numbers T and ε, we define the O(1/ε) discrete-time interval
NT/ε by NT/ε := {n ∈ N

∣∣ 0 ≤ nε ≤ T}. Finally, in what follows we assume that all problems
have been nondimensionalized so that ε ≥ 0 is a dimensionless parameter; n and t are also
dimensionless but are nevertheless referred to as “times.”

2. Averaging principles and adiabatic invariance. In this section we state and give brief
remarks on our approximation results for maps.

2.1. Averaging for maps with periodic perturbations. Let us be more precise about the
functions f in (1.1) to which our results apply. Taking S = U ×N, with U = Rd initially, we
assume that f : S → R satisfies the following:

(i) There exists a positive integer p such that (x, n) ∈ S ⇒ f(x, n+ p) = f(x, n).
(ii) f is bounded and locally x-Lipschitz on S.
(iii) There is an r > 0 such that |x| ≥ r and n ∈ N ⇒ f(x, n) = 0.

When f satisfies (i), we say it is “periodic with period p in its second argument”; and when
it satisfies (iii), it is “compactly supported in x, uniformly in n.” By f locally x-Lipschitz on
S, we mean that for every x ∈ U there exist δx > 0 and Lx ≥ 0 such that x1, x2 ∈ Bδx(x) and
n ∈ N ⇒ |f(x2, n)−f(x1, n)| ≤ Lx|x2−x1|. It follows from (ii) and (iii) that f is x-Lipschitz on
S (i.e., there is an L ≥ 0 such that x1, x2 ∈ U and n ∈ N ⇒ |f(x2, n)−f(x1, n)| ≤ L|x2−x1|).
In subsection 2.4 we show how to treat cases where U is an arbitrary open subset of Rd and
f is not compactly supported.

We now state a simple averaging principle for maps with periodic perturbation εf(x, n).
Theorem 1. Let U = Rd, let S = U × N, suppose f : S → Rd satisfies assumptions (i),

(ii), and (iii) above with x-Lipschitz constant L ≥ 0, and consider the system

(1.1) xn+1 = xn + εf(xn, n)

together with the associated averaged systems

(1.2) yn+1 = yn + εf̂(yn)

and

(1.3)
dy

dt
= εf̂(y).
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Then there is a nonnegative constant C = C(f) such that the solutions xn, yn, and y(t) of
(1.1), (1.2), and (1.3) with common initial condition x0 = y0 = y(0) ∈ U exist uniquely for
all time and satisfy |xn − yn| ≤ εC p (1 + εL)n and |xn − y(n)| ≤ εC (1 + p) (1 + εL)n.

Remark 2.1. It is easy to see that the error bounds above are O(ε) on O(1/ε) time intervals
as follows. Choose T > 0, and recall the definition (end of section 1 above) of the O(1/ε)
discrete time intervalNT/ε. Then for every n ∈ NT/ε, |xn−yn| ≤ εC p (1+εL)n ≤ εC p eεLn ≤
εC p eLT and similarly |xn − y(n)| ≤ εC (1 + p)eLT . Clearly, these error bounds become
transcendentally large on time intervals longer than O(1/ε).

2.2. Averaging for maps with perturbations far from low-order resonance. We now
present an averaging principle for system (1.4), where ν is a fixed positive number. When
we write ν = q/p, we mean that q and p > 0 are relatively prime integers with the order of
the rational number ν given by p. Using this convention, we first note that if ν = q/p, then
f(x, nν) has integer period p in n, and Theorem 1 applies. In fact, as shown by Proposition
C, Theorem 1 applies not only at low-order rationals but also near them. But since the error
bound in this theorem is proportional to p, it is not very useful when p is “large.” We therefore
restrict use of Theorem 1 to situations where p is “small” (the “low-order-resonance case”),
and we next focus on situations where ν is far from low-order rational numbers (the “far-
from-low-order-resonance case”). Small divisors inevitably enter the analysis (see the proof of
Lemma 2, section 4.2.2) and it might be expected that ν would need to be “highly irrational”
(e.g., satisfy infinitely many Diophantine conditions). We show instead that the averaging
principle may be established when ν satisfies only finitely many Diophantine conditions to a
certain order, and we call these truncated Diophantine conditions.

In more precise terms, ν satisfies truncated Diophantine conditions if it belongs to the set
D(φ,R) defined below in (4.3), where φ is the zone function of the Diophantine condition and
R ≥ 1 is the truncation order or ultraviolet cutoff, which gives precise meaning to the phrase
“p large” used above (i.e., p is large if p > R). Roughly speaking, D(φ,R) is constructed
by removing open intervals centered on low-order rationals ν = q/p. The zone function φ
controls the size of the intervals removed, and the cutoff R is the maximal order of rationals
from around which intervals are removed. These terms are defined precisely in subsection 4.2.1
(where we also discuss the difference between truncated and ordinary Diophantine conditions
and indicate the advantages of the former; cf. section 4.2.1c).

We now introduce the class of functions to which our next result applies. Taking S = U×R
with U = Rd initially, we assume that f : S → Rd satisfies the following (analogous to (i)
through (iii) in section 2.1):

(j) (x, θ) ∈ S ⇒ f(x, θ + 1) = f(x, θ).

(jj) f is of class C1 on S.

(jjj) There is an r > 0 such that |x| ≥ r and θ ∈ R ⇒ f(x, θ) = 0.

Terminology for describing conditions (j) and (jjj) is similar to that for describing condi-
tions (i) and (iii) above in subsection 2.1, and (jj) and (jjj) again imply that f is x-Lipschitz
on S. Since we assume f has unit period in its second argument, its average f is simply
f(y) :=

∫ 1
0 f(y, θ) dθ. Finally, we alert the reader that the zone function φ used below must

be “adapted to f” in the sense that it must decay appropriately; this is made precise in (4.2)
of subsection 4.2.1. (Basically φ must decay rapidly enough so that D(φ,R) is nonempty but
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slowly enough so that the series in (4.2) converge. One way to ensure that such φ exists is
to assume that f ∈ C4(S), as we show in part b of section 4.2.1. Nevertheless, we keep this
requirement distinct from assumption (jj) above, since there may be other means of ensuring
the existence of φ adapted to f ; cf. Remark 4.3.)

We now state our averaging principle for maps (1.4) with ν far from low-order resonance
as follows.

Theorem 2. Let U = Rd, let S = U×R, suppose f : S → Rd satisfies assumptions (j), (jj),
and (jjj) above with x-Lipschitz constant L ≥ 0, and suppose the zone function φ is adapted
to f on U in the sense of (4.2). Fix ε ≥ 0, let Rε be defined by (4.7), let ν ∈ D(φ,Rε) as
defined in (4.3), and consider the system

(1.4) xn+1 = xn + εf(xn, nν)

together with the associated averaged systems

(1.5) yn+1 = yn + εf(yn)

and

(1.6)
dy

dt
= εf(y).

Then there exist nonnegative constants C = C(f, φ) and C ′ = C ′(f, φ) such that the solutions
xn, yn, and y(t) of (1.4), (1.5), and (1.6) with common initial condition x0 = y0 = y(0) ∈ U
exist uniquely for all time and satisfy |xn−yn| ≤ εC(1+εL)n and |xn−y(n)| ≤ εC ′(1+εL)n.

Remark 2.2. Remark 2.1 applies here as well. In addition, note that xn depends on ν;
however, yn, y(t), and the bounds are independent of ν for ν ∈ D(φ,Rε).

Remark 2.3. It is also natural to consider the average limN→∞(1/N)
∑N−1

n=0

f(x, nν) of f(x, nν) over n as mentioned in the introduction. Under mild integrability condi-
tions on f , it can be shown that when ν is irrational, this average converges to

∫ 1
0 f(x, θ) dθ,

which is the average used here (this is related to Weyl’s equidistribution theorem; cf. [Br] and
[Ko]). However, our results do not require the existence of the average of f(x, nν) over n, nor
do they require ν to be irrational; instead we require ν ∈ D(φ,Rε), and this latter set contains
(infinitely) many rationals of order greater than Rε.

2.3. Adiabatic invariance on extended timescales. In this subsection, we consider a
special system somewhat like a perturbation of an integrable Hamiltonian system. As in
Theorem 2, we assume that ν satisfies truncated Diophantine conditions, but now we assume
additionally that the perturbation εf has zero mean; i.e., we assume that

(jw) for each x ∈ Rd,
∫ 1
0 f(x, θ) dθ = 0.

This extra hypothesis gives an averaging principle showing that the (action-like) x variables
are adiabatically invariant over timescales longer than O(1/ε).

Theorem 3. Let U = Rd, let S = U×R, suppose f : S → Rd satisfies assumptions (j), (jj),
(jjj), and (jw) above, and suppose the zone function φ is adapted to f on U in the sense of
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(4.2). Fix ε ≥ 0, let Rε be defined by (4.7), let ν ∈ D(φ,Rε) as defined in (4.3), and consider
the system

(1.4) xn+1 = xn + εf(xn, nν)

with initial condition x0 ∈ U . Then there exist nonnegative constants K1 = K1(f, φ) and
K2 = K2(f, φ) such that the solution xn of (1.4) satisfies |xn − x0| ≤ K1 ε + K2 ε

2n for
n ∈ N.

Remark 2.4. We note that Theorem 3 shows that, given T > 0 and 0 ≤ α ≤ 1 and assuming
ε ≤ 1, we have |xn − x0| ≤ C(T ) εα for 0 ≤ n ≤ T/ε2−α, where C(T ) = K1 + K2T . Using
second (or higher) order averaging, it is possible to get a better estimate of |xn − x0| on the
full O(1/ε2) time interval (see [ES] for a flow version). Nevertheless, Theorem 3 is interesting
because of its weak nonresonance conditions ν ∈ D(φ,Rε) and because its proof is effected
without the use of coordinate transformations (in fact, its proof is so short that it is nearly a
corollary of Lemma 2 below; see section 4.2.4).

2.4. Extensions and generalizations. In this subsection we give three propositions that
extend and generalize our results above, making them more suitable for applications. Our
first proposition shows that Theorems 2 and 3 may be generalized to the case where the zones
of the truncated Diophantine conditions depend on ε.

Proposition A (ε-dependent zone functions). Suppose that 0 ≤ λ ≤ 1 and that in Theorem 2
(or Theorem 3), the zone function φ is replaced by the new zone function ελφ, and Rε is defined
by (4.7) with ε replaced by ε1−λ. Then the conclusions of the theorem remain true, provided
that in the error bounds, C ε and C ′ε are replaced by Cε1−λ and C ′ε1−λ (or K1 ε+K2 ε

2n by
K1 ε

1−λ +K2 ε
2−λn in Theorem 3).

In order to clarify and simplify the mathematical structure of our methods, we have
presented Theorems 1, 2, and 3 under the assumption that the perturbations have compact
support on spatial domains U that are all of Rd. Our next proposition shows that this
assumption may be removed at little cost.

Proposition B (more general perturbations). Suppose that in Theorems 1, 2, and 3 the first
factor U of the domain S is an arbitrary open set U ⊂ Rd and that the compact support
conditions (iii) and (jjj) are removed so that f is not necessarily (globally) x-Lipschitz with
Lipschitz constant L ≥ 0. Then the conclusions of Theorems 1 and 2 remain true provided
that (a) the phrase “for all time” (governing existence, uniqueness, and approximation) is
replaced by “n ∈ NT/ε, i.e., for times not greater than T/ε,” with T > 0 chosen strictly less
than β(x0), where [0, β(x0)) is the maximal forward interval of existence of the ε-independent
averaged flow problem dz/dt = f̂(z) (or dz/dt = f(z)) in the domain U ; (b) 0 ≤ ε < ε0,
where the threshold ε0(T ) > 0 is given below in section 4.3.2; and (c) the constant L appearing
in the error bounds of Theorems 1 and 2 is replaced by LD as defined in section 4.3.2. The
conclusions of Theorem 3 remain true provided (a) the phrase “for all time” is replaced by
“n ∈ [0, T/ε2−α], i.e., for times not greater than T/ε2−α,” where T > 0, 0 < α ≤ 1 are
parameters (as in Remark 2.4, except note α = 0 is now excluded); and (b) 0 ≤ ε < ε0, as
above.

Remark 2.5. Of course Proposition A also applies to Proposition B.
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The following proposition shows that Theorem 1 may be used to analyze the dynamics of
solutions of (1.4) in O(ε) neighborhoods of low-order resonances ν = q/p. An alternative to
this approach appears in [DE].

Proposition C (behavior near low-order resonance). Let U ⊂ Rd be open, let S′ = U × R,
and suppose f : S′ → Rd satisfies conditions (j) and (jj) of Theorem 2 with S replaced by
S′. Fix the rational number q/p, p > 0 and q relatively prime, and fix a ∈ R. Then (1.4)
with ν = q/p + a ε may be rewritten as (1.7), and Theorem 1 together with Proposition B
apply with x and y replaced by (x, τ)T and (y, τ)T, respectively. In particular there exist
positive ε0 and nonnegative LD, c = c(f, a), such that |xn − yn| ≤ ε p c (1 + εLD)n and
|xn − y(n)| ≤ ε (1 + p) c (1 + εLD)n for 0 ≤ ε < ε0 and n ∈ NT/ε.

Remark 2.6. Clearly yn evolves by yn+1 = yn + εf̂(yn, εan); and y(n) = z(εn), where
dz/dt = f̂(z, at).

Remark 2.7. Propositions A and B characterize the motion of xn to within O(ε1−λ) for
ν far from low-order rationals, i.e., outside of O(ελφ(p)/p) neighborhoods of rationals q/p
with 0 < p ≤ Rε. For these ν the nonresonant normal form of (1.6) applies. Proposition C
characterizes the motion to within O(εp) for ν inside O(ε) neighborhoods of q/p. For these
ν the resonant normal form of (1.9) applies. What may be missing is information about the
motion for ν in gaps between the domains of validity of the normal forms of (1.5) and (1.7).
The size of any gaps decreases to zero as λ↗ 1; but the error in the nonresonant normal form
(1.5) simultaneously deteriorates to O(1). High-order rationals, i.e., q/p with p > Rε, are of
course treated using Propositions A and B. It is interesting to note that they may also be
treated using Proposition C; but the O(εp) error bound deteriorates to O(1) as p approaches
O(1/ε).

3. Examples from accelerator beam dynamics. Modern particle accelerators operate
at the limits of current technology, and their design and operation depend crucially on un-
derstanding the dynamics of particle beams. In this section we give examples showing how
Theorems 1 and 2 (supplemented by Propositions A, B, and C) may be used to analyze a
class of beam dynamics models, and how Theorem 3 (similarly supplemented) may be used
to analyze the Hénon map, which is itself a model of certain features in beam dynamics. Our
averaging principles are especially effective for this purpose, as they compare solutions of the
exact and averaged model problems in the simplest possible way and produce rigorous mathe-
matical bounds on the nearness of these models’ solutions. Although O(1/ε) times are clearly
the longest possible intervals on which nearness of individual trajectories is maintained in the
general case, numerical simulations indicate that longer nearness times occur in the beam
dynamics problems considered here. We furthermore expect action-like quantities to be adi-
abatically invariant on much longer O(1/ε2) timescales; formulating and proving such results
mathematically is an important future goal and will almost certainly involve the results we
present in this paper.

We point out that this section extends results of [ES] in at least two important ways:
first, by using maps, we can incorporate delta function “kicks” that could not be treated
rigorously via the flow methods of [ES]; second, the truncated Diophantine conditions used
here are more physically realistic and explicit than the small divisor conditions of [ES] (cf.
section 4.2.1 below). Finally, as in [ES], we do not require our maps to be polynomial here;
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this is particularly important in applications to the WSBB problem.

3.1. The one-degree-of-freedom kick-rotate model. In this subsection, we focus on a
simple but widely used class of beam dynamics models: the so-called one-degree-of-freedom
“kick-rotate” models. As we proceed, we illustrate the important case of the weak-strong
beam-beam (WSBB) interaction with explicit formulas. We also note that our methods may
be generalized to treat models with several degrees of freedom and at higher order. (This will
be the subject of a future publication [DESV]; a progress report appears in [EDSV].)

A circular accelerator (in storage mode) has a closed orbit; i.e., there is a unique solution
of the equations of motion which has the periodicity of the accelerator. A complete three-
degree-of-freedom description of single-particle dynamics involves three spatial coordinates
in the comoving (Frenet–Serret) system, defined by the projection of the closed orbit on
configuration space, and the three conjugate momenta. It is convenient to study the dynamics
in terms of a Poincaré map (or one-turn map) at a fixed azimuthal location in the ring.
Accelerators are designed to be as linear as possible, and thus transverse dynamics near the
closed orbit can be modeled by a stable linear symplectic map with perturbations. Here we
consider one transverse degree of freedom and define spatial and momentum coordinates, w1

and w2, so that the linear map is a rotation with “unperturbed tune ν of the so-called betatron
motion.” Perturbations of this model often consist of an instantaneous change in momentum
w2 depending only on the spatial coordinate w1 at a fixed location in the ring (a “kick-map”).
If we take this fixed location to be the azimuthal position of the Poincaré section, then the
perturbed dynamics is given by the so-called kick-rotate model

wn+1 = R

[
wn + ε

(
0

−H ′(w1,n)

)]
,

where R := eJ 2πν and J :=

(
0 1
−1 0

)
,(3.1)

i.e., a kick followed by rotation through angle 2πν about the origin. Here H ′ is the “kick
function,” and since R depends only on the fractional part of ν, we assume ν ∈ [0, 1] in what
follows. The map defined by (3.1) is symplectic since it is the composition of symplectic
maps. The notation w1,n indicates the first component of the vector wn = (w1, w2)

T
n . (We

hope the reader will forgive us the ambiguity of using wn to denote a vector and w1 or w1,n

its first component and w2 or w2,n its second component; the meaning should be clear from
the context, since we rarely explicitly set n = 1 or n = 2.)

As a concrete example, we consider the WSBB effect for round Gaussian beams in collider
rings; more details can be found in [DEV2]. The phase space distribution of the strong beam
at the interaction point is assumed to be stationary; that is, the effect of the weak beam on
the strong beam is ignored. Therefore, the beam-beam effect on the particle trajectories of
the weak beam may be treated in the single particle picture, i.e., as a nonlinear kick due to
the electromagnetic forces experienced while passing through a (longitudinally) short, time-
independent, external charge distribution. We ignore coupling to the longitudinal motion, and
we assume that the strong beam is represented by an axially symmetric charge distribution
around the common closed orbit of the two beams in the transverse coordinate plane, so
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that it suffices to study a single phase plane. In this case, ε is a measure of the size of
the beam-beam kick and H ′(w1) :=

(
1 − exp(−w2

1r
−2/2)

)
/w1. By using the substitution

s2/(2r2) = w2
1/(2r

2 + s′) one can show that

H(w1) :=

∫ w1

0

(
1 − exp

(
− s2

2r2

))
ds

s

=
1

2

∫ ∞

0

(
1 − exp

(
− w2

1

2r2 + s′

))
ds′

2r2 + s′
,(3.2)

where we have taken H(0) = 0. Here r2 is the ratio of the variances of the strong and weak
beam Gaussians.

For R = 1, i.e., ν ∈ {0, 1}, (3.1) is easily solved and gives wn = (w1,0,
−nH ′(w1,0))

T and thus |w2,n| is monotonically increasing to infinity. For R = −1 (i.e.,
ν = 1/2), w2n = (w1,0,−2nH ′(w1,0))

T and the motion is again unbounded. Thus for
ν ∈ {0, 1/2, 1} and for all initial conditions where H ′(w1,0) 
= 0, the distance from the origin
is monotonically increasing. The basic question is, What happens for general ν? We shall
apply the results of section 2 to answer this question for most ν in [0, 1].

Equation (3.1) may be written as wn+1 = Rwn + εRF (wn), and the transformation
wn = Rn xn recasts this as

xn+1 = xn + εR−n F (Rn xn) =: xn + ε f(xn, nν),(3.3)

which is in the standard form for averaging (cf. (1.4)).

It is easy to see that f(x, θ) = H ′(x1 cos 2πθ+x2 sin 2πθ) (sin 2πθ,− cos 2πθ)T = (∂H/∂x2,
−∂H/∂x1)

T. Thus if we define H(x, θ) := H(x1 cos 2πθ + x2 sin 2πθ), then (3.3) becomes

xn+1 = xn + εJ ∇xH(xn, nν) .(3.4)

Equations (3.3) and (3.4) also define symplectic maps, since the transformation is symplectic.

3.1.1. The kick-rotate model in the far-from-low-order-resonance case. In this sub-
section, we examine the kick-rotate model (3.1) in the case where the tune belongs to the
ε-dependent truncated Diophantine set D(ελφ,Rε) (i.e., where the tune is “far from low-order
resonance”).

The most useful form of H in (3.4) is given in terms of the Fourier series H(
√

2J sin 2πt) =∑
k∈ZHk(J) ei2πkt, from which it follows that H(x, nν) =

∑
k∈ZHk(J(x)) ei2πk(Φ(x)+nν), where

Φ and J are defined by x1 =
√

2J sin(2πΦ) and x2 =
√

2J cos(2πΦ). The averaged problem
is then

yn+1 = yn + εJ ∇yH0(J(yn)),(3.5)

where H0(J) =
∫ 1
0 H(

√
2J sin 2πt) dt. The ε-independent flow problem is

dz

dt
= 2π ω(J(z)) J z , z(0) = x0,(3.6)
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where 2πω(J) = H ′
0(J). We note that the map defined in (3.5) is only symplectic through

O(ε); however, the vector field in (3.6) has Hamiltonian H(J(z)). It is easy to check that
J(z) = 1

2(z2
1 + z2

2) is constant along orbits so that J(z) = J0 = J(x0) and thus z(t) =

eJ 2πω(J0)t x0. Finally, Theorem 2 together with Propositions A and B give

wn = eJ 2πn(ν+εω(J0)) x0 +O(ε1−λ)(3.7)

for n ∈ NT/ε, with ε suitably restricted to 0 ≤ ε < ε0 as in Proposition B for noncompactly

supported perturbations, with λ ∈ [0, 1], ν ∈ D(ελφ,Rε), and with Rε defined by the condition∑
|k|>Rε

‖H ′
k(J)∇xJ‖D(δ) + ‖Hk(J)2π∇xΦ‖D(δ) < ε,(3.8)

where D(δ) is the δ-tube around the solution of (3.6) for t ∈ [0, T ]. (The δ-tube is defined in
section 4.3.2.)

From (3.7) the approximate motion is given once ω is known. In the WSBB case, H0(J) :=∫ 1
0 H(

√
2J sin(2πt)) dt = 1

2

∫ J/(2r2)
0 (1 − e−wI0(w)) dw

w , where I0 is the zeroth order modified
Bessel function. (Note that exp(x cos(y)) = I0(x) + 2

∑∞
k=1 Ik(x) cos(ky).) Thus ω is given

by

2πω(J) := H ′
0(J) =

1

2J

(
1 − exp

(
− J

2r2

)
I0

(
J

2r2

))

=
1

4πJ

∫ 2π

0

(
1 − exp

(
−J sin2 ϑ

r2

))
dϑ.(3.9)

The tune shift εω(J0) is identical to that derived in [ES] and justifies the use of the delta
function there.

3.1.2. The kick-rotate model in the near-to-low-order-resonance case. For ν near low-
order resonance, we write ν = q

p +εa when p is not too large (more precisely, when 0 < p ≤ Rε

for suitable ε > 0 in (3.8)). Thus using (1.7), our problem becomes(
xn+1

τn+1

)
=

(
xn + εJ ∇xH(xn, n

q
p + τn)

τn + εa

)
.(3.10)

We are now in the periodic case, with averaged Hamiltonian Ĥ(x, τ) = (1/p)
∑p−1

n=0 H(x1 cos(2π

·[n q
p+τ ])+x2 sin(2π[n q

p+τ ])). The averaged problem is (yn+1, τn)T = (yn+εJ ∇yĤ(yn, τn), τn+

εa)T, with its associated ε-independent flow (dz/dt, dτ/dt)T = (J∇zĤ(z, τ), a)T. Solving
for τ gives dz

dt = J ∇zĤ(z, at). Theorem 1 with Propositions B and C then give wn =

eJ 2πnν xn = e
J 2πn( q

p
+εa)

z(εn) + O(ε) for n ∈ NT/ε and for ν = q
p + εa. However, it is not

clear we have achieved a great simplification and so we look more closely. It turns out that
Ĥ (exp(−J 2πθ′)z, θ) = Ĥ(z, θ− θ′), which suggests that an autonomous Hamiltonian system
might be found with the symplectic transformation z → ž defined by z = e−J 2πat ž. This
gives

dž

dt
= 2πaJ ž + J ∇žĤ(ž, 0),(3.11)
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which indeed has autonomous Hamiltonian

K(ž) = 2πaJ(ž) + (1/p)

p−1∑
n=0

H(ž1 cos(2πnq/p) + ž2 sin(2πnq/p)).(3.12)

The previous approximation thus becomes

wn = e
J 2πn q

p ž(εn) +O(ε) for n ∈ NT/ε,(3.13)

from which the behavior of the approximation is now quite transparent.
In the WSBB case, H(x) approaches a constant, H(∞), for large x. Thus K(ž) approaches

2πaJ(ž) + H(∞), and for a 
= 0 the integral curves become circles at large distances from
the origin. The motion on these circles is clockwise for positive a and counterclockwise for
negative a; thus a bifurcation in the phase plane portrait occurs at a = 0. In the case where
q/p ∈ {0, 1/2, 1} it is easy to see that Ĥ(ž, 0) = H(ž1), and for q/p ∈ {1/4, 3/4} one also
easily finds Ĥ(ž, 0) = 1/2 [H(ž1) +H(ž2)] since H is an even function. For q/p ∈ {1/3, 2/3}
we find Ĥ(ž, 0) = 1/3 [H(ž1)+H(−ž1/2+

√
3ž2/2)+H(−ž1/2−

√
3ž2/2)]. We briefly discuss

the phase plane portraits for K in these cases (see [DEV1] and [DEV2] for figures).
In the first case (q/p ∈ {0, 1}) and for a = 0 we have dž1/dt = 0 and dž2/dt = H ′(ž1,0).

Thus the motion is identical to the exact case, as discussed just before (3.3), since (3.1) and
(3.3) and the associated averaged problem are identical. For a small but positive, the origin is
a (nonlinearly) stable center and the phase portrait is a one-parameter family of ovals which
are long and thin in the ž2 and ž1 directions, respectively. As a increases to modest values
the ovals become circular, consistent with the expectation of “stability far from low-order
resonance.” As a decreases from zero, the origin becomes a saddle, and two centers emerge
from infinity at (±c, 0), where c ∼ 1/

√
2π|a| for |a| small. As a decreases further, the centers

coalesce with the saddle at 4πar2 = −1, and for 4πar2 < −1 the only critical point is a center
at the origin, again consistent with our expectation of stability.

The motion for q/p = 1/2 in the period two Poincaré map is identical to the motion for
q/p = 1; the intermediate values may be obtained by rotating the phase plane portrait by a
half turn.

For q/p ∈ {1/4, 3/4} the phase plane portrait has four-fold symmetry, being invariant
under reflections about the two axes and about the lines ž2 = ±ž1. The origin is a critical
point and its linearized vector field has eigenvalues ±2πi(a − ac), where ac = −1/(8πr2).
Thus the origin is a (nonlinearly) stable center for a 
= ac, and it is easily checked that the
origin is also a stable center for a = ac and that the rotation is clockwise for a > ac and
counterclockwise for a ≤ ac. For a ≥ 0 there are no other equilibria and the phase plane
portrait is a one-parameter family of concentric ovals. For a small the (closed) integral curves
look like four-pointed stars, with smoothed points on the axes, and as a increases the curves
become circles. For ac < a < 0 there are eight nonzero critical points. The four critical
points (±c,±c) are centers and the four at (0,±c) and (±c, 0) are saddle points, where c is
the unique positive root of 4πac+H ′(c) = 0. The critical points form an island structure in a
neighborhood of radius c of the origin in the phase plane. This island structure emerges from
infinity as a decreases through zero and coalesces in the origin as a decreases to ac. For a ≤ ac,
the origin is again the only equilibrium, and it is a stable center with counterclockwise rotation.
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The portrait is again a one-parameter family of ovals approaching circles as a decreases from
ac.

Because H is an even function, Ĥ is the same for all q/p ∈ {1/6, 1/3, 2/3, 5/6}. Thus the
phase plane portraits are the same for resonances of order three and six, and these portraits
have a six-fold symmetry, being invariant under reflections about the axes ž1 = 0, ž2 = 0 and
the lines ž2 = ±ž1/

√
3, ž2 = ±

√
3 ž1. Qualitatively, the behavior as a function of a is similar

to that in the case of resonance of order four (e.g., the island structure is similar, but there
are now six rather than four islands). The critical value ac at which the islands coalesce in
the origin turns out to be the same as in the case p = 4.

3.1.3. Summary of the kick-rotate model. We now have the following picture of the
solutions of (3.1) on O(1/ε) time intervals. For ν ∈ D(ελφ,Rε) the motion is given by (3.7),
and thus our kick-rotate map behaves like a twist map with tune ν + εω(J0). For these ν the
effect of the perturbation is slight; the up and down kicks on the integral curves essentially
cancel, and the main effect of the perturbation is to create an amplitude-dependent tune. For
ν = q

p +εa, we see that in the p-periodic Poincaré map, the approximate motion moves slowly
along the phase curves given by the level curves of the Hamiltonian K(ž). As discussed for
the WSBB case, this Hamiltonian has a rich variety of behaviors depending on the order p
of the resonance and on the displacement aε from the resonance (in particular, the behavior
varies considerably for a > 0, a = 0, and a < 0). We thus have an essentially complete picture
of the motion (except for small gaps in ν as discussed in Remark 2.7).

3.2. The Hénon map. We now apply Theorem 3 to the Hénon map (in beam dynamics
this map is a standard model for the effect of a localized sextupole magnet in an otherwise
linear lattice). The standard form of the Hénon map is (3.1) with H(w1) = w3

1/3. This gives
(3.4) with H(x, θ) = (x1 cos 2πθ + x2 sin 2πθ)3/3, which clearly has zero average. It follows
that f(x, θ) = J ∇xH(x, θ) in (1.4) has zero average, so that hypothesis (jw) of Theorem 3 is
satisfied. Thus, by Theorem 3, Remark 2.4, and Proposition B, for appropriate 0 ≤ ε < ε0,
T > 0, ν ∈ D(φ,Rε), and for any 0 < α ≤ 1, we have |xn − x0| = O(εα) on the discrete time
interval 0 ≤ n ≤ T/ε2−α.

Remark 3.1. The above discussion simply applies Theorem 3 as is (and thus also covers the
case of more generalH), but when H has a finite Fourier series (e.g., whenH is a polynomial, as
above) the proof of Theorem 3 may be simplified, both in terms of the smoothness requirement
(see Remark 4.3) and in terms of the estimates in Lemma 2. In particular, for the Hénon map
above, gk = 0 except for |k| ∈ {1, 3}, so taking Rε = 3, we see that the series defining C1 and
C2 in Lemma 2 have only four terms each, while the tail-series of Lemma 2 vanishes.

4. Proofs and additional mathematical results. As the title indicates, this is the most
mathematical section of the paper. Subsection 4.1 treats periodic maps; this is quite straight-
forward and may be read as a kind of introduction to the deeper results of the next subsection.
Subsection 4.2 concerns the considerably more complex case of maps far from low-order reso-
nance and requires a (short) discussion of small divisors and truncated Diophantine conditions.
The use of such conditions is not new, but as explained in the introduction, we believe our use
of them in the present context is the most innovative aspect of this paper from the viewpoint
of applied mathematics.
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4.1. Periodic systems. In this subsection we give a self-contained presentation of the
remarkably simple technology required to prove the averaging principle for maps with periodic
perturbations. This consists of the Besjes inequality for periodic functions (below), followed
by its application to the proof of Theorem 1.

4.1.1. The Besjes inequality for periodic functions. Let U ⊆ Rd be open, and let
S = U × N. The Besjes inequality relies in an essential way upon the following assump-
tion concerning the function g : S → R, periodic with period p in its second argument:

(iv) For each y ∈ U ,
∑p−1

n=0 g(y, n) = 0.

When g has period p in n and satisfies (iv), we say it has zero mean in n. We now state
the Besjes inequality for periodic maps as follows.

Lemma 1. Let U ⊆ Rd be open and S = U×N with (y, n) ∈ S. Suppose g : S → R satisfies
assumptions (i) (from section 2.1) and (iv) above and is bounded and y-Lipschitz on S with
Lipschitz constant L ≥ 0. If {yn}∞n=0 ⊂ U is a sequence for which the successive differences
yn+1 − yn are bounded by M (i.e., supn |yn+1 − yn| ≤M), then for all N ∈ N,

∣∣∣∣∣
N−1∑
n=0

g(yn, n)

∣∣∣∣∣ ≤ 1

2
NpLM + p ‖g‖S .

Proof. Using the notation [a] to designate the greatest integer in a, we first set l =
[(N−1)/p] (so that l is the number of periods of g contained in the segment {0, 1, 2, . . . , N−1}).
Then using (iv), we write

N−1∑
n=0

g(yn, n) =

l−1∑
k=0

p−1∑
n=0

(
g(yn+kp, n) − g(ykp, n)

)
+

N−1∑
n=lp

g(yn, n).

Now since g is y-Lipschitz and since |yn+kp − ykp| ≤Mn, we have

∣∣∣∣∣
N−1∑
n=0

g(yn, n)

∣∣∣∣∣ ≤
l−1∑
k=0

p−1∑
n=0

LMn+

N−1∑
n=lp

|g(yn, n)| ≤ lLM
p(p− 1)

2
+ p ‖g‖S

≤ 1

2
NpLM + p ‖g‖S .

Remark 4.1. The original version of this lemma (Lemma 1 of [Bes]) was formulated for use
in the proof of averaging principles for ODEs on O(1/ε) timescales, and we use its analogue
in a similar way below for maps. The original lemma assumes the time is at most O(1/ε) and
gives a final bound that is O(ε), independent of time. We have found, however, that retaining
the (here discrete) time-dependence makes the result more versatile (cf. the proof of Theorem
3 below).

We now illustrate the use of Lemma 1 by using it to prove Theorem 1.

4.1.2. Proof of Theorem 1. Assume the hypotheses of Theorem 1 (cf. section 2.1). It is
clear from assumption (iii) that the solutions xn and yn exist uniquely for all n ∈ N. To see
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that the approximation relations hold, we write

|xn − yn| = ε

∣∣∣∣
n−1∑
k=0

(
f(xk, k) − f̂(yk)

)∣∣∣∣ = ε

∣∣∣∣
n−1∑
k=0

(
f(xk, k) − f(yk, k) + f(yk, k) − f̂(yk)

)∣∣∣∣
≤ εL

n−1∑
k=0

|xk − yk| + ε

∣∣∣∣
n−1∑
k=0

f̃(yk, k)

∣∣∣∣,
where f̃(y, n) := f(y, n) − f̂(y) is the “oscillating part of f .” Let g := f̃ ; then g satisfies
the hypotheses of Lemma 1 with U = Rd and y-Lipschitz constant 2L. From (1.2) and
assumption (ii), we get |yn+1 − yn| ≤ M := ε‖f̂‖Rd , so Lemma 1 yields

∣∣∑n−1
k=0 f̃(yk, k)

∣∣ ≤
1
2 n p 2Lε ‖f̂‖Rd + p ‖f̃‖S , and thus |xn − yn| ≤ εL

∑n−1
k=0 |xk − yk|+ ε2 pL‖f̂‖Rdn+ ε p‖f̃‖S .

Applying Lemma 3 (appendix) gives |xn − yn| ≤ εp
[
(1 + εL)‖f̂‖Rd + ‖f̃‖S

]
(1 + εL)n−1 ≤

εC p (1 + εL)n as claimed, where C := ‖f̂‖Rd + ‖f̃‖S . To prove the second inequality, we use
Lemma 4 (appendix) to get |yn − y(n)| ≤ ε‖f̂‖Rd(1 + εL)n; then the triangle inequality gives
|xn − y(n)| ≤ ε

[
(1 + p)‖f̂‖Rd + p‖f̃‖S

]
(1 + εL)n ≤ εC [1 + p] (1 + εL)n.

Remark 4.2. The preceding is no doubt one of the simplest possible proofs of an averaging
principle for maps. Part of the simplicity derives from the use of Lemma 1, and part derives
from the assumption of compact support (iii), which permits us to dispense with questions
of the existence intervals for solutions. Thus, although assumption (iii) is often invalid in
practice, by using it we are able to show that the basic estimates of the averaging method do
not require restrictions on the size of ε; such restrictions are instead introduced by considering
the solutions’ existence intervals, or by methods of proof which rely on near-identity transfor-
mations (which may in turn require restrictions on ε for their inversion). Of course our results
may be extended to cases with finite existence intervals (see Proposition B, section 2.4) and
may also be combined with more traditional transformation methods to obtain results more
efficiently at higher order [DESV].

4.2. Systems far from low-order resonance. In this subsection we generalize the Besjes
inequality to functions far from low-order resonance and then use the generalization to prove
Theorems 2 and 3. First, however, we present the following brief discussion.

4.2.1. Resonant zones, Diophantine conditions, and the ultraviolet cutoff. Here we
discuss aspects of resonance, small divisors, and Diophantine conditions that will be needed
in what follows. A more comprehensive introduction may be found in [Yo].

a. Zone functions and Diophantine conditions. In dynamical systems, Diophantine condi-
tions arise naturally as a means of “controlling small divisors” and “avoiding resonances.” In
one dimension, divisors of the form e2πikν − 1 (with 0 
= k ∈ Z and 0 
= ν ∈ R) typically occur
as denominators of terms in a series indexed over k, together with numerators which decrease
to zero with increasing |k|. Clearly divisors cannot vanish, so rational (or “resonant”) values
of ν must be avoided. And although irrational ν do not cause divisors to vanish, when “nearly
resonant,” they may generate such small divisors as to cause divergence of the series in which
they occur.

In order to be precise about avoiding small divisors, we introduce the concept of a zone
function φ : R+ → R+, which is assumed to be decreasing (cf. the “approximation function”
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in [Ru1] and [Ru2]). We then define the “highly nonresonant” values of ν to be those belonging
to the corresponding Diophantine set

D(φ) = {ν ∈ R
∣∣ |e2πikν − 1| ≥ φ(|k|), k ∈ Z\{0}},(4.1)

which is a Cantor set. The Diophantine set D(φ) may be thought of as R with countably
many zones removed, where the zone Zk = {ν ∈ R

∣∣ |e2πikν − 1| < φ(|k|)} corresponding to
a particular k 
= 0 is a countable union of open intervals centered on rational numbers of the
form q/k (q ∈ Z). Further discussion of the structure of D(φ) may be found in [BHS], or
in [DEV2], where we indicate why a typical zone function of the form φ(r) = γr−(τ+1) with
γ, τ > 0 removes zones of total length no more than γ/(πτ) from [0, 1] (when this total length
is less than one, the Diophantine set D(φ) has positive measure and is therefore nonempty).
Below we give conditions ensuring the existence of zone functions φ(r) = γr−(τ+1) that work
in our theorems. We are guided by the simple principle that φ must decrease at an appropriate
rate: if φ decreases too slowly, then the union of the excluded zones may be so large that
its complement, D(φ), is empty; conversely, if φ decreases too rapidly, then D(φ) may be too
large and may contain values of ν so close to resonance as to cause divergence of the series in
which small divisors appear.

The following terminology is useful for describing zone functions that decay appropriately.
If U ⊆ Rd is open and f : U ×R → Rd has period 1 in its second argument and Fourier series
f(x, θ) ∼

∑
k∈Z fk(x) e

2πikθ (where the kth Fourier coefficient is fk(x) =
∫ 1
0 f(x, θ) e−2πikθ dθ,

requiring only that f is integrable in θ), then given a decreasing zone function φ, we say that
φ is adapted to f on K ⊆ U provided

D(φ) 
= ∅, C1(f, φ) : =
∑

0 �=k∈Z

‖fk‖K
φ(|k|) <∞, and

(4.2)

C2(f, φ) : =
∑

0 �=k∈Z

‖Dfk‖K
φ(|k|) <∞,

where D(φ) is the Diophantine set of (4.1) and Dfk denotes the derivative of the function
fk : U → Rd (and ‖Dfk‖K denotes its induced uniform norm over K). Smoothness conditions
on f ensuring the existence of zone functions adapted to f are not severe, as we now show.

b. Smoothness conditions ensuring the existence of adapted zone functions. Several ques-
tions naturally arise concerning the relationship between the smoothness of f and the existence
of zone functions adapted to f as in (4.2). Formulating the sharpest possible conditions in
this direction is somewhat delicate, but the following brief discussion should serve as a good
starting point.

We first recall that for τ > 0, the zone function φ(r) = γr−(τ+1) generates a nonempty
Diophantine set D(φ) provided γ > 0 is sufficiently small (see [DEV2] or the more extensive
discussion in section 1.2 of [BHS]). We assume that f : U×R → Rd is of class Cp+1(U×R) and
of compact support in the first argument, uniformly with respect to the second (cf. assumption
(jjj) in section 2.2). Integrating the kth Fourier coefficient fk(x) =

∫ 1
0 f(x, θ) e−2πikθ dθ by

parts p times with respect to θ gives fk(x) = (2πik)−p
∫ 1
0

[
∂pf/∂θp

]
(x, θ)e−2πikθ dθ. Then
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taking the supremum over x ∈ U of both sides of this expression gives ‖fk‖U ≤ C(f, p)|k|−p,
where C(f, p) = 1

(2π)p supx∈U
∫ 1
0 |∂pf

∂θp (x, θ)| dθ. The same estimate holds for ‖Dfk‖U with

C(f, p) replaced by C ′(f, p) = 1
(2π)p supx∈U

∫ 1
0 |∂p+1f

∂x∂θp (x, θ)| dθ.

Using these estimates, we immediately deduce that both of the series in (4.2) are conver-
gent provided that p > τ + 2. Conversely, we see that whenever p ≥ 3, there exists a zone
function φ(r) = γr−(τ+1) with 0 < τ < p − 2 which generates nonempty Diophantine sets
D(φ) (for γ sufficiently small) and which is adapted to f in the sense of (4.2). Thus one way
to ensure the existence of zone functions adapted to f is to take f of class C4(U × R).

Remark 4.3. A more refined (but lengthy) argument shows that the existence of φ adapted
to f does not require quite as much smoothness as we demand above; we start our discussion
under the assumption f ∈ Cp+1(U × R) primarily for simplicity. Of course, when f has a
(sufficiently short) finite Fourier series, the decay rate of its terms is not an issue.

Remark 4.4. Although our results for system (1.4) as presented in this paper do not apply
to the case of analytic perturbations εf (since analytic f with compact support vanishes
identically), it would not be especially difficult to extend our theory to this case. For analytic
f : U×T1 → R with Fourier coefficients fk decreasing exponentially as, say, ‖fk‖U ≤ Γe−β|k|,
it would be appropriate to use exponentially decreasing zone functions. In fact, given any
ρ > 0, the zone function φ(r) = γe−ρr generates nonempty Diophantine sets D(φ) for small
enough γ > 0. The decay rate β of the fk must of course exceed ρ, which can be arranged
provided f is analytic in its second argument with analyticity parameter α > ρ. (This is an
instance of the Paley–Wiener lemma; cf. [PW] or [BHS].) Roughly speaking, the analyticity
parameter α is a measure of the minimum distance by which f may be extended as an analytic
function on the complex torus (see also section 4.3.3 of [DEG] for an elementary discussion in
the two-dimensional case).

It is interesting to note that Diophantine conditions corresponding to exponentially de-
caying φ may be strictly weaker than the weakest small-divisor conditions ordinarily used
in dynamical systems, the so-called Bruno conditions (also spelled Brjuno or Bryuno; here
“strictly weaker” means that the set D(φ) properly contains the set of ν subject to Bruno
conditions). This is, however, not surprising, since Bruno conditions apply to situations (such
as conjugacies of circle diffeomorphisms, or KAM theory) in which countably many series
with small divisors must simultaneously converge. By contrast, in Lemma 2 we require the
convergence of only two series (in the language of [BHS], ours is a “one-bite” small-divisor
problem).

c. The ultraviolet cutoff and truncated diophantine conditions. Finally, we introduce
the notion of ultraviolet cutoff, which is important in physical applications of Diophantine
conditions. To understand why, note that typically in applications, the ν that are required
to be Diophantine are physical parameters. But checking whether a given ν belongs to a
Cantor set of the form D(φ) is a practical impossibility, since each point of D(φ) has points
arbitrarily close to it that are not in D(φ). In other words, deciding if ν belongs to D(φ)
requires ν to be specified with infinite precision. Practically of course, it is only possible to
specify physical parameters with finite precision. We surmount this difficulty by introducing
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truncated Diophantine conditions of the form

D(φ,R) = {ν ∈ R
∣∣ |e2πikν − 1| ≥ φ(|k|), k ∈ Z with 0 < |k| ≤ R}.(4.3)

When ν ∈ D(φ,R), we say ν is Diophantine to order R with respect to φ, and we call R the
truncation order or (ultraviolet) cutoff. D(φ,R) is an approximating superset of D(φ) with
nonempty interior which converges to D(φ) as R→ ∞. To decide if ν belongs to D(φ,R), one
checks only finitely many inequalities.

As a rough general rule, results in dynamical systems which are established for Diophantine
sets D(φ) may also be established (usually in slightly weaker form) for the corresponding larger,
nicer sets D(φ,R). The standard technique for doing so involves removing the “R-tail” of a
series before applying Diophantine conditions and then checking that the tail is small. This
technique was called the “ultraviolet cutoff” by Arnold in his proof of the KAM theorem and
is illustrated in the proof of Lemma 2 below.

4.2.2. Besjes’ inequality generalized to functions far from low-order resonance.

Lemma 2. Let U ⊆ Rd be open, K ⊆ U , S = U × R, and suppose g : S → Rd satisfies
assumptions (j), (jj) from subsection 2.2, along with assumption (jw) from subsection 2.3.
In addition, suppose {yn}N0−1

n=0 ⊂ K is a sequence for which each line segment joining yn to
yn+1 is contained in K, and for which each successive difference yn+1 − yn is bounded by M
(i.e., supn |yn+1 − yn| ≤ M); the zone function φ is adapted to g on K as in (4.2); and the
nonnegative constants C1 = C1(g, φ) and C2 = C2(g, φ) are defined by (4.2). Let R ≥ 1 and
ν ∈ D(φ,R). Then for N < N0

∣∣∣∣∣
N−1∑
n=0

g(yn, nν)

∣∣∣∣∣ ≤ C1 +N

⎛
⎝C2M +

∑
|k|>R

‖gk‖K

⎞
⎠ ,

where
∑
|k|>R

‖gk‖K → 0 as R→ ∞.

Proof. Since C1 < ∞, we write g as its uniformly convergent Fourier series g(y, θ) =∑
0 �=k∈Z gk(x)e

2πikθ, so that

∣∣∣∣∣
N−1∑
n=0

g(yn, nν)

∣∣∣∣∣ ≤
∣∣∣∣∣∣
N−1∑
n=0

∑
0<|k|≤R

gk(yn)e2πiknν

∣∣∣∣∣∣
+

∣∣∣∣∣∣
N−1∑
n=0

∑
|k|>R

gk(yn) e2πiknν

∣∣∣∣∣∣ =: IN + IIN .(4.4)

We shall treat separately each of the double sums on the right-hand side of inequality (4.4).
For the first double sum IN , we reverse the order of summation and use the “summation by
parts” formula

∑N−1
n=0 an(bn+1−bn) = (aNbN−a0b0)−

∑N−1
n=0 (an+1−an)bn+1 with an = gk(yn)
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and bn = e2πiknν/(e2πikν − 1) so that an(bn+1 − bn) = gk(yn)e2πiknν . It then follows that

IN ≤
∑

0<|k|≤R

∣∣∣∣ gk(yN )e2πiNkν − gk(y0)

e2πikν − 1
−

N−1∑
n=0

(
gk(yn+1) − gk(yn)

)e2πi(n+1)kν

e2πikν − 1

∣∣∣∣
≤

∑
0<|k|≤R

(
2‖gk‖K

|e2πikν − 1| +
‖Dgk‖K

|e2πikν − 1|

N−1∑
n=0

|yn+1 − yn|
)

≤
∑

0<|k|≤R

2‖gk‖K +NM‖Dgk‖K
|e2πikν − 1|

≤
∑

0<|k|≤R

2‖gk‖K +NM‖Dgk‖K
φ(|k|) ≤

∑
0 �=k

2‖gk‖K +NM‖Dgk‖K
φ(|k|) = C1 +NMC2,

(4.5)

where at the second inequality we have applied the mean value theorem to gk(yn+1)− gk(yn)
and thus ‖Dgk‖K is the induced norm. We treat the second double sum IIN of inequality
(4.4) using the simple estimate

IIN ≤ N
∑
|k|>R

‖gk‖K → 0 as R → ∞.(4.6)

Inserting estimates (4.5) and (4.6) into inequality (4.4) concludes the proof.
Remark 4.5. A related analogous result for flows (but without the ultraviolet cutoff) ap-

pears as Lemma 13 of [Sa] and in Theorem 2 of [ES], and a more general Besjes-type inequality
for so-called KBM vector fields also appears in [Sa] as Lemma 2. A still more closely related
result for flows appears as Lemma 2 in [DEG], where it was used in averaging methods applied
to certain charged particle motions in crystals.

Remark 4.6. In the case where g has a finite Fourier series, the above proof simplifies in
obvious ways; but these simplifications become problematic as the Fourier series grows in
length (note that the example in section 3.2 has a Fourier series with only four terms).

4.2.3. Proof of Theorem 2. Assume the hypotheses of Theorem 2 (cf. section 2.2). The
proof is essentially the same as the proof of Theorem 1 with appropriate changes as needed in
order to use Lemma 2. As in the previous proof, the solutions xn and yn clearly exist uniquely
for all n ∈ N. For the approximation relation, we write as in the proof of Theorem 1

|xn − yn| ≤ εL

n−1∑
k=0

|xk − yk| + ε

∣∣∣∣∣
n−1∑
k=0

f̃(yk, kν)

∣∣∣∣∣ .
The hypotheses clearly imply that ‖f‖S < ∞, and since φ is adapted to f on K = U = Rd,
the constants C1 and C2 from Lemma 2 (and (4.2)) are well defined. We take Rε to be the
smallest integer Rε ≥ 1 such that ∑

|k|>Rε

‖fk‖K ≤ ε,(4.7)
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where fk(x) is the kth Fourier coefficient of f , and K = U = Rd (note that the inclusion
K ⊂ U is proper in certain other applications of inequality (4.7); cf. section 4.3.2). It is now a
simple matter to check that if ν ∈ D(φ,Rε), then the hypotheses of Lemma 2 are satisfied with
g = f̃ , K = U = Rd, N0 = ∞, and M = ε‖f‖Rd ; thus

∣∣∑n−1
k=0 f̃(yk, kν)

∣∣ ≤ C1+n
(
C2ε‖f‖Rd+∑

|k|>Rε
‖fk‖Rd

)
≤ C1+nεC

′
2, where C ′

2 := C2‖f‖Rd+1. Applying Lemma 3 (in the appendix)

gives |xn−yn| ≤ ε
[
C1+(ε+1/L)C ′

2

]
(1+εL)n−1 ≤ ε

[
C1+C ′

2/L
]
(1+εL)n =: εC (1+εL)n,

as claimed. The second part of Theorem 2 again follows from Lemma 4 (appendix) and the
triangle inequality. This gives |xn − y(n)| ≤ εC ′(1 + εL)n, where C ′ := C + ‖f‖Rd .

Remark 4.7. It is important to note that for fixed positive ε, the ultraviolet cutoff Rε need
not be very large to ensure that inequality (4.7) holds, whence the number of inequalities to
be checked in (4.3) (with R = Rε) is also modest. In fact, straightforward estimation shows
that when the Fourier coefficients of f decrease as ‖fk‖Rd ≤ C|k|−(p+1) (e.g., when f is of

class Cp+1), it is enough to take Rε ≥ 1+
(

2C
pε

)1/p
. We also note that, in certain applications,

it may be desirable to use a more refined version of (4.7) in which the right-hand side has an
adjustable order constant (i.e., the ε on the right-hand side of (4.7) is replaced by ζε, where
ζ is a parameter; see [DEV2]).

4.2.4. Proof of Theorem 3. The hypotheses of Theorem 3 (cf. section 2.3) ensure that
the constants C1, C2 are well defined, so we set K1 = C1 and K2 = C2‖f‖S + 1. As in the
proof of Theorem 2, we define Rε by (4.7) and check as before that the hypotheses of Lemma
2 are satisfied (now g = f), from which we conclude that |xN − x0| = ε |

∑N−1
n=0 f(xn, nν)| ≤

εC1 + εN(C2M +
∑

|k|>Rε
‖fk‖Rd) ≤ εC1 + εN(C2ε‖f‖S + ε) = K1ε+K2ε

2N .

4.3. Proofs of Propositions A, B, and C. (For statements of the propositions, see section
2.4.)

4.3.1. Proof of Proposition A. The zone functions enter the proofs of Theorems 2 and
3 only through Lemma 2. It is clear that if φ is replaced by ελφ in (4.5), then the estimate in

(4.5) is changed to ε−λ(C1+NMC2). If ε in (4.7) is replaced by ε1−λ, then
∣∣∣∑N−1

n=0 f̃(yn, nν)
∣∣∣ ≤

ε−λ(C1 +NεC ′
2) and the error bound in Theorem 2 then changes to |xN − yN | ≤ ε1−λ(C1 +

C ′
2/L)(1+ εL)n =: ε1−λC(1+ εL)n, as claimed, while the error bound in Theorem 3 changes

to |xN − x0| ≤ ε1−λC1 + εN
(
C2ε

1−λ‖f‖S + ε
)
≤ K1ε

1−λ +K2ε
2−λN .

4.3.2. Proof of Proposition B. The simplest case occurs in Theorem 3. Given x0 ∈ U ,
choose positive δ < dist(x0, ∂U). Take K = Bδ(x0) ⊂ U and note that φ is adapted to f
on K by hypothesis. Let N0 be the first exit time of xn from K; thus Lemma 2 applies for
positive n < N0. Set K1 = C1 and K2 = 1 + C2‖f‖K×R, where C1, C2 are defined in (4.2),
and choose T > 0 and α ∈ (0, 1]. Then from the proof of Theorem 3, |xn−x0| ≤ K1ε+K2ε

2n
for n < N0. If we require 0 ≤ ε < ε0(T ) := min{δ/2K1, (δ/2K2T )1/α}, then xn ∈ K and
|xn − x0| ≤ K1ε+K2ε

2n for n ∈ [0, T/ε2−α].

We now give the proof as it applies to Theorem 2; the proof for Theorem 1 is similar (and
simpler). As in the proof of Theorem 2, we consider the dynamics of (1.4), (1.5), and (1.6)
with common initial condition x0 = y0 = y(0) ∈ U , but now we account for the solutions’
possibly finite existence times by choosing the positive timescale parameter T < β(x0), where
[0, β(x0)) is the maximal forward interval of existence in the open set U of the ε-independent
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initial value problem

dz

dt
= f(z), z(0) = x0 ∈ U.(4.8)

Let Z = {z ∈ U
∣∣ z = z(t), 0 ≤ t ≤ T} denote the compact solution curve of system (4.8)

over [0, T ] and choose positive δ < dist(Z, ∂U). Then the compact closure D(δ) of the open
“δ-tube” D(δ) around Z formed by the union of open balls of radius δ having centers in Z
is contained in U ; i.e., D(δ) :=

⋃
z∈Z Bδ(z) ⊂ D(δ) ⊂ U . It follows that f is bounded

and x-Lipschitz on D(δ) × [0, 1] with x-Lipschitz constant LD ≥ 0 (f is similarly bounded
and Lipschitz on D(δ), also with Lipschitz constant LD). We note that y(t) = z(εt), and
(1 + εLD)n ≤ eLDT for n ∈ NT/ε. Using Lemma 4 (below; with g = f , V = D(δ), and

L = LD), we see that the bound |yn − y(n)| ≤ ε(1 + εLD)n‖f‖D(δ) holds as long as yn stays

in D(δ). We thus require ε < δ/(2eLDT ‖f‖D(δ)) so that yn ∈ Bδ/2(y(n)) for n ∈ NT/ε. Since

|yn+1−yn| = ε|f(yn)| ≤ ε‖f‖D(δ) < δ/2, it follows by the triangle inequality that both yn and
yn+1 are in Bδ(y(n)). Since Bδ(y(n)) is convex, the line segment joining yn and yn+1 lies in
Bδ(y(n)), and hence in D(δ), so Lemma 2 applies to the sequence {yn}n∈NT/ε

with K = D(δ).
We then recover the estimates of Theorem 2 using this K and the LD defined above. It follows
that the bound |xn − yn| ≤ εC3(1 + εLD)n is valid as long as xn stays in D(δ), where C3 =
C1+(C2‖f‖D(δ)+1)/LD, with C1 and C2 defined in (4.2). But xn ∈ D(δ) for n ∈ NT/ε provided

ε < δ/(2C3e
LDT ). So we see finally that if 0 ≤ ε < ε0 := 1

2δe
−LDT min

{
1/C3, 1/‖f‖D(δ)

}
,

then |xn − yn| ≤ εC3(1 + εLD)n and |xn − y(n)| ≤ ε
[
‖f‖D(δ) + C3

]
(1 + εLD)n for n ∈ NT/ε.

4.3.3. Proof of Proposition C. Let g(u, n) := (f(x, nq/p+τ), a)T, where u := (x, τ)T, so
that g : U×R×N → Rd+1. The system un+1 = un+εg(un, n) clearly satisfies the hypotheses
of Proposition B applied to Theorem 1, with d replaced by d + 1 and U replaced by U × R.
Thus Proposition B applied to Theorem 1 applies to un as well as to xn. Futhermore,∣∣∣∣

(
xn
τn

)
−
(
yn
τn

)∣∣∣∣ = |xn − yn| and

∣∣∣∣
(
xn
τn

)
−
(
y(n)
τ(n)

)∣∣∣∣ = |xn − y(n)|;

thus |xn − yn| ≤ ε p c (1 + εLD)n and |xn − y(n)| ≤ ε (1 + p) c (1 + εLD)n. The constants LD

and c = c(f, a) can be determined easily as in the proof of Theorem 1 supplemented by the
proof of Proposition B.

Appendix. (Two elementary results with which the reader may be unfamiliar.)
Lemma 3 (Gronwall inequality for sequences). Let A, α, and β be nonnegative and {En}∞n=0

be a sequence of nonnegative real numbers satisfying En ≤ A
∑n−1

k=0 Ek + αn + β. Then
En ≤ (AE0 + α+ β + α/A)(1 +A)n−1 − α/A.

Proof. The proof is a short exercise in induction (the construction solves the inequality
Rn ≤ (1 +A)Rn−1 + α, where Rn−1 = A

∑n−1
k=0(Ek + αn+ β).

Lemma 4 (equivalence of autonomous flows and maps). Let V ⊆ Rd, ε ≥ 0, and suppose
g : V → Rd is bounded and Lipschitz with Lipschitz constant L ≥ 0. Then

(1.5) the map yn+1 = yn + εg(yn)

(1.6) and the flow
dy

dt
= εg(y)
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are equivalent in the sense that the solutions yn and y(t) of (1.5) and (1.6), respectively,
with common initial condition y0 = y(0) ∈ V satisfy the nearness condition |yn − y(n)| ≤
ε‖g‖V (1 + εL)n provided that yk and y(t) remain in V for 0 ≤ k, t ≤ n.

Proof. First we note that y(n+1)−y(n) = ε
∫ n+1
n g(y(t)) dt = εg(y(n))+ε

∫ n+1
n

(
g(y(t))−

g(y(n))
)
dt. Thus yn+1−y(n+1) = yn−y(n)+ε

(
g(yn)−g(y(n))

)
−ε
∫ n+1
n

(
g(y(t))−g(y(n))

)
dt.

Setting En = |yn − y(n)|, we obtain En+1 ≤ En + εLEn + ε2L‖g‖V , since ε|
∫ n+1
n

(
g(y(t)) −

g(y(n))
)
dt| ≤ εL

∫ n+1
n |y(t) − y(n)| dt ≤ ε2L‖g‖V . Using this last inequality to form a tele-

scoping sum, we get En − E0 ≤ εL
∑n−1

k=0 Ek + nε2L‖g‖V . Finally, we apply the Gronwall
inequality above with E0 = 0 to obtain En ≤ ε‖g‖V (1 + εL)n.
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Shear Dispersion along Circular Pipes Is Affected by Bends, but the Torsion of
the Pipe Is Negligible∗

A. J. Roberts†

Abstract. The flow of a viscous fluid along a curving pipe of fixed radius is driven by a pressure gradient. For a
generally curving pipe it is the fluid flux which is constant along the pipe, and so I extend fluid flow
solutions of Dean [W. R. Dean, Phil. Mag., 5 (1928), pp. 673–695] and Topakoglu [H. C. Topakoglu
J. Math. Mech., 16 (1967), pp. 1321–1338] which assume constant pressure gradient. When the
pipe is straight, the fluid adopts the parabolic velocity profile of Poiseuille flow; the spread of any
contaminant along the pipe is then described by the shear dispersion model of Taylor [G. I. Taylor
Proc. Roy. Soc. London A, 219 (1953), pp. 186–203] and its refinements. However, two conflicting
effects occur in a generally curving pipe: viscosity skews the velocity profile which enhances the
shear dispersion, whereas in faster flow centrifugal effects establish secondary flows that reduce the
shear dispersion. The two opposing effects cancel at a Reynolds number of about 15. Interestingly,
the torsion of the pipe seems to have very little effect upon the flow or the dispersion; the curvature
is by far the dominant influence. Last, curvature and torsion in the fluid flow significantly enhance
the upstream tails of concentration profiles in qualitative agreement with observations of dispersion
in river flow.

Key words. shear dispersion, circular pipe, curvature, torsion
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1. Introduction. Consider the dispersion of a contaminant material, with diffusivity Dc,
in the steady laminar flow, velocity field v, of a Newtonian fluid of density ρ and kinematic
viscosity ν in an arbitrarily curving pipe of radius a such as the helical pipe shown in Figure 1.
The material might be introduced as a localized release anywhere across the pipe or be fed
in somehow at one end of the pipe. The flow is pumped by an overall pressure drop which
maintains a fixed fluid flux along the pipe; that is, a constant mean velocity U is maintained
irrespective of curvature. Nondimensionalize quantities with respect to the pipe radius a, the
cross-pipe diffusion time a2/Dc, and the reference pressure ρνU/a. The Navier–Stokes and
continuity equations for the steady, incompressible fluid flow then become

Rev ·∇v = −∇p+ ∇2v and ∇ · v = 0 ,(1)

where Re = aU/ν is the Reynolds number. The contaminant evolves according to the nondi-
mensional advection-diffusion equation

∂c

∂t
+ Pev ·∇c = ∇2c ,(2)
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Figure 1. Perspective drawing of a helical pipe as an example of the curving pipes containing fluid flow
and contaminant dispersion that is modeled herein. On the right is a schematic diagram of the orthogonal
curvilinear coordinate system local to the curving center line of the pipe: u points along the center line and
s measures axial distance.

where Pe = aU/Dc is the Peclet number. In typical liquids the Peclet number is much larger
than the Reynolds number as their ratio, the Schmidt (or Prandtl) number Sc = Pe /Re =
ν/Dc is normally large (approximately 103 for the diffusion of material in liquids [33, p. 1119]
although only about 8 for the diffusion of heat [1, p. 597]1), whereas in typical gases the
Schmidt number is roughly 1 and so the Peclet and Reynolds numbers are comparable. The
analysis is interpreted with these two cases in mind of the Schmidt number being either
O
(
1000

)
or O

(
1
)
.

Here we analyze the flow and dispersion in an arbitrarily curving circular pipe. Most
analysis of dispersion assumes a curved pipe is toroidal [33, 28, 19, 8], and most experiments
are performed in helical pipes [38] (see further discussion by Berger, Talbot, and Yao [3]). Ne-
glecting molecular diffusivity, dispersion in toroidal flow has been characterized from analytic
formulae by Ruthven [33] and numerical solutions by McConalogue [25] using the residence
time of different streamlines. Interestingly, using similar ideas, Jones and Young [20] deduced
a regime of anomalous dispersion in a twisted but piecewise toroidal pipe. The fluid flow
in helical pipes has been the subject of recent analysis [16, 39, 24, 42], whereas the flow in
arbitrarily curving and twisting pipes has received little attention, although Pedley [29] ac-
counted for leading order effects of variable curvature but ignored torsion, and Gammack and
Hydon [14] investigated flow in pipes with exponentially varying curvature and torsion. Here
I take these analyses further by simultaneously determining the fluid flow and the dispersion
in arbitrarily curving circular pipes. The analysis is restricted to parameter regimes where
the fluid flow is laminar—because of the induced secondary circulation, laminar flow is stable
to higher Reynolds numbers in a curving pipe [38, 3]. The results thus will also be important
in the flow and dispersion in microfluidic channels [17].

1The Prandtl number of water is 13.4 at 0◦C, 9.5 at 10◦C, 8.1 at 15◦C, 7.1 at 20◦C, 5.5 at 30◦C, 4.3 at 40◦C,
3.0 at 60◦C, and 2.2 at 80◦C, whereas the Prandtl number of air is 0.71 .
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In section 2.1 we establish an orthogonal coordinate system based upon the arbitrarily
curving geometry of the circular pipe, although requiring that the curvature of the center
line varies smoothly. Let the center line of the pipe be described by R(s), where s measures
arclength along the center line. Then a useful set of vectors for space in the vicinity of the
pipe are the unit tangent u(s) = R′ of the center curve, unit normal p(s), and the unit
binormal b(s) (see Figure 1). These vectors and the curvature κ(s) and torsion τ(s) of the
pipe are all connected by the Frenet formulae [22, section 8.7]

u′ = κp , p′ = −κu+ τb , b′ = −τp .(3)

Throughout this article I use a prime to denote ∂/∂s. In a thin pipe the nondimensional
velocity is approximately Poiseuille flow, u ≈ 2(1−r2). However, there are corrections of O

(
κ
)

due to the curvature which are determined by solving the Navier–Stokes equations (1) for the
fluid flow; see section 2, where low order expressions agree with the analysis of the flow in
helical pipes by Tuttle [39].

Center manifold theory provides a rationale to form low-dimensional models of dynam-
ics [32]. Here we model the long-time evolution of the large scale dispersion of contaminant
along the pipe. Models of “long-waves” or “slowly varying in space” dynamics are justified in
the center manifold approach, as outlined briefly in Appendix A, by requiring resolved longitu-
dinal spatial structures to have small wavenumber or equivalently small gradients [30]. Within
this slowly varying approximation, diffusion acts relatively quickly across the pipe to cause
the contaminant concentration to be approximately constant in any cross-section: to leading
order c ≈ C(s, t), where C = c̄ is an average over a pipe cross-section (see Appendix A). The
analysis, performed by the computer algebra of Appendix B, then systematically accounts for
how variations along the pipe are affected by the varying velocity profile to disperse the con-
taminant. The center manifold theory (see Appendix A) asserts that, following an arbitrary
release of material, this model of the dispersion along the pipe applies after transients on the
time scale of cross-pipe diffusion. We thus report in section 3, as a generalization of Taylor’s
model [35, 36], that the advection-diffusion model

∂C

∂t
≈ −Pe

∂C

∂s
+
∂

∂s

(
D
∂C

∂s

)
(4)

governs the large-scale dispersion of material along the pipe where for this case of a pipe of
circular cross-section we find the effective diffusivity

D =

(
1 +

κ2

4

)
(5)

+
Pe2

48

[
1 + κ2

(
863

120
− 7267 Re2

241920
+

599 Re4

48384000
− 2569 Sc2 Re4

68428800

)]

+ O
(
κ4, δ

)
.

That is, we find the shear dispersion coefficient in a straight pipe, D = Pe2 /48, is in a curved
pipe modified by a factor approximately

1 + κ2

[
7.2 − 3.0

(
Re

10

)2

+ (0.12 − 0.38 Sc2)

(
Re

10

)4
]
.
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As found by others, secondary circulation caused by fluid inertia depresses the effective disper-
sion by about κ2[3.0(Re /10)2 +0.38 Sc2(Re /10)4] , but only for Reynolds numbers sufficiently
large. In slow viscous flow, we find here that pipe curvature actually enhances the effective
dispersion by about 7.2κ2—an effect that has apparently often been neglected [38, p. 317] in
experimental determination of dispersion coefficients.

• For dispersion in gas flow, with O
(
1
)

Schmidt number Sc, the dispersion is depressed
by secondary circulation only if the Reynolds number is greater than about 15, as
otherwise the viscous enhancement is stronger. Remarkably, if the Schmidt number Sc
is small, less than about 0.5, inertial effects in the fluid flow enhance the effective
dispersion for Reynolds numbers greater than about 50.

• For dispersion in liquids, with, say O
(
1000

)
Schmidt number Sc, the term in κ2 Re4 Sc2

dominates the other terms for the Reynolds number greater than about 0.5. Hence,
in liquids and due to secondary circulations due to inertia, I reaffirm the reduction in
effective dispersion.

Since the Dean number2 Dn = 2
√
κRe, this last is the shear dispersion correction verified

by Nunge, Lin, and Gill [28] and Johnson and Kamm [19] as being significant for Dn2 Sc
greater than about 100. A limitation of the expression (6) is that it predicts a physically
unrealizable negative effective diffusivity for large enough Reynolds number. In most cases,
Schmidt number Sc larger than 1, the term in κ2 Sc2 Re4 dominates the correction. Hence
to maintain a positive diffusion coefficient the Dean number Dn < 25/

√
Sc or equivalently

Sc Dn2 < 650 . The expression (6) is a low order approximation to the correct curve, describing
the downward curving shape on the left side of Figure 3 of Johnson and Kamm [19], but it
needs the higher order corrections described in section 3.4 to describe the dispersion coefficient
at a higher Dean number.

For a lower Reynolds number the qualitative deductions above vary from those of Nunge,
Lin, and Gil [28] because their dispersion coefficient is different; see their equation (76).
In particular, I predict that shear dispersion is frequently enhanced for gases, the reverse
conclusion to that of Erdogan and Chatwin [11] and later Nunge, Lin, and Gil [28, pp. 363,
375]. I argue that the differences occur because all previous work, based upon the fluid flow
solutions of Dean [10, 9] and Topakoglu [37], has assumed that the pressure gradient is fixed
in the expansion in curvature κ—an adequate assumption for flow in a torus or helix where
the curvature and the torsion are constant. But in a pipe of generally varying curvature
and torsion, as developed here, it is the mean fluid flux which is fixed along the pipe and
not the pressure gradient.3 Since, for a constant pressure gradient the fluid flux varies with
curvature and torsion—generally first decreasing with increasing torsion then later increasing
with torsion (see Yamamoto, Yanase, and Yoshida [40] and its correction [41])—it follows
that the mean pressure gradient (26) varies along a generally curving pipe. To check my

2As discussed by Berger, Talbot, and Yao [3, section 2.1.1.2], there are various and conflicting definitions of
the Dean number: Berger, Talbot, and Yao recommended the use of Dn = 2

√
κRe, which I have adopted here.

This Dean number could be viewed as
√
κRe for a Reynolds number based upon the pipe diameter rather than

the radius that I have used.
3Even Gammack and Hydon [14, p. 363] appear to fix the pressure gradient in their exponentially varying

pipes by requiring the second order pressure correction p2 ∝ sin ξ , where ξ is their angular variable, and so
their pressure correction has zero mean.
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computer algebra program (listed in Appendix B) I temporarily fixed the pressure gradient
in a helical pipe and found the resulting dispersion coefficient to be exactly equivalent to that
given by Nunge, Lin, and Gill [28, equation (76)] except that the one term in Re2 Scκ2 (my κ
is their 1/λ) is zero in my results. I conjecture theirs is in error in this term. Because of the
requirement to fix the fluid flux I recommend the use of (6) instead of the earlier published
models of shear dispersion.

The error of O
(
δ
)
in the shear dispersion coefficient given by (6) encompasses modifications

due to torsion τ and to variations in curvature κ along the pipe: the parameter δ corresponds
to the parameter η in Gammack and Hydon’s analysis of exponentially varying pipes, κ ∝ eηs.
The torsion affects only the dispersion coefficient at O

(
κ2τ2

)
, as seen in section 3, and so

does not appear in (6). The effects of axial variations are reformulated as “memory” of
the effective dispersion coefficient some distance upstream. Such memory effects in shear
dispersion in varying channels were first recognized by Smith [34] and reflect the time it takes
for the flow and the dispersion to relax to new conditions.

Using the computer algebra of Appendix B I straightforwardly determine both higher order
corrections to the dispersion coefficient (section 3.4) and high order terms in the advection-
diffusion equation itself (section 3.3). These terms may be used either to refine the approxima-
tions or to give good estimates of the errors in a lower order approximation. Earlier work by
Mercer and Roberts [26] gave a sharp estimate for the limit of spatial resolution in a straight
circular pipe.

2. The fluid flow. The first task is to find the laminar viscous fluid flow in the curving
pipe. The focus of the paper is the dispersion in the pipe by the flow, but there are enough
interesting and relevant features in the fluid flow itself to be discussed briefly here—in particu-
lar, this section confirms aspects of my analysis by reproducing many results of other authors
about steady laminar flow in curved and twisted pipes.

We assume that the flow is steady as appropriate to flow driven by a constant pressure
drop through a fixed pipe. However, to maintain everywhere constant fluid flux, the mean
pressure gradient, p̄′, varies with the curvature of the pipe as given in (26).

2.1. The orthogonal curvilinear coordinate system. Expressions for the flow are de-
rived in an orthogonal curvilinear coordinate system matched to the geometry of the circular
pipe. The orthogonal coordinate system has been used by Germano [16], Kao [21], Liu and
Masliyah [24], and Yamamoto, Yanase, and Yoshida [40, 41] to investigate the structure of
the fluid flow in helical pipes up to Dean numbers of 2000 and is well known in hydromagne-
todynamics. One difference here is that we do not assume the pipe is helical; instead we allow
arbitrary variations in the curvature and torsion of the pipe—the one important restriction
is that the curvature and torsion must vary only slowly along the tube. Such slow variations
along the pipe were also assumed by Murata, Liyake, and Inaba [27] in their analysis of the
flow in tubes bent sinusoidally in a plane and Pedley [29] in a leading approximation to the
effects of curvature. As shown schematically in Figure 1, positions in space are labeled by
(s, r, ϑ) and have position vector

r = R(s) + r cos θ p+ r sin θ b , where θ = ϑ+ φ(s)(6)
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measures the angle from the plane of the normal p to the point r; thus θ = 0 corresponds
to the inside of the local bend, whereas θ = ±π corresponds to the outside; and where the
nondimensional radius ranges over 0 ≤ r ≤ 1 . However, due to torsion in the shape of the
pipe the reference plane of the orthogonal coordinate system must twist along the pipe by an
amount φ(s), where

dφ

ds
= −τ .(7)

The unit vectors and scale factors of this orthogonal coordinate system are then

hs = 1 − κr cos θ , es = u ,
hr = 1 , er = cos θ p+ sin θ b ,
hϑ = r , eϑ = − sin θ p+ cos θ b .

(8)

Note that all expressions for fluid and concentration fields are written in terms of θ, the
angle relative to the local direction of curvature of the bent pipe, because it is this angle that
primarily determines the shape of the local fields, but all equations are written in terms of the
angular coordinate in the orthogonal system, namely, ϑ; remember that θ varies with ϑ and s
according to (6). Observe the scale factors are all positive provided 0 < r < 1/κ , and so the
coordinate system is well defined for unit radius pipes provided the nondimensional center
line curvature κ < 1 . Let the velocity field, with components the axial velocity u, the radial
velocity v, and the angular velocity w, be denoted by

v = ues + ver + weϑ .

Then, noting that it is convenient to compute the viscous dissipation term via the vorticity
(as does Tuttle [39, p. 548]),

∇2v = −∇× ω , ω = ∇× v ,

standard formulae apply for computing components of the Navier–Stokes equations (1) [1,
Appendix B]:

ωs =
1

r

(
∂(rw)

∂r
− ∂v

∂ϑ

)
,(9)

ωr =
1

rhs

(
∂(hsu)

∂ϑ
− ∂(rw)

∂s

)
,(10)

ωϑ =
1

hs

(
∂v

∂s
− ∂(hsu)

∂r

)
,(11)

0 =
1

hs

∂p

∂s
+

1

r

(
∂(rωϑ)

∂r
− ∂ωr

∂ϑ

)
(12)

+ Re

(
u

hs

∂u

∂s
+ v

∂u

∂r
+
w

r

∂u

∂ϑ
+
uv

hs

∂hs
∂r

+
uw

rhs

∂hs
∂ϑ

)
,

0 =
∂p

∂r
+

1

rhs

(
∂(hsωs)

∂ϑ
− ∂(rωϑ)

∂s

)
(13)

+ Re

(
u

hs

∂v

∂s
+ v

∂v

∂r
+
w

r

∂v

∂ϑ
− w2

r
− u2

hs

∂hs
∂r

)
,
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0 =
1

r

∂p

∂ϑ
+

1

hs

(
∂ωr

∂s
− ∂(hsωs)

∂r

)
(14)

+ Re

(
u

hs

∂w

∂s
+ v

∂w

∂r
+
w

r

∂w

∂ϑ
− u2

rhs

∂hs
∂ϑ

+
vw

r

)
,

0 =
1

rhs

(
∂(ru)

∂s
+
∂(rhsv)

∂r
+
∂(hsw)

∂ϑ

)
.(15)

See the curvature of the pipe enters these fluid flow equations predominantly through the
variations of the scale factor hs (see (8)) both across and along the pipe. The torsion of the
pipe appears more subtly through the difference between θ, the angle relative to the local
direction of curvature, and ϑ, the angle in the coordinate system; thus spatial derivatives
of θ nontrivially depend upon the torsion through (6)–(7). The above steady Navier–Stokes
equations are solved with a fixed fluid flux and with zero velocity on the pipe walls: u =
v = w = 0 on r = 1 . The computer algebra program in Appendix B solves these equations
iteratively.

There are some subtleties in the geometry of the coordinate system. As discussed by
Zabielski and Mestel [42, section 2.2], observe that because of the twist in a helical pipe the
axial unit vector u is not everywhere tangent to the lines of helical symmetry—the s-coordinate
curves are not curves of helical symmetry. Thus be careful in interpreting cross-flow velocities
v and w because in one view they will involve a small component of the relatively large velocity
along the lines of helical symmetry. In an alternative presented by Tuttle [39], the twist in the
coordinate system caused by torsion generates an effect similar to that caused by a coordinate
system rotating in time. However, here we consider flow in a generally curving pipe with no
large scale symmetry, so the only definite longitudinal direction is the local unit vector u, and
we thus discuss v and w as cross-flow velocities, as do Gammack and Hydon [14]. Similarly, in
helical symmetry one cannot find a cross-section plane normal to the lines of helical symmetry
[42, p. 300] so an arbitrary decision is needed. As is conventional for helical pipes and as
simplest for generally curving pipes, we conventionally take a cross-section to be normal to
the centerline of the pipe. In these cross-sections the pipe is circular.

2.2. Stokes flow. Solving the fluid equations using the computer algebra program in
Appendix B, I deduce the Stokes flow field, Re = 0, is

u = (1 − r2)
[
2 + κ3

2r cos θ + κ2 5
8r

2 cos 2θ − κ2 11
48(1 − 3r2)

]
(16)

+ O
(
κ3, δ2,Re

)
,

v = 1
3(1 − r2)2

[
cos θ κ′ + sin θ κτ

]
(17)

+ 1
96r(1 − r2)2

[
(38 + 43 cos 2θ)κκ′ + 43 sin 2θ κ2τ

]
+ O

(
κ3, δ2,Re

)
,

w = 1
6(1 − r2)(2 − r2)

[
− sin θ κ′ + cos θ κτ

]
(18)

+ 1
96r(1 − r2)

[
(43 − 29r2)(cos 2θ κ2τ − sin 2θ κκ′) + (6 − 2r2)κ2τ

]
+ O

(
κ3, δ2,Re

)
,
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Figure 2. (a) Contours of axial velocity u of the viscously dominated Stokes flow in a helical pipe with
curvature κ = 0.8 (chosen so large to accentuate the modifications). (b) Corresponding torsion induced cross-
pipe fluid velocities to leading order in the torsion. The plots are evaluated from the asymptotic solution with
errors O

(
κ5
)
.

p̄′ = −8 + 1
6κ

2 + O
(
κ3, δ2,Re

)
,(19)

p = p̄− 1
3r(1 − 3r2)

[
cos θ κ′ + sin θ κτ

]
(20)

− 1
24(5 + 4r2 − 21r4)κκ′ − 1

24r
2(9 − 26r2)

[
cos 2θ κκ′ + sin 2θ κ2τ

]
+ O

(
κ3, δ2,Re

)
,

where δ is used to denote the order of magnitude of derivatives of the quantities varying slowly
along the pipe. For example, κ′ and τ = −φ′ are thus O

(
δ
)
.

See that, for example, the Stokes flow in a torus (κ = const and τ = 0) is simply one of
axial flow (see Figure 2(a)) in an adjusted mean pressure gradient as all other components
vanish. The axial velocity maximum is shifted to the inside of the curve (to the right in
Figure 2(a)) and is increased slightly. In contrast to flows at a significant Reynolds number,
the pressure gradient around a curve is less than that in a straight pipe presumably because
the bulk of the fluid travels a shorter path than the center line; this agrees with Larrain and
Bonilla [23] who used computer algebra to also find high order approximations to the flow in
a coiled pipe.

The cross-pipe velocities in a helical pipe are indicated in Figure 2(b) where the torsion
induces velocities proportional to those shown in the figure; the generally upward velocity
matches the upward twist of positive torsion. Observe that torsion, τ , and variations in
curvature, κ′, affect only the cross-stream velocities and do not influence the axial velocity u
to this order. Conversely, observe that this Stokes flow does not have cross-pipe circulation—
the strong viscosity eliminates inertia. Instead the curvature of the pipe just skews and alters
the velocity field. For curvature κ �= 0 the maximum of the axial velocity u increases and
moves toward the inner wall of the pipe. This last effect, though seemingly small even for the
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large curvature of κ = 0.8 used in Figure 2, is enough to have a strong influence on the shear
dispersion as seen in its coefficient (6).

2.3. Laminar flow at finite Reynolds number. Incorporating the terms representing the
advection of fluid momentum into the computer algebra program of Appendix B leads to
effects parametrized by the Reynolds number Re. I find that the fluid fields given previously
in (17)–(21) are modified by the addition of the following terms:

u = · · · + Re

144
r(1 − r2)(29 + 5r2 − 3r4)

[
cos θ κ′ + sin θ κτ

]
(21)

− Re2

1440
r(1 − r2)(19 − 21r2 + 9r4 − r6) cos θ κ

+
Re3

1814400
r(1 − r2)(2969 − 4381r2 + 3249r4 − 1301r6

+ 274r8 − 20r10)
[
cos θ κ′ + sin θ κτ

]
+ O

(
κ2, δ2

)
,

v = · · · − Re

72
(1 − r2)2(4 − r2) cos θ κ(22)

+
Re2

8640
(1 − r2)2(13 − 15r2 + 7r4 − r6)

[
cos θ κ′ + sin θ κτ

]
+ O

(
κ2, δ2

)
,

w = · · · + Re

72
(1 − r2)(4 − 23r2 + 7r4) sin θ κ(23)

+
Re2

8640
(1 − r2)(13 − 224r2 + 266r4 − 124r6

+ 17r8)
[
− sin θ κ′ + cos θ κτ

]
+ O

(
κ2, δ2

)
,

p = · · · − Re

3
r(9 − 6r2 + 2r4) cos θ κ(24)

+
Re2

2160
r(101 − 120r2 + 90r4 − 30r6 + 3r8)

[
cos θ κ′ + sin θ κτ

]
+ O

(
κ2, δ2

)
,

where “· · · ” denote the terms already given for Stokes flow in (17)–(21). The modifications
to the cross-pipe velocities that are proportional to Reκ(= Dn2 /4 Re), plotted in Figure 3,
agree with those of the Dean flow as used by Johnson and Kamm [19, p. 330] in their work
on dispersion. The cross-pipe velocity field exhibits circulation across the pipe induced by
the pipe curvature because of fluid inertia. The term in the axial velocity u proportional to
κRe2 = Dn2 /4 also agrees with that of Johnson and Kamm. These terms in the velocity
fields are those previously found for the “loosely coiled limit” [3, p. 467] when curvature κ is
negligible by itself but the Dean number Dn = 2

√
κRe is significant. The above expressions

appear to agree precisely with the expressions obtained by Tuttle [39, (58)–(61)] for low
Reynolds number flow in a helical pipe; the only differences lie in various factors of two due
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Figure 3. (a) Axial velocity u contours of the inertial corrections to Poiseuille flow in a helical pipe with
curvature κ = 0.5 to leading order in the torsion τ of the helix. (b) Corresponding inertia induced cross-pipe fluid
velocities independent of the torsion. The plots are evaluated from an asymptotic solution with errors O

(
κ5
)
.

to the different nondimensionalization and because my angular velocity w is in a “space-
centered” coordinate system, whereas Tuttle’s Φ is “body centered.”4 Last, the components
of the physical fields (17)–(25) involving sin θ and cos θ cross-sectional structures agree with
those of Hammack and Hydon [14, p. 363], but their formulae have none of the components
in sin 2θ, cos 2θ nor a modification to the mean pressure gradient as in (26). Observe in all of
the formulae (18)–(25) that torsion coupled to curvature, κτ , appears to have the same effect
as longitudinal gradients of curvature, κ′, but the fluid fields are rotated in angle by 90◦. The
above expressions are the first to combine torsion and general variations in curvature.

With fixed fluid flux, the mean pressure gradient, to one higher order in curvature than
the fields above, is

p̄′ = −8 +
(

1
6 − 11

540 Re2 − 1541
32659200 Re4

)
κ2(25)

+
(

23
80 Re + 1433

241920 Re3 + 6191
410572800 Re5

)
κκ′ + O

(
κ3, δ2

)
.

See from the coefficients plotted in Figure 4 that although the pressure gradient is lessened
by curvature for low Reynolds number, for Reynolds number approximately Re > 3 there
is an increased pressure gradient loss in a curving pipe. This is attributed to the greater
mixing caused by the induced cross-pipe circulation. Also see that a region of tightening
curvature, increasing κ2, has a lesser drop in pressure gradient relative to that for a toroidal
pipe, whereas conversely a lessening in the curvature, decreasing κ2, has a higher drop in the

4Although the components of the velocity proportional to curvature κ and the leading order terms in Reκ′

reduce to those of Murata, Miyake, and Inaba [27, equations (21)–(22)], in their case of a sinusoidal centerline,
the terms in Re2 are different in detail to those of Murata, Miyake, and Inaba [27, equation (22)], as is the
pressure. Terms in curvature κ in the above velocity field agree with those of Pedley [29, equation (4.13)], and
terms in the gradient κ′ with highest power of Reynolds number Re also agree [29, equations (4.18)–(4.19)]
except for the axial velocity u. The above expressions also agree with the small Dean number expansion derived
by Kao [21, p. 341] for flow in a helix except for his w2 which does not match my expression (22) for u.
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Figure 4. Coefficients in the expression (26) for the mean pressure gradient as a function of the center line
curvature κ and its gradient κ′.

pressure gradient. This effect is interpreted as a “memory” in the mean pressure gradient of
the upstream conditions reflecting the finite distance taken for the flow to relax to the new
curvature; retaining just the highest order terms in Re, the mean pressure gradient

p̄′ ≈ −8 − 1541
32659200 Re4 κ2 + 6191

821145600 Re5 2κκ′(26)

≈ −8 − 1541
32659200×16 Dn4

∣∣∣
s−4337 Re /271216

,

where the evaluation of the Dean number at an effective distance upstream of approxi-
mately Re /6 pipe radii seems to show the typical distance necessary for the fluid flow to
develop in order to accord with the curvature of the pipe. This agrees qualitatively with
experiments on a pipe with a finite bend as discussed by Berger, Talbot, and Yao [3, p. 494],
where the influence of the bend on the mean pressure gradient extends far downstream. This
upstream memory also matches nicely with the commonly quoted distance, ls ≈ 1

4aRe [12]
and [3, p. 488], required for flow entering a straight pipe to become fully developed, and with
the observation by Murata, Miyake, and Inaba [27, section 4] that the flow in a sinusoidally
bent pipe has a lag in its adaptation to the local conditions, the lag increasing with increasing
Reynolds number.

The above formulae for both viscous and inertia effects of curvature and torsion are only
of low order. Computer algebra computes the velocity field to as high an order as is necessary
for the demands of modeling the dispersion in the pipe, described in the next section. Van
Dyke [3, p. 475] has shown the asymptotic expansions of the fluid flow field converge for Dean
number Dn < 96.8/4

√
2 = 17.1 (for negligible κ but finite Dn). However, I have not explored
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this issue as here we are primarily concerned with the advection-diffusion model (2) of the
dispersion and its asymptotic approximations.

3. Advection-dispersion along the curving pipe. Having determined the fluid flow within
the pipe, I now address the advection and longitudinal dispersion within the pipe. We solve
the advection-diffusion equation (2) for the evolving concentration c(s, r, ϑ, t) of contaminant
within the fluid. Writing the concentration in terms of the cross-pipe average C(s, t) and
its derivatives, I use center manifold techniques (see Appendix A) to construct the Taylor
model (4), and its higher order generalizations, of the advection-dispersion in the bent and
twisted pipe.

3.1. The concentration field within the pipe. Using the coordinate system described in
section 2.1, the advection-diffusion equation (2) for the evolution of the concentration of the
contaminant is

∂c

∂t
+ Pe

(
u

hs

∂c

∂s
+ v

∂c

∂r
+
w

r

∂c

∂ϑ

)
(27)

=
1

rhs

[
∂

∂s

(
r

hs

∂c

∂s

)
+

∂

∂r

(
rhs

∂c

∂r

)
+

∂

∂ϑ

(
hs
r

∂c

∂ϑ

)]
.

This is solved with no flux through the circular walls of the pipe: ∂c/∂r = 0 on r = 1 .
The computer algebra program (Appendix B) simultaneously determines from the con-

taminant conservation equation (28) the dynamics on the low-dimensional center manifold,
namely, the Taylor model (4). Over a cross-pipe diffusion time the concentration field evolves
to be, for example, approximately

c = C − Pe
∂C

∂s

1

24

(
2 − 6r2 + 3r4

)
+ Pe

∂C

∂s
κ cos θ

[
−1

6

(
4r − 3r3 + r5

)
(28)

+
Re2

172800

(
256r − 285r3 + 200r5 − 75r7 + 15r9 − r11

)

+
Sc Re2

34560

(
68r − 120r3 + 130r5 − 75r7 + 21r9 − 2r11

)]

+ O
(
κ2, δ2

)
.

To this order neither torsion nor gradients of curvature affect the concentration field within
the pipe, but this is not surprising as one order of δ is counted in ∂C/∂s leaving no scope
for derivatives of the curvature κ to be involved in the above terms. Expressions for the
concentration field to the next order in either the curvature κ or longitudinal derivatives δ are
algebraically formidable and are not recorded.

From such expressions, the computer algebra also determines the mean flux of contaminant
through a cross-section of the pipe:

F (C, s) = uc− 1

hs

∂c

∂s
,

where the overbar denotes the average over a cross-section. Then by conservation of contam-
inant, the model for the evolution of the contaminant is known to follow the conservation
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equation ∂C
∂t = −∂F

∂s . Using the flux F determined above to be correct to some order in axial
derivatives, some order in δ, I determine the model of axial dispersion to one order higher in
axial derivatives than would otherwise be possible because of the extra axial derivative in the
right-hand side of the conservation equation ∂C

∂t = −∂F
∂s .

3.2. Arbitrary curvature exhibits upstream memory. The error of O
(
δ
)

in the shear
dispersion coefficient given by (6) encompasses modifications due to both torsion τ and vari-
ations along the pipe in the curvature κ. The torsion affects only the dispersion coefficient at
O
(
κ2τ2

)
and so does not show up in (6).

Variations in curvature along the pipe (κ′ �= 0) cause the effective dispersion coefficient to
become, using R to denote the scaled Reynolds number Re /10 and remembering Pe = Re Sc,

D = 1 +
1

4
κ2 +

7

48

(
κκ′
)′ − 7

96

(
κ2τ2 + κ′2

)
(29a)

+
Pe2

48

[
1 + κ2

(
− 64225

171072R
4 Sc2 + 2995

24192R
4 − 36335

12096R
2 + 863

120

)]
(29b)

+ Peκκ′
[
R

6
(

9050586625
26900729856 Sc4 + 246093875

1630347264 Sc3 − 6234774125
53801459712 Sc2

− 1760495125
40351094784 Sc

)
+ R

4
(
−1068925

2322432 Sc3 +33738035
20901888 Sc2 +2310385

4478976 Sc
)

+ R
2
(
−383695

96768 Sc2 +19465
12096 Sc + 985

12096

)
− 13

32

]
(29c)

+ Pe2(κ2τ2 + κ′2)
[
R

6
(

2542365125
58692501504 Sc4 − 1039029345155

126541033242624 Sc2

− 5542735225
3515028701184

)
+ R

4
(

14791164485
33108590592 Sc2 + 739414405

11036196864

)
+ R

2
(
−7181

9072 Sc2 + 7619671
41803776

)
− 5357

55296

]
(29d)

+ Pe R(κκ′)′
[
R

6
(
−2219783253125

3012881743872 Sc5 −3007270625375
9038645231616 Sc4

+ 7670650920025
63270516621312 Sc3 + 2879131496575

23726443732992 Sc2 + 396673566125
15817629155328 Sc

)
+ R

4
(

318184675
306561024 Sc4 −3159503125

752467968 Sc3 − 9765145925
16554295296 Sc2 −2663242675

5518098432 Sc
)

+ R
2
(

40508065
4644864 Sc3 −3081595

1548288 Sc2 −3844625
2612736 Sc− 16835

373248

)
+ 32413

27648 Sc− 191
1728

]
+ O

(
κ4, δ3

)
.(29e)

In this large but comprehensive expression observe the following:
Terms (29a) give the effective diffusivity along the center line of the pipe of the molecular

diffusion within the bending and twisting geometry of the pipe when there is no flow.
Terms (29b) give the usual shear enhanced dispersion in a straight pipe, Pe2 /48, modified

by the leading order (quadratic) effects of pipe curvature. These were the terms of
the shear dispersion discussed in the Introduction; see (6). See the curvature induced
contribution, the term multiplied by κ2, plotted relative to the Taylor dispersion co-
efficient, 1 + Pe2 /48, in Figure 5.

Terms (29c) give the leading order effects on the dispersion due to variations in curvature
along the pipe; see Figure 6.
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Figure 5. Here, and analogously in the next three figures, are shown contours of the coefficient of the
contribution of plain curvature κ2, relative to the Taylor dispersion coefficient 1 + Pe2 Sc2 /48 which ranges up
to 106 in the top right corner of the figures, in the dispersion coefficient (29) as a function of Reynolds number
and Schmidt number. That is, we plot the relative magnitude of κ2 coefficient in the contribution (29b) for
1 < Re < 100 and 0.1 < Sc < 100 . The contours are the powers of ten ±10n for n = 0, . . . , 9 , where the red
contours are negative, and the blue are positive.
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Figure 6. As in Figure 5 but now the contours of the coefficient of κκ′ in (29c), relative to the Taylor
coefficient 1 + Pe2 Sc2 /48 , showing the leading order effects due to variations in pipe curvature.
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Figure 7. As in Figure 5 but now the contours of the coefficient of (κ2τ2 + κ′2) in (29d), relative to the
Taylor coefficient 1 + Pe2 Sc2 /48 , showing the leading order effects on dispersion due to pipe torsion.

Terms (29d) give the leading order effect of torsion on the dispersion, namely, quadratic but
moderated by the multiplication by κ2; see Figure 7;

Terms (29d)–(29e) through κ′2 and κ′′ give second order effects of the variations in curvature;
see Figures 7 and 8.
It is intriguing to see that the effects of torsion and second order gradients of curvature
factorize as shown in (29d)–(29e). I suggest the reason for this factorization is due to
two effects: first, upstream “memory” of the dispersion, to be discussed later, involves

κ2
∣∣∣
s−ξ

= κ2 − 2ξκκ′ + ξ2(κκ′)′ + O
(
ξ3
)
,

which may explain the appearance of the combination (κκ′)′; and second, curvature
gradients and torsion, κ′ and κτ , respectively, both create the same but orthogonal
structures in the fluid flow as commented after (22)–(25).

For large Schmidt number Sc (typical for material dispersion in liquids). There are two dis-
tinguished limits of the above expression for the effective dispersion coefficient, the second
being a subset of the first.

• First, for large Schmidt number Sc the highest powers of Sc dominate. However, in
various subexpressions they appear in combination with the Reynolds number Re =
10R. Thus there is a distinguished limit with large Sc and small Re in which Re2 Sc is
of order 1 (near the lower right region of Figures 5–8. In terms of the magnitude δ of
the slow axial variations, an appropriate scaling is that the fluid flow is slow, Re ∼ δ,
and the Schmidt number is large enough, Sc ∼ 1/δ2, so that the Peclet number is also
large, Pe ∼ 1/δ; then the effective diffusion coefficient is large, D ∼ 1/δ2. Using these
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Figure 8. As in Figure 5 but now the contours of the coefficient of (κκ′)′ in (29e), relative to the Taylor
coefficient 1 + Pe2 Sc2 /48 , showing second order effects of pipe curvature.

orders of magnitude, introducing the order 1 parameter α = Re Pe /100 = Re2 Sc /100
and evaluating fractions, the leading order terms in the dispersion coefficient (29) are

D ≈ .02083 Pe2 +(.1498 − .007821α2) Pe2 κ2(30)

+ (−.03965 − .004603α+ .003364α2) Pe3 κκ′

+ (−.007916 + .0004332α2) Pe4(κ2τ2 + κ′2)
+ (.008721 + .001038α− .0007368α2) Pe4(κκ′)′ .

• Second, for a typical Schmidt number Sc bigger than 103 or so, and for any flow
with Reynolds number Re bigger than about 1, the parameter α will be bigger than
about 10 and the above expression (31) will be dominated by the quadratic powers
in α; this is shown by the near linear contours in the upper right region of Figures 5–8.
That is, the dispersion coefficient

D ≈
(

Pe

10

)2
{

2.083 +

(
Re2 Sc

100

)2 [
−0.7821κ2 + 3.364

Pe

10
κκ′

+

(
Pe

10

)2 (
4.332 (κ2τ2 + κ′2) − 7.368 (κκ′)′

)]}
.(31)

We noted in (27) that the mean pressure gradient in the fluid flow at any location was ap-
propriate to the curvature some distance upstream. Similar memory effects are seen in the
dispersion coefficient again due to the finite time taken for the flow and the dispersion to
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Figure 9. In a generally curving pipe the effective dispersion has the value appropriate to the curvature a
distance ξ upstream.

relax to new curvature. The subexpression −0.7821κ2 + 0.3364 Peκκ′ appearing in the first
line of (31) is equivalent to simply −0.7821κ2 evaluated at a distance ξ = 0.2151 Pe upstream
from any particular location. I do not attempt to complicate this memory effect any further
by trying to include the second order term (κκ′)′, as there is a plethora of possibilities, but for
the purposes of discussion I assume both κκ′ and (κκ′)′ terms are attributable to upstream
memory. The ratio of the coefficients of κκ′ and κ2 in (31), shown in Figures 6 and 5, respec-
tively, similarly quantify the upstream memory for low Reynolds number flows as shown in
Figure 9. Such memory effects in shear dispersion in varying channels were first recognized
by Smith [34].

From Figure 7 and the coefficient approximations (31) and (31), see that torsion and cur-
vature gradients generally enhance dispersion along the pipe except for low Reynolds numbers,
Re2 Sc < 427.4 , when they make the dispersion coefficient smaller. However, the effect torsion
has upon the dispersion coefficient seems small because not only is the effect quadratic in the
torsion τ , but it is also ameliorated by the multiplication by the curvature squared. However,
ignoring the κκ′ terms and noting that κ′ = κ(log κ)′, I write (31) as

D ≈
(

Pe

10

)2
{

2.083

− 0.7821

(
κRe2 Sc

100

)2 [
1 −

(
Pe

10

)2

5.539 (τ2 + (log κ)′2)
]}

.(32)
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Figure 10. Coefficients of the dispersion coefficient D for water at 15◦C given by (34). For higher Reynolds
numbers the highest powers in Re dominate the coefficients.

This suggests that torsion, or proportional gradients of curvature, greater than about 4/Pe
may cause the dispersion coefficient D to increase with curvature κ, instead of decreasing.
That torsion could eliminate the increased mixing due to secondary circulations seems unlikely,
so I predict higher order terms in the torsion τ would limit its influence on the dispersion.

For the dispersion of heat in water. with a Prandtl number of Sc = 8.1 at 15◦C (log10 Sc =
0.91 in Figures 5–8) the dispersion coefficient (29) reduces to

D = 1.3669 Re2 +1(33)

+ κ2
(
−.003350 Re6 −.04106 Re4 +9.830 Re2 +.25

)
+ κκ′

(
.01232 Re7 −.1090 Re5 −2.01 Re3 −3.291 Re

)
+ (κ2τ2 + κ′2)

(
.01220 Re8 +.1928 Re6 −33.95 Re4 −6.356 Re2 −.07292

)
+ (κκ′)′

(
−.02191 Re8 +.1777 Re6 +36.39 Re4 +7.602 Re2 +.1458

)
.

For Reynolds number Re > 7 the highest powers in Re dominate; see Figure 10 for the
dependence on smaller Re. Observe that for Reynolds number Re > 6.95 curvature enhances
the dispersion of heat and vice-versa, whereas for Re > 6.74 torsion and curvature gradients
reduce the dispersion and vice-versa.

For the dispersion of heat in air. with a Prandtl number of Sc = 0.71 at 15◦C (log10 Sc =
−0.15 in Figures 5–8) and recalling that R = Re /10, the dispersion coefficient (29) reduces
to
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Figure 11. Coefficients of the dispersion coefficient D for water at 15◦C given by (35). For higher Reynolds
numbers the highest powers in Re dominate the coefficients.

D = 1.080 R
2 + 1(34)

+ κ2
(
−.07649 R

6 − 3.244 R
4 + 7.767 R

2 + .25
)

+ κκ′
(
.3979 R

7 + 7.462 R
5 − 5.871 R

3 − 2.925 R

)
+ (κ2τ2 + κ′2)

(
.3011 R

8 + 15.48 R
6 − 11.82 R

4 − 5.022 R
2 − .07292

)
+ (κκ′)′

(
−.7615 R

8 − 13.98 R
6 + 8.055 R

4 + 5.282 R
2 + .1458

)
.

For Reynolds number Re > 15 the highest powers in Re dominate; see Figure 11 for the
dependence on smaller Re. Observe that for Reynolds number Re > 15.18 curvature enhances
the dispersion of heat and vice-versa, whereas for Re > 10.35 torsion and curvature gradients
reduce the dispersion and vice-versa.

3.3. Skewness is very sensitive to curvature. Computer algebra straightforwardly de-
termines high order terms in the advection-diffusion equation (2). Chatwin [5] investigated
the relatively slow approach to normality in shear dispersion. However, variations in pipe
curvature and torsion distort any normal profile. Hence expect such variations to have a large
effect on skewness.

The third order modification to the Taylor model of dispersion is

∂C

∂t
≈ −Pe

∂C

∂s
+
∂

∂s

(
D
∂C

∂s

)
+
∂

∂s

(
E
∂2C

∂s2

)
,(35)
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where the skewness coefficient

E = − Pe3

2880
(36a)

+ Peκ2
[
R

6
(

3241338875
107602919424 Sc4 + 1104359125

35867639808 Sc2
)
− 4085615

20901888R
4 Sc2

+ R
2
(

68855
96768 Sc2 + 985

12096

)
− 13

32

]
(36b)

+ κκ′
[
R

8
(
−5943982203125

9038645231616 Sc6 −1183708683125
2259661307904 Sc5 −12012557065375

9038645231616 Sc4

− 4304114889625
5931610933248 Sc3

)
+ R

6
(

1250362375
1379524608 Sc5 +820657375

64665216 Sc4 + 14670875
4138573824 Sc3 +1214048125

4138573824 Sc2
)

+ R
4
(
−11414525

290304 Sc4 +1917625
193536 Sc3 −25984475

5225472 Sc2 −84175
93312 Sc

)
+ R

2
(

17795
1152 Sc2 −955

432 Sc
)

+ 7
12

]
(36c)

+ Pe(κ2τ2 + κ′2)
[
R

8
(

254564364353125
1434131710083072 Sc6 − 9130311425570375

34419161041993728 Sc4

− 545957180588375
29041167129182208 Sc2

)
+ R

6
(

9773515705025
2259661307904 Sc4 +241252377733475

759246199455744 Sc2
)

+ R
4
(
−1227346555

114960384 Sc4 −24438946685
16554295296 Sc2 − 159535

2128896

)
+ R

2
(

1325215
258048 Sc2 −118243

580608

)
+ 801

2560

]
(36d)

+ Pe(κκ′)′
[
R

8
(
− 26098554271144375

206514966251962368 Sc6 + 10015284615625
204875958583296 Sc5

+ 83884205830882375
206514966251962368 Sc4 + 68444215116292625

464658674066915328 Sc3 + 44871973001125
691456360218624 Sc2

)
+ R

6
(

71359651375
6025763487744 Sc5 −516258977875

111588212736 Sc4 − 596762793925
2875932573696 Sc3

− 2958969842375
23007460589568 Sc2 − 62332574575

1977203644416 Sc
)

+ R
4
(

48287105
3784704 Sc4 −480287515

172440576 Sc3 +4233379915
2759049216 Sc2 + 89672375

459841536 Sc + 159535
2128896

)
+ R

2
(
−23023685

4644864 Sc2 +2964127
4644864 Sc + 501107

2322432

)
− 2257

5760

]
+ O

(
κ4, δ3

)
.(36e)

The skewness coefficient for flow in a straight pipe, −Pe3 /2880 from (36a), is well known [6].
One outstanding puzzle in the field of dispersion is that in rivers one observes contaminant
concentrations with long tails upstream (not downstream) [2]. But theoretical models predict
only either a weak enhancement of upstream tails or, more confoundedly, as the above negative
skewness coefficient implies for straight pipe flow, a weak downstream tail. However, as we
now see, curvature effects, presumably induced by the secondary flows, greatly change the
skewness coefficient thereby enhancing the upstream tail of a contaminant release. With the
caveat that this derivation is for laminar flow in pipes and not turbulent flow in rivers, this
qualitative match in the theoretical model compared with observations is pleasing.

For large Schmidt number Sc. Typical for the dispersion of material in liquids, and similar
to the dispersion coefficient D, there are two distinguished limits of the above expression for
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the skewness coefficient.
• First, in terms of the magnitude δ of the slow axial variations, the appropriate scaling

is that the fluid flow is slow, Re ∼ δ, and the Schmidt number is large enough,
Sc ∼ 1/δ2, so that the Peclet number is also large, Pe ∼ 1/δ; then the skewness
coefficient is large, E ∼ 1/δ3. Recalling the parameter α = Re Pe /100 = Re2 Sc /100
and evaluating fractions, the leading order terms in the skewness coefficient (36) are

E ≈ − Pe3

2880

[
1 − κ2

(
.8675α2 + 20.49

)
(37)

+ Peκκ′
(
.1894α2 − .2610α+ 11.32

)
+ Pe2(κ2τ2 + κ′2)

(
−.05112α2 + 3.075

)
+ Pe2(κκ′)′

(
.03640α2 − .003411α− 3.674

)]
.

• Second, for a typical Schmidt number Sc bigger than 103 or so, and for any flow with
Reynolds number Re bigger than about 2, the parameter α will be bigger than about 40
and the above skewness coefficient (38) is dominated by the quadratic powers in α:

E ≈ Pe3

2880

⎧⎨
⎩−1 +

(
Re2 Sc

100

)2 [
0.8675κ2 − 1.894

Pe

10
κκ′(38)

+

(
Pe

10

)2 (
5.112 (κ2τ2 + κ′2) − 3.640 (κκ′)′

)]}
.

In this regime, even small curvature, through the κ2 term, will cause the skewness
coefficient to become positive, possibly large, and so will lead to concentration tails
upstream (qualitatively as observed in rivers). Torsion in the pipe leads to the same
upstream tails.

Recognize another upstream memory effect. The subexpression 0.8675κ2 − 0.1894 Peκκ′

appearing in the first line of (39) is equivalent to simply 0.8675κ2 evaluated at a distance
ξ = 0.1092 Pe upstream from any particular location. This upstream memory is approximately
half that of the dispersion coefficient.

For the dispersion of heat in water. With a Prandtl number of Sc = 8.1 at 15◦C, the
skewness coefficient (36) reduces to

E = −0.1845 Re3(39)

+ κ2
(
−3.291 Re +3.788 Re3 −.01039 Re5 +.001067 Re7

)
+ κκ′

(
.5833 + 9.956 Re2 −16.43 Re4 +.08625 Re6 −.002101 Re8

)
+ (κ2τ2 + κ′2)

(
2.534 Re +27.28 Re3 −37.30 Re5 +.1509 Re7 +.003968 Re9

)
+ (κκ′)′

(
−3.174 Re−25.91 Re3 +43.37 Re5 −.1589 Re7 −.002604 Re9

)
.

For Reynolds number Re > 11 the highest powers in Re dominate. Observe that for these
Reynolds numbers both curvature and torsion may easily reverse the sign of the skewness
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paramater E through the combination

+ Re7
[
.001067κ2 + .003968 Re2(κ2τ2 + κ′2)

]
.

Again this effect promotes upstream tails in the dispersion. Although the terms in κκ′ and
(κκ′)′ may keep E negative, we prefer to interpret these as representing upstream memory.

For the dispersion of heat in air. With a Prandtl number of Sc = 0.71 at 15◦C and recalling
that R = Re /10, the dispersion coefficient (36) reduces to

E = −0.1242 R
3(40)

+ κ2
(
−2.884 R + 3.124 R

3 − 0.6995 R
5 + 0.1645 R

7
)

+ κκ′
(
0.5833 + 6.217 R

2 − 9.592 R
4 + 3.537 R

6 − 0.7762 R
8
)

+ (κ2τ2 + κ′2)
(
2.221 R + 16.93 R

3 − 25.07 R
5 + 8.940 R

7 − 0.3844 R
9
)

+ (κκ′)′
(
−2.782 R − 12.99 R

3 + 22.94 R
5 − 9.478 R

7 + 1.287 R
9
)
.

For Reynolds number Re > 40 the highest powers in Re dominate. Observe that for such a
larger Reynolds number the sign of the skewness coefficient changes sign sensitively depending
upon the torsion τ , curvature κ, and its gradients.

3.4. Higher order curvature affects the dispersion. Computer algebra also straightfor-
wardly determines even higher order corrections to the dispersion coefficient. These terms may
be used, for example, to give estimates of the errors in the earlier approximations. However,
the algebraic expressions quickly become extremely complicated. We just extend the analy-
sis to the next order in curvature, but no higher order in gradients, to obtain the following
correction to the dispersion coefficient (29):

D = · · · + 1
8κ

4(41)

+
Pe2 κ4

48

[
Re8

(
6959456407

3094629863915520000 Sc4 + 148720297230839
464658674066915328000000 Sc2

− 11319036743801
14297189971289702400000

)
+ Re6

(
21839753491553

12654103324262400000 Sc2 + 1800408289399
2711593569484800000

)
+ Re4

(
− 24648813997

64377815040000 Sc2 + 5096950451
21459271680000

)
− 4685593

348364800 Re2 +13829
9216

]
+ O

(
κ6, δ

)
or approximately

D ≈ · · · + 1
8κ

4(42)

+
Pe2 κ4

48

[(
Re

10

)8 (
0.22 Sc4 +0.032 Sc2 −0.079

)

+

(
Re

10

)6 (
1.7 Sc2 +0.66

)
+

(
Re

10

)4 (
−3.8 Sc2 +2.4

)

− 1.3

(
Re

10

)2

+ 1.5

]
+ O

(
κ6, δ

)
.
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Figure 12. Comparison of the Padé approximant (43) (solid) with experimental estimates (circles) collated
by Johnson and Kamm [19], Figure 9, and the predictions (dashed line) of their spectral method based on
Poiseuille flow.

I also computed the dispersion coefficient to the next correction, with errors O
(
κ8, δ

)
. Then

recalling the Dean number Dn = 2
√
κRe, the dominant terms for the coefficient of dispersion

of material in liquids, large Schmidt number Sc, are

D ≈ Pe2

48

⎡
⎣1 − 0.3754

(
Dn2 Sc

400

)2

+ 0.2249

(
Dn2 Sc

400

)4

− 0.1388

(
Dn2 Sc

400

)6

+ O
(
Dn16 Sc8 )

⎤
⎦ .

This expression is valid for small enough Dn2 Sc . Using the additional information [19, sec-
tion 4.3] that the limit at large Dn2 Sc is approximately 0.20 , I construct the following Padé
approximant in terms of α = Dn2 Sc/400:

D ≈ Pe2

48
× 1 + 0.3068α2 + 0.007811α4

1 + 0.6822α2 + 0.03905α4
.(43)

See in Figure 12 that this expression for the dispersion coefficient matches reasonably well
with experiments over the whole range of Dn2 Sc .
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4. Conclusion. Computer algebra handles the considerable details of deriving the compli-
cated expressions describing dispersion in generally curving pipes (see Appendix B). Fixing
one of the fluid flux or the mean pressure gradients affects the dispersion (see section 1),
and throughout I present results for the appropriate case of fixed fluid flux. The Padé ap-
proximation (43) for the dispersion in a constant curvature pipe is reasonably accurate over
the entire range of Dean numbers. When the pipe’s curvature and torsion vary, much of the
effects of variations upon the dispersion may be recast as an upstream memory. Overall,
torsion τ in the pipe seems to have little effect on the dynamics except for the sensitivity, in
combination with the curvature κ, of the skewness (see section 3.3). The skewness coefficient
is very sensitive to curvature and hence is easily made positive, which may thus qualitatively
explain the observations of long upstream tails in the dispersion of material in rivers, despite
the differences in detail between turbulent river flow and laminar pipe flow analyzed here.

Appendix A. Center manifold theory constructs the model.

Here we explore in more detail the construction of the model of the dispersion and how
it is supported by center manifold theory. This section is based upon arguments for applying
center manifold theory in slowly varying long-wave asymptotics [30] and upon later developed
straightforward iterative techniques for constructing the model [31].

Consider the advection-diffusion equation (2) for the evolution of the concentration field
c(s, r, ϑ, t). Write it in the form of a dynamical system

∂c

∂t
= Lc+ f(c, ε) ,(44)

where L is a linear operator of cross-pipe diffusion (the r and ϑ operators on the right-hand
side of (28)) whose spectrum, as required by center manifold theory, is discrete and separates
into zero eigenvalues, the critical ones, and eigenvalues with strictly negative real-part; where
ε is a vector of parameters representing the pipe’s curvature κ and the strength of along pipe
gradients δ; and where f is strictly nonlinear when considered as a function of concentration c
and parameters ε together; that is, in the dispersion all the along pipe processes, including
those induced by the geometric variations in the pipe’s shape, are placed in f . The critical
eigenvalues of L correspond to the conservation of material in a cross-section when there are
no axial variations; the other eigenvalues of L are all negative (corresponding to a cross-pipe
diffusion time). Thus center manifold theory [4] asserts that the concentration field expo-
nentially quickly settles onto a state, approximately (29), parametrized by the cross-sectional
average concentration C. The aim is to find a low-dimensional model for the evolution of the
cross-sectional average concentration ∂C

∂t = g(C), such as (4). This model will comprehensively
describe all the dynamics after the exponential transients have decayed.

In this application there is one critical mode, associated with the eigenvalue zero, at each
of an “infinite” number of cross-sections; thus there is an infinite number of critical modes,
parametrized by the axial location s, and so we seek a model expressed in terms of the
spatio-temporal function C(s, t). The theoretical support for such infinite dimensional center
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manifolds [13] is considerably weaker than that for finite dimensional manifolds, but rational
arguments support the application of the techniques [30].5 The critical mode at each cross-
section is simply one of constant concentration; thus a “linear” approximation to the center
manifold and the evolution thereon is simply

c(r, s, ϑ, t) ≈ C(s, t) such that
∂C

∂t
≈ 0 .(45)

To comprehensively model the dispersion dynamics, this linear approximation must be mod-
ified by “nonlinear” terms arising from the varying curvature and torsion of the pipe and the
axial gradients of the concentration. We account for such variations and gradients up to some
specified order, and hence we derive a long-wave, slowly varying model for the dispersion in a
long pipe.6

Thus the second stage is to seek iterative improvements to a given level of description
of the center manifold and the low-dimensional evolution thereon. The aim is to find a low-
dimensional description which satisfies the governing advection-diffusion equation (2). As in
iterative methods for finding the zero of a function, we use the residual of the governing equa-
tion in order to guide corrections. The iteration scheme is successful as long as it ultimately
drives the residual to zero to the desired order of accuracy; the center manifold approximation
theorem [4] then assures us that the model is correct to the same asymptotic error. Suppose
that at one stage of the iteration we have the approximate model (upper case Fraktur)

c ≈ C(C) such that
∂C

∂t
≈ G(C) ;

approximate because the residual of the governing differential equation (2)

R =
∂c

∂t
+ Pev ·∇c−∇2c =

∂C

∂C
G − LC − f(C, ε) = O

(
εq
)

(46)

for some order of error q. We seek to find “small” corrections (indicated by lowercase Fraktur)
so that

c ≈ C(C) + c(C) such that
∂C

∂t
≈ G(C) + g(C)

is a better approximation to the center manifold and the evolution thereon by reducing the
residual of the governing equation. The aim of each iteration is to improve the order of the
error q so that, by the center manifold approximation theorem, we improve the accuracy of

5A quick argument is that the physical field and the evolution in any locale in the pipe is actually
parametrized by the cross-sectional average concentration C and its axial gradients Cs, Css, etc., as inde-
pendent “amplitudes” (as in parts of the calculus of variations). That C is differentiable implies we obtain the
evolution of these independent amplitudes from ∂C/∂t = g(C): ∂Csn

∂t
= ∂ng/∂sn . Then impose the simplest

slowly varying paradigm that the nth derivative of C scales as δn for some small parameter δ corresponding to
the typical axial gradient.

6A big advantage of the center manifold approach is that we avoid the daunting hierarchy of superslow
space-time scales required by the method of multiple scales.
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the model. Substituting into the governing differential equation (44) and using the chain rule
for time derivatives lead to(

∂C

∂C
+

∂c

∂C

)
(G + g) = LC + Lc + f(C + c, ε) .

Given that it is impossible to solve this for the perfect corrections in one step, seek an ap-
proximate equation for the corrections of O

(
εq
)

by
• ignoring products of corrections because they will be small, O

(
ε2q
)
, compared with

the dominant effect of the linear correction terms;
• and replacing factors by their zeroth order approximation wherever they are multiplied

by a correction, introducing errors O
(
εq+1

)
, which slows the iteration convergence to

linear, as opposed to the quadratic convergence which would be obtained otherwise
(Geddes [15] gives an example of the quadratic convergence attained in the algebraic
solution of simpler odes).

Thus we wish to solve

∂C

∂C
G + g = LC + Lc + f(C, ε) .

Rearranging and recognizing that ∂C
∂CG = ∂C

∂t by the chain rule, we solve

Lc − g =
∂C

∂t
− LC − f(C, ε)(47)

for the corrections (on the left-hand side). The great advantage of this approach is that the
right-hand side is simply the residual of the governing equation (44), here the advection-
diffusion equation (2), evaluated at the current approximation. Thus at any iteration we just
deal with physically meaningful expressions; all the complicated expansions and rearrange-
ments of asymptotic expansions, as needed by the method of multiple scales [18, section 3.5]
or earlier methods to find the center manifold [7, section 5.4], are absent. Evaluating the
residual is very involved and potentially has enormous algebraic detail, much of which is re-
peated at every iteration. However, with the advent of computer algebra, as described in the
next section, all this detail may be left to the computer to perform, whereas all a human need
be concerned with is setting up the solution of (47) and not at all with the detailed algebraic
machinations of asymptotic expansions.

The main detail is to solve equations of the form

Lc − g = R(48)

for some given residual R. Recognize that its solution is not unique. The freedom comes
from the fact that we may parametrize the center manifold in an almost arbitrary manner.
The freedom is resolved by giving a precise meaning to the amplitudes; here we have set the
amplitude C to be precisely the cross-section average concentration. To solve (48) we find it
convenient to adopt the following procedure which is also familiar as part of other asymptotic
methods. Rewrite (48) as Lc = g+R and recognize that L is singular due to the zero eigenvalue
of conservation of material in cross-pipe diffusion. We choose g to place the right-hand side in
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the range of L by integrating over a cross-section. This is known as the solvability condition.
Having put the right-hand side in the range of L, we solve Lc = R̂ = g +R for c, making the
solution unique by requiring the cross-section averaged concentration to remain C. Then the
last step of each iteration is to update the approximations for the center manifold shape and
the evolution thereon.

When the residual is reduced to some asymptotic order, R = O
(
εq
)
, then the center

manifold approximation theorem [4] assures us that the model is correct to the same order of
error. Hence we write errors such as appear in (29). Due to the exponential quick decay to the
center manifold, the relevance theorem [4] then indicates that the long-wave slowly varying
dispersion models (4) and (35) apply after a few cross-pipe diffusion times.

Appendix B. Computer algebra derivation.

Computer algebra is a very powerful means to derive asymptotic expansions. In order for
other people to reproduce and verify the results recorded herein, I list here the core of the
program used to derive the asymptotic expansions; obtain the full program by request.

The computer algebra program was written in reduce
7 to calculate the asymptotic ex-

pansions of the center manifold models described in this article.

There is a lot of detail to the computer algebra program. However, the key to the cor-
rectness of the results is the coding of the governing equations which forms the key part of
the core printed here. The algorithm iteratively drives the residuals of these equations to be
smaller than some asymptotic orders of error; see Roberts [31] for a generic description of the
algorithm. Thus the details about how the residuals are reduced are not vital; it is important
only that they are correctly computed and are ultimately asymptotically negligible.
1 comment Find the flow in an arbitrarily curving pipe,

2 Simultaneously determine the shear dispersion in such a flow:

3 eps=magnitude of curvature terms,

4 del=magnitude of axial derivatives and of torsion.

5 ;

6 depend kap,s; % curvature

7 depend tau,s; % torsion

8 % local coordinate system is (s,r,th), tp=th+phi(s)

9 depend tp,s,th;

10 let { df(tp,s)=>-tau, df(tp,th)=>1 };

11 hs:=1-eps*kap*r*cos(tp);

12 hr:=1;

13 ht:=r;

14 % trigonometry rules OK

15 let { sin(~a)*cos(~b) => (sin(a+b)+sin(a-b))/2

16 , cos(~a)*cos(~b) => (cos(a-b)+cos(a+b))/2

17 , sin(~a)*sin(~b) => (cos(a-b)-cos(a+b))/2

18 , cos(~a)^2 => (1+cos(2*a))/2

19 , sin(~a)^2 => (1-cos(2*a))/2

20 };

21 % mean over a cross section (mult by r to use)

22 depend r,rt;depend tp,rt;

7At the time of writing, information about reduce was available from Anthony C. Hearn, RAND, Santa
Monica, CA 90407-2138 (mailto:reduce@rand.org). There were demonstration versions of reduce freely
available at ftp://ftp.zib.de/pub/reduce/demo or http://www.codemist.co.uk .

mailto:reduce@rand.org
ftp://ftp.zib.de/pub/reduce/demo
http://www.codemist.co.uk
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23 operator mean; linear mean;

24 let { mean(r^~m*cos(~n),rt) => 0

25 , mean(r^~m*sin(~n),rt) => 0

26 , mean(r^~m,rt) => 2/(m+1)

27 , mean(r,rt) => 1

28 };

29 % operators to solve for updates

30 ...

31 % initial approximations

32 u:=2*(1-r^2) +eps*3/2*kap*(r-r^3)*cos(tp);

33 v:=0;

34 w:=0;

35 % pressure = ps + p

36 % = (local mean gradient) + (zero mean fluctuation)

37 ps:=-8; p:=0;

38 % concentration of tracer, mean c.

39 depend c,s,t;

40 let df(c,t)=>g;

41 cc:=c;

42 g:=0;

43 pe:=re*sc; % Peclet number = Reynolds * Schmidt

44 rh:=1; % approx reciprocal of axial scale factor hs

45

46 % iterate until residuals are negligible

47 let { eps^3=>0, del^5=>0 }; % truncate the asymptotics

48 repeat begin

49 % reciprocal of scale factor

50 eqr:=hs*rh-1;

51 rh:=rh-eqr;

52 % vorticity

53 oms:=(df(r*w,r)-df(v,th))/r;

54 omr:=(df(hs*u,th)-del*df(r*w,s))*rh/r;

55 omt:=(del*df(v,s)-df(hs*u,r))*rh;

56 % Navier-Stokes equation

57 nss:=rh*(ps+del*df(p,s)) +(df(r*omt,r)-df(omr,th))/r

58 +re*( del*u*df(u,s)*rh+v*df(u,r)+w*df(u,th)/r

59 +u*df(hs,r)*v*rh+u*df(hs,th)*w*rh/r );

60 nsr:=df(p,r) +(df(hs*oms,th)-del*df(r*omt,s))*rh/r

61 +re*( del*u*df(v,s)*rh+v*df(v,r)+w*df(v,th)/r

62 -w^2/r-df(hs,r)*u^2*rh );

63 nst:=df(p,th)/r +(del*df(omr,s)-df(hs*oms,r))*rh

64 +re*( del*u*df(w,s)*rh+v*df(w,r)+w*df(w,th)/r

65 -u^2*df(hs,th)*rh/r+v*w/r );

66 % continuity equation

67 cty:=(del*df(r*u,s)+df(r*hs*v,r)+df(hs*w,th))*rh/r;

68 ...

69 % equation for tracer evolution

70 ceq:= df(cc,t) +pe*( del*u*df(cc,s)*rh+v*df(cc,r)+w*df(cc,th)/r )

71 -(del^2*df(rh*r*df(cc,s),s)+df(r*hs*df(cc,r),r)

72 +df(hs/r*df(cc,th),th))*rh/r;

73 cmean:=mean(r*hs*cc,rt)-c;

74 ...

75 end until (eqr=0)and(nss=0)and(nsr=0)and(nst=0)

76 and(cty=0)and(ceq=0)and(cmean=0);
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77

78 % check subsiduary conditions

79 uwall:=sub(r=1,u);

80 vwall:=sub(r=1,v);

81 wwall:=sub(r=1,w);

82 umean:=mean(r*u,rt);

83 pmean:=mean(r*p,rt);

84 cwall:=sub(r=1,df(cc,r));

85 cflux:=mean(r*(u*pe*cc-del*rh*df(cc,s)),rt);

86 end;

Observe that the pressure is decomposed into a mean gradient and a cross-pipe fluctuating
component. There is code to adjust the mean pressure gradient to ensure a constant mean
fluid flux. To adapt to the traditional fixed pressure gradient in a helical or toroidal pipe, one
just needs to omit the adjustment. However, the results are then inappropriate to a pipe with
varying curvature or torsion.
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Abstract. Motivated by the rich variety of complex periodic and quasi-periodic patterns found in systems such
as two-frequency forced Faraday waves, we study the interaction of two spatially periodic modes
that are nearly resonant. Within the framework of two coupled one-dimensional Ginzburg–Landau
equations we investigate analytically the stability of the periodic solutions to general perturbations,
including perturbations that do not respect the periodicity of the pattern, and which may lead to
quasi-periodic solutions. We study the impact of the deviation from exact resonance on the destabi-
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1. Introduction. Pattern-forming instabilities lead to an astonishing variety of spatial and
spatio-temporal structures, ranging from simple periodic stripes (rolls) to spatially localized
structures and spatio-temporally chaotic patterns. Even within the restricted class of steady
spatially ordered patterns a wide range of patterns has been identified and investigated beyond
simple square or hexagonal planforms including patterns exhibiting multiple length scales:
superlattice patterns, in which the length scales involved are rationally related rendering the
pattern periodic albeit on an unexpectedly large length scale, and quasi patterns, which are
characterized by incommensurate length scales and which are therefore not periodic in space.
These more complex two-dimensional patterns have been observed in particular in the form
of Faraday waves on a fluid layer that is vertically shaken with a two-frequency periodic
acceleration function [17, 1, 26, 2] and to some extent also in vertically vibrated Rayleigh–
Bénard convection [44] and in nonlinear optical systems [35]. The Faraday system is especially
suitable for experimental investigation of pattern formation in systems with two competing
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spatial modes of instability since such codimension-two points are easily accessible by simply
adjusting the frequency content of the periodic forcing function [17, 5]. The observation of
both superlattices and quasi patterns in this physical system raises an intriguing question
concerning the selection of these kinds of patterns: What determines whether, for given
physical parameters, a periodic or a quasi-periodic pattern is obtained? This provides the
main motivation for the present paper in which we address certain aspects of the selection
problem within the somewhat simple framework of mode competition in one spatial dimension.

To capture the competition between commensurate/incommensurate length scales we fo-
cus on the interaction between two modes with a wavelength ratio that is close to, but not
necessarily equal to, the ratio of two small integers. We are thus led to consider a near-
resonant mode interaction. We focus on the case in which both modes arise in a steady
bifurcation. While at first sight it may seem that an analysis of steady-state modes would
not be applicable to two-frequency forced Faraday waves, for which most of the patterns of
interest in the present context have been observed, it should be noted that very close to onset
the amplitude equations for these waves can be reduced to the standing-wave subspace, in
which the waves satisfy equations that have the same form as those for modes arising from a
steady bifurcation (see, for example, [38]).

The competition between commensurate and incommensurate steady structures has been
addressed previously in the context of a spatially periodic forcing of patterns [29, 7, 10, 12, 34].
Using a one-dimensional external forcing of two-dimensional patterns in electroconvection of
nematic liquid crystals, localized domain walls in the local phase of the patterns were observed
if the forcing wavenumber was sufficiently incommensurate with the preferred wavenumber of
the pattern [29]. Theoretically, the domain walls were described using a one-dimensional
Ginzburg–Landau equation that included a near-resonant forcing term, which reflects the
small mismatch between the forcing wavenumber and the wavenumber of the spontaneously
forming pattern [7, 8]. The situation we have in mind in the present paper is similar to these
studies in so far as the competing modes we investigate also provide a periodic forcing for
each other. The case of external forcing is recovered if one of the two modes is much stronger
than the other and consequently the feedback from the forced mode on the forcing mode can
be ignored. We do not restrict ourselves to this case, however, and thus both modes are active
degrees of freedom, and the interaction between them is mutual.

The analysis of the interaction of two exactly resonating modes near a codimension-two
point at which both modes bifurcate off the basic, unpatterned state has revealed a wide
variety of patterns and dynamical phenomena. Rich behavior has been found in small systems
in which the interacting modes are determined by the symmetry and shape of the physical
domain (e.g., [47, 31, 11, 20, 48, 33, 24]). More relevant for our goal are the studies of
mode-interaction in the presence of translation symmetry, since they allow the extension
to systems with large aspect ratio, which are required to address the difference between
commensurate and incommensurate structures. Our investigation builds on a comprehensive
analysis, performed by Dangelmayr [13], of the interaction between two resonant spatial modes
in O(2)-symmetric systems with wavenumbers in the ratio m : n, m < n. (Here the O(2)-
symmetry is a consequence of restricting our attention to spatially periodic patterns in a
translation-invariant system.) For m > 1 there are two primary bifurcations off the trivial
state to pure modes followed by secondary bifurcations to mixed modes. These mixed modes
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can in turn undergo a Hopf bifurcation to generate standing wave solutions and a parity-
breaking bifurcation that produces traveling waves. For m = 1 similar results are found
except that there is only one pure-mode state—the one with the higher wavenumber; the
other primary bifurcation leads directly to a branch of mixed modes. Further analyses of this
system have revealed structurally and asymptotically stable heteroclinic cycles near the mode
interaction point when m : n = 1 : 2 [25, 39, 3]. More recently, complex dynamics organized
around a sequence of transitions between distinct heteroclinic cycles has been discovered in
resonances of the form 1 : n [36, 37], in particular, in the cases n = 2 and n = 3.

Although early work on resonant mode interactions considered only strictly periodic so-
lutions, it provided insight into various phenomena that were observed experimentally in
large-aspect ratio systems involving large-scale modulations of the patterns. For example, in
steady Taylor vortex flow it was found experimentally that not too far from threshold the
band of experimentally accessible wavenumbers is substantially reduced compared to the sta-
bility limit obtained by the standard analysis of side-band instabilities in the weakly nonlinear
regime [15]. The origin of this strong deviation was identified to be a saddle-node bifurcation
associated with the 1 : 2 mode interaction [42]. In directional solidification [46] localized drift
waves have been observed, which arise from the parity-breaking bifurcation [30, 9, 22] that is
associated with the resonant mode interaction with wavenumber ratio 1 : 2 [28]. Subsequently
such waves have also been obtained in a variety of other systems including directional viscous
fingering [40], Taylor vortex flow [49, 43], and premixed flames [4]. In our treatment of the
near-resonant case the mode amplitudes are allowed to vary slowly in space. It therefore
naturally incorporates phenomena like the localized drift waves and the modification of side-
band instabilities by the resonance. The interaction of two one-dimensional steady patterns
with different natural spatial scales in large reflection symmetric domains has been studied
in [32, 16]. Specifically, in [32] an analysis is carried out on a nonlocal system of equations
describing the interaction between the modulation of a shortwave mode and a longwave mode.
The authors show that in addition to mixed-mode solutions traveling waves can exist in a large
region of parameter space. In [16], a pair of singularly perturbed Ginzburg–Landau equations,
truncated at cubic order, is considered to describe the interaction that occurs between two
shortwave modes with modulation scales differing significantly. These equations are shown to
contain a very complicated set of localized stationary patterns.

In this paper we study the interaction of two nearly resonant modes in a spatially extended,
driven, dissipative system. Near onset we model the slow dynamics of such systems by two
amplitude equations of Ginzburg–Landau type, one for each mode. We focus on the weak
resonances (m+n ≥ 5) in order to avoid some of the specific features of the strong-resonance
cases (for example, the structurally stable heteroclinic cycles in the case m : n = 1 : 2). A
recent paper by Dawes, Postlethwaite, and Proctor presents a complementary investigation
near the 1 : 2 resonance [14]. Our primary goal here is to investigate the transitions between
periodic and quasi-periodic states that take place as the result of side-band instabilities, with
an eye on how the detuning from exact spatial resonance influences this process. We find
that the detuning can play an important role in the selection of the final wavenumbers of the
modes involved. For example, it can favor a periodic to quasi-periodic transition that would
otherwise (i.e., in the case of exact resonance) result in a second periodic state. Among the
various quasi-periodic states that we find in numerical simulations are several that consist of
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drifting localized structures with alternating locked (periodic) and unlocked (quasi-periodic)
domains.

It should be noted that at present there is no rigorous justification for the description of
quasi-periodic patterns using low-order amplitude expansions. In fact, the lack of straight-
forward convergence of such an expansion has been investigated recently for two-dimensional
quasi patterns [45]. We will not discuss these issues; instead we use the coupled Ginzburg–
Landau equations as model equations that are known to be the appropriate equations for
periodic patterns and at the same time also allow quasi-periodic solutions.

The organization of the paper is as follows. In section 2 we set up the coupled Ginzburg–
Landau equations that are based on the truncated normal form equations for the m : n
resonance. In section 3 we utilize and build upon the detailed results of Dangelmayr [13]
to describe the stability properties of steady spatially periodic states (i.e., pure and mixed
modes) with respect to perturbations that preserve the periodicity of the pattern. In section 4
we turn to the question of stability of the steady periodic solutions with respect to side-band
instabilities. Here we also determine how these instabilities are affected by the detuning from
perfect resonance. In section 5 we carry out numerical simulations to investigate the nonlinear
evolution of the system subsequent to the side-band instability identified in section 4. The
numerical investigations presented in sections 4 and 5 focus on the case m : n = 2 : 5. This
case is representative of weak resonances. Moreover, it possesses an additional interesting
feature in that the resonance terms (i.e., the terms that couple the phases of the two modes)
can affect the stability of primary solutions. Finally, our concluding remarks are given in
section 6.

2. The amplitude equations. We consider driven dissipative systems in one spatial di-
mension that are invariant under spatial translations and reflections. We further assume that
in the system of interest there are two distinct spatial modes that destabilize the basic ho-
mogeneous state nearly simultaneously. The wavenumbers of these two modes, q1 and q2,
correspond to minima of the neutral curves and are assumed to be in approximate spatial
resonance, i.e.,

n(q1 + εγ̂) = mq2, |ε| � 1,(2.1)

where m and n > m are positive coprime integers and the term εγ̂ measures the deviation
from perfect resonance. Physical fields, near onset, may then be expanded in terms of these
two spatial modes:

u(x, t) = ε[A1(X,T )ei(q1+εγ̂)x +A2(X,T )eiq2x + c.c.] + · · · .(2.2)

The two modes are allowed to vary on slow spatial and temporal scales X = εx and T = ε2t,
respectively. Note that in the expansion (2.2) we do not expand about the minima q1,2 of
the neutral stability curves, which for γ̂ �= 0 are not in spatial resonance, but take instead a
mode A1 which is in exact spatial resonance with A2. This choice of A1 and A2 simplifies the
equations, avoiding any explicit dependence on the spatial variable in the resulting amplitude
equations. Furthermore, we allow for a small offset between the critical values of the forcing
amplitudes F1c, F2c of the two modes (see Figure 1).
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Figure 1. Sketch of the neutral stability curve for the two modes.

The equations governing the evolution of A1 and A2 must be equivariant under the sym-
metry operations generated by spatial translations (Tϕ) and spatial reflections (R), which act
on (A1, A2) as follows:

Tϕ : (A1, A2) → (eimϕA1, e
inϕA2) for ϕ ∈ [0, 2π),(2.3)

R : (A1, A2) → (Ā1, Ā2),

where the bar denotes the complex conjugate. Consistent with this equivariance requirement,
the slow evolution of A1 and A2 can be approximated, after rescaling, by the Ginzburg–Landau
equations

A1T = µA1 + δA1XX − iγA1X − (s|A1|2 + ρ|A2|2)A1 + νĀn−1
1 Am

2 ,(2.4)

A2T = (µ+ ∆µ)A2 + δ′A2XX − (s′|A2|2 + ρ′|A1|2)A2 + ν ′Ām−1
2 An

1 .(2.5)

The subscripts indicate partial derivatives with respect to X and T . The main control pa-
rameter µ ∝ (F − F1c)/ε

2 measures the magnitude of the overall forcing. In addition, we
keep track of the offset in the two critical forcing amplitudes with ∆µ ≡ (F1c − F2c)/ε

2 (see
Figure 1) and capture the detuning between q1 and mq2/n with γ ≡ 2δγ̂. The local curva-
ture of the neutral stability curves near q1 and q2 is measured by δ and δ′, respectively. We
further assume that the nonlinear self- and cross-interaction coefficients satisfy the nondegen-
eracy conditions ss′ �= 0 and ss′ − ρρ′ �= 0 and perform a simple rescaling such that s = ±1,
s′ = ±1.

One goal of this paper is to gain insight into the difference between periodic and quasi-
periodic patterns in systems with two unstable wavenumbers. If the two wavenumbers are
not rationally related and their irrational ratio is kept fixed as the onset for the two modes
is approached, then only terms of the form Ai|Aj |2l, l = 1, 2, 3 . . . , appear in the equation for
Ai. For a rational ratio, however, additional nonlinear terms arise, which couple the otherwise
uncoupled phases of the two modes Ai. For the m : n-resonance the leading-order resonance
terms are given by Ān−1

1 Am
2 and Ām−1

2 An
1 in the equations for A1 and A2, respectively. In

order to explore the connection between the rational and the irrational case, we consider a
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wavenumber ratio which may be irrational, but its deviation from the ratio m : n is of O(ε).
This allows the mismatch between the two wavenumbers to be captured by the slow spatial
variable X and allows us to describe periodic and quasi-periodic patterns with the same set
of equations (2.4), (2.5). Equivalently, we could have expanded in the irrationally related
wavenumbers q1 and q2 associated with the minima of the neutral curves in Figure 1. Then
the resonance terms would introduce space-periodic coefficients with a period that is related
to the mismatch of the wavenumbers. Our choice of the expansion wavenumbers (cf. (2.1))
removes this space-dependence and introduces the first-order derivative −iγ∂XA1 in its place.

We focus on the weak resonances, m + n ≥ 5, in which the resonant terms are of higher
order. We neglect, however, nonresonant terms of the form Ai|Aj |p (i, j = 1, 2 and 4 ≤ p ∈ N)
which may arise at lower order. This is motivated by the observation that such terms do
not contribute any qualitatively new effects for small amplitudes. The resonant terms, in
contrast, remove the unphysical degeneracy that arises when the phases are left uncoupled
and can therefore influence dynamics in a significant way despite appearing at higher order.
Note, however, that near onset the resonant terms are typically small and the phase coupling
between A1 and A2 occurs on a very slow time scale. The coupling becomes stronger further
above onset where the weakly nonlinear analysis may no longer be valid.

It is often useful to recast (2.4), (2.5) in terms of real amplitudes Rj ≥ 0 and phases φj
by writing Aj = Rje

iφj . This leads to

R1T = µR1 − (sR2
1 + ρR2

2)R1 + νRn−1
1 Rm

2 cos(nφ1 −mφ2)

+ δR1XX − δφ2
1XR1 + γφ1XR1,(2.6)

R2T = (µ+ ∆µ)R2 − (s′R2
2 + ρ′R2

1)R2 + ν ′Rm−1
2 Rn

1 cos(nφ1 −mφ2)

+ δ′R2XX − δ′φ2
2XR2,(2.7)

R1φ1T = −νRn−1
1 Rm

2 sin(nφ1 −mφ2) + δφ1XXR1 + 2δφ1XR1X − γR1X ,(2.8)

R2φ2T = ν ′Rm−1
2 Rn

1 sin(nφ1 −mφ2) + δ′φ2XXR2 + 2δ′φ2XR2X .(2.9)

If the spatial dependence in (2.6)–(2.9) is ignored, the system reduces to a set of ODEs equiv-
alent to the one analyzed by Dangelmayr [13]. In this simplified problem, the translational
symmetry (Tϕ) causes the overall phase to decouple and leaves only the three real variables:
R1, R2, and the mixed phase

φ = nφ1 −mφ2,(2.10)

with dynamically important roles. Dangelmayr’s bifurcation analysis produced expressions
for the location of primary bifurcations to pure-mode solutions, secondary bifurcations to
mixed-mode solutions, and, in some instances, tertiary bifurcations to standing-wave and
traveling-wave solutions. These results apply to a general m : n resonance and prove useful
in what follows.

3. Steady spatially periodic solutions. In this section we analyze steady solutions of
(2.4), (2.5) of the form

A1 = R1e
i(kX+φ̂1), A2 = R2e

i((nk/m)X+φ̂2),(3.1)
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where R1,2 ≥ 0 and φ̂1,2 and k are real. Such states represent spatially periodic solutions
of the original problem with wavenumbers q̃1 = q1 + εγ + εk and q̃2 = q2 + εnk/m so that
q̃1n = q̃2m. These solutions break the continuous translational symmetry (Tϕ) but remain
invariant under discrete translations.

Within this family of steady states there are generically only two types of nontrivial
solutions, pure modes and mixed modes, which we describe below.

I. Pure modes (S1,2). These are single-mode states, which take one of two forms:

S1 : (A1, A2) = (
√
α/s ei(kX+φ̂1), 0) for m > 1,

S2 : (A1, A2) = (0,
√
β/s′ ei((nk/m)X+φ̂2)),(3.2)

where φ̂1, φ̂2 ∈ [0, 2π) and

α = µ− δk2 + γk,

β = µ+ ∆µ− δ′(nk/m)2.(3.3)

Note that pure modes of type S1 are not present if m = 1 (see (2.4), (2.5)). Moreover, the pure
modes S1 and S2 are not isolated but emerge as circles of equivalent solutions (parametrized
by φ̂1 or φ̂2). Hereafter we consider resonances m : n, where m ≥ 2, in which case both pure
modes S1 and S2 are present.

II. Mixed modes (S±). There are two types of mixed modes,

S± : (A1, A2) = (R1 e
i(kX+φ̂1), R2 e

i((nk/m)X+φ̂2)),(3.4)

satisfying

S± : cos(φ) = ±1,

(s′α− ρβ) = (ss′ − ρρ′)R2
1 ± (s′νR2

2 − ν ′ρR2
1)R

m−2
2 Rn−2

1 ,

(sβ − ρ′α) = (ss′ − ρρ′)R2
2 ± (sν ′R2

1 − νρ′R2
2)R

m−2
2 Rn−2

1 .
(3.5)

Here φ is the mixed phase given by (2.10), and α and β are defined by (3.3). As in the case
of the pure modes S1,2, translational symmetry implies that there are circles of equivalent

mixed-mode states (parametrized by φ̂1, say). Like the pure modes, the mixed modes are
invariant under reflections (R) through an appropriate origin.

3.1. Stability under homogeneous perturbations. The stability of S1,2 and S± under ho-
mogeneous perturbations can be obtained from Dangelmayr’s analysis [13], which we review
here in some detail to provide the background necessary for our analysis. The stability regions
in the (α, β)-unfolding plane simply need to be mapped to the (k, µ)-plane with the (nonlin-
ear) transformation (3.3). Each intersection of the curves α = 0 and β = 0 corresponds to the
codimension-two point of [13]; there are generically zero or two such intersections. Since the
nonlinear coefficients are identical in the vicinity of both intersections, the response of the sys-
tem to homogeneous perturbations in corresponding neighborhoods of the (two) intersections
is identical. In particular, any bifurcation set arising from one intersection arises from the
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Figure 2. Bifurcation sets indicating the creation of pure modes (thick solid lines), mixed modes (thin solid
lines L±

1 , L1, and L2), standing waves (dashed lines SW±), and traveling waves (dash-dotted lines TW±), as
well as saddle-node bifurcations (dashed lines SN). The specific resonance m : n is indicated above the plots.
In each case ∆µ = 0.5, γ = 0.5, δ = δ′ = 1, ρ = 0.4, and ρ′ = 0.67. In (a) s = −s′ = 1, ν = 0.62, and
ν′ = 1.02, but in (b), (c), and (d) s = s′ = −1, ν = 0.62, and ν′ = −1.02.

other as well. Several examples are given in Figure 2, which shows the various bifurcation sets
in the (k, µ)-plane in four representative cases. These bifurcations are described below. Note
that for mode A1 the deviation of the wavenumber from the critical wavenumber is given by
εk, whereas for mode A2 it is given by εnk/m. Additional details, valid in sufficiently small
neighborhoods of the intersections, are available in [13].

In this paper we study (2.4), (2.5) with the coefficients ν and ν ′ of the higher-order
resonance terms taken to be of order 1. The resulting stability and bifurcation diagrams
therefore contain certain features that do not remain local to the bifurcation when ν, ν ′ → 0;
i.e., in this limit these features disappear at infinity, µ → ∞, and do not represent robust
aspects of the mode-interaction problem. We return to this issue briefly at the end of this
section and indicate which features of our sample bifurcation sets are not robust in the limit
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ν, ν ′ → 0.
The pure modes S1 and S2 bifurcate from the trivial state when α = 0 and β = 0,

respectively; the bifurcation to S1 (S2) is supercritical if s = 1 (s′ = 1). Their stability is
determined by four eigenvalues, one of which is forced to be zero by translation symmetry. In
the case of S1 the remaining three eigenvalues are

λ
(1)
0 = −2α/s,

L1 : λ
(1)
± = (β − ρ′α)/s±

{
ν ′ |α/s|n/2

}
m=2

,(3.6)

where the bracketed term with subscriptm = 2 is present only ifm = 2. For S2 the eigenvalues
are given by

λ
(2)
0 = β/s′,

L2 : λ
(2)
+ = λ

(2)
− = (s′α− ρβ)/s′.(3.7)

When one of the eigenvalues λ
(1)
± (λ

(2)
± ) changes sign the pure modes S1 (S2) become

unstable to mixed modes, respectively. For S2 the two eigenvalues coincide, and the bifurcation
occurs along a single line denoted by L2 in Figure 2. Similarly, for m > 2 the transition from
S1 to the mixed modes S± occurs along the single curve L1 (Figure 2(a),(b)). For m = 2

the eigenvalues λ
(1)
± are not degenerate and the line L1 splits into two curves, L+

1 and L−
1 ;

the mixed mode S+ bifurcates at L+
1 and S− bifurcates at L−

1 (L±
1 in Figures 2(c),(d)). The

splitting is due to the presence of the resonant terms which are linear in A2 if m = 2 but
not otherwise. Both curves, L+

1 and L−
1 , become tangent to each other at the intersection

α = β = 0.
The response of the mixed modes to amplitude perturbations is decoupled (due to reflec-

tion symmetry) from the effect of phase perturbations. The amplitude stability is determined
by the eigenvalues of a 2 × 2-matrix M±, whose determinant and trace can be written as
(recall we consider m > 1)

det(M±) = −4(ρρ′ − ss′)R2
1R

2
2 ±Rn−2

1 Rm−2
2 H(R1, R2),(3.8)

Tr(M±) = −2s(R2
1 + ss′R2

2) ±Rn−2
1 Rm−2

2 (ν(n− 2)R2
2 + ν ′(m− 2)R2

1)(3.9)

with

H(R1, R2) = −2
[
ν ′s(m− 2)R4

1 + νs′(n− 2)R4
2 −R2

1R
2
2(ρ

′νm+ ρν ′n)
]
.(3.10)

Here R1 and R2 are solutions of (3.5). Since in general ν and ν ′ are of O(εm+n−4), the
contribution H(R1, R2) from the resonance term affects the steady bifurcation determined by
(3.8) only for m ≤ 3. In particular, in the cases m : n = 3 : n and m : n = 2 : 3 the function
H can balance the first term along curves through the codimension-two point along which
R2 � R1 and R1 � R2, respectively, and one of the mixed states experiences a saddle-node
bifurcation (curves labeled SN in Figures 2(b),(d)) [13]. For 2 : n resonances with n ≥ 5 the
term R4

1 drops out of H(R1, R2). Consequently, the H-term cannot balance the first term in
(3.8) and no saddle-node bifurcations occur.
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For m ≥ 4 the sign of det(M±) does not depend on R1,2. Then the S± solutions are always
unstable for (ρρ′ − ss′) > 0, while for (ρρ′ − ss′) < 0 their stability must be deduced from
the sign of Tr(M±). If ss′ = 1, it follows from (3.9) that for ε � 1 sign(Tr(M±)) = −s; the
mixed modes S± are then stable to amplitude perturbations if s = +1. On the other hand,
if ss′ = −1, the trace of M± can change sign, indicating the possibility of a Hopf bifurcation.
The resulting time-periodic solutions inherit the reflection symmetry of S± (so φ̇1 = φ̇2 = 0)
and therefore correspond to standing waves (SW curves in Figure 2(a)).

Instabilities associated with perturbations of the mixed phase (2.10) lead to bifurcations
breaking the reflection symmetry. The relevant eigenvalues are given by

TW : e± = ∓(νnR2
2 + ν ′mR2

1)R
n−2
1 Rm−2

2(3.11)

and may pass through zero only if sign(νν ′) = −1. In this case the S± states undergo a
pitchfork bifurcation, reflection symmetry is broken, and traveling waves appear (TW curves
in Figures 2(b),(d)). These traveling-wave solutions manifest themselves as fixed points of the
three-dimensional ODE system involving R1, R2, and φ but are seen to be traveling waves
by the fact that the individual phase velocities are nonzero: φ̇1/φ̇2 = n/m. Since the phase
velocity of these waves goes to 0 at the bifurcation, they are often called drift waves. We do
not consider the stability properties of the traveling-wave solutions in this paper.

The stability results for S1,2 and S± described above are illustrated in Figures 3, 4, and 5
for m : n = 2 : 5 and the indicated parameter values. They all satisfy

s = s′ = 1, ss′ − ρρ′ > 0, νν ′ < 0(3.12)

so that the pure modes S1,2 bifurcate supercritically in all cases. Next to these plots we
sketch the type of bifurcation diagram one obtains when increasing µ at constant k along the
thin dashed vertical lines. Since in all cases ss′ − ρρ′ > 0, both mixed modes S± are stable
to amplitude perturbations (see the explanation following (3.8), (3.9)). The stability of S±
with regard to phase perturbations depends, however, on the eigenvalue e± given by (3.11).
Because νν ′ < 0, this eigenvalue may change sign, causing the mixed modes S± to undergo
a symmetry-breaking bifurcation to traveling waves. Figures 3, 4, and 5 present six different
cases characterized by the following quantities:

χ = γ2 − 4∆µ

(
δ −

( n
m

)2
δ′
)

and Λ =
γ2

4δ
− ∆µ.(3.13)

The parameter χ controls the intersection of the parabolas α = 0 and β = 0; they intersect
if χ ≥ 0 and not otherwise. The quantity Λ determines the relative position (µ-value) of the
minima of the curves α = 0 and β = 0. It thus indicates which of the two modes, S1 or S2, is
excited first. S2 appears first when Λ > 0, while S1 takes priority for Λ < 0; if Λ = 0, both
pure modes onset simultaneously.

The degenerate case χ = Λ = 0, i.e., γ = ∆µ = 0, is illustrated in Figure 3. In this case
the curves α = 0 and β = 0 intersect only once and their minima coincide. While in Figure
3(a) the neutral curve for mode A1 is wider than that for A2, it is the other way around in
Figure 3(b). Note that the wavenumber nk/m of A2 is larger than that of A1; therefore to
make the neutral curve of A2 wider than that of A1 requires a large ratio of δ/δ′. Depending
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Figure 3. Stability regions of the pure modes and mixed modes for the resonance 2 : 5 for ∆µ = 0 and
γ = 0. Figures on the right are sketches of bifurcation diagrams associated with the vertical paths (dashed lines)
in the stability regions on the left. Solid lines correspond to stable states and dashed lines to unstable states. T
stands for trivial state. (a) δ = δ′ = 1, s = s′ = 1, ρ = 0.4, ρ′ = 0.67, ν = 0.62, and ν′ = −1.02. (b) δ = 5,
δ′ = 0.5, s = s′ = 1, ρ = 1.5, ρ′ = 0.5, and ν = −ν′ = 0.05. In (a) the traveling-wave branch that arises at
TW+ is not shown since we do not consider stability properties of traveling solutions.

on the nonlinear coefficients, all four branches of pure modes and mixed modes (S1, S2, S±) or
just the pure modes (S1,S2) may arise at the intersection point of the neutral curves. Because
we are considering s = s′ = 1, S1 and S2 bifurcate supercritically. For k = 0 the eigenvalues

λ
(1,2)
± (cf. (3.6), (3.7)) determining the stability of S1 and S2 take the simpler form

L1 : λ
(1)
± = µ(1 − ρ′) ±

{
ν ′ |µ|n/2

}
m=2

for S1,(3.14)

L2 : λ
(2)
± = µ(1 − ρ) for S2.

Near onset (i.e., 0 < µ� 1) S1 and S2 are stable if 1− ρ′ < 0 and 1− ρ < 0, respectively.



474 M. HIGUERA, H. RIECKE, AND M. SILBER

In the case m = 2, the stability of S1 can be modified at larger values of µ by the resonant
terms. Near onset the amplitudes of the mixed modes are approximated by

S± : R2
1 =

1

1 − ρρ′
(
µ(1 − ρ) ∓ (ν − ν ′ρ)o(µ2)

)
,(3.15)

R2
2 =

1

1 − ρρ′
(
µ(1 − ρ′) ∓ (ν − ν ′ρ)o(µ2)

)
.

Note that small-amplitude mixed modes S± can therefore exist only if (1− ρ)(1− ρ′) > 0. As
discussed above, when ρρ′ < 1, the stability of S± is controlled by the phase eigenvalue e± of
(3.11). Upon substituting (3.15) into (3.11), we find that

sign(e±) = sign

{
∓ µ

1 − ρρ′
(
nν(1 − ρ′) +mν ′(1 − ρ)

)}
.(3.16)

The results for ∆µ = γ = 0 and s = s′ = 1 may now be summarized:
1. If 1 − ρ > 0 and 1 − ρ′ > 0, both pure and mixed modes bifurcate from the trivial

state as the forcing µ is increased. The two pure modes are both unstable, while one
of the mixed modes, either S+ or S−, is stable. This case is illustrated in the diagram
of Figure 3(a); in this example sign(e±) = ∓1 (see (3.16)), implying that S+ is stable
and S− is unstable at onset.

2. If 1 − ρ < 0 or 1 − ρ′ < 0, only the two pure modes are present at onset. When
1 − ρρ′ > 0, S1 is stable if 1 − ρ′ < 0 and S2 is stable if 1 − ρ < 0. In particular, a
bistable situation is permitted. In the example shown in Figure 3 only S2 is stable
because 1 − ρ′ > 0.

Figure 4 presents two possible unfoldings of the degenerate diagrams shown in Figure 3. In
both cases the curves α = 0 and β = 0 intersect twice because χ > 0. In Figure 4(a) the pure
mode S2 appears first (Λ > 0) and is stable. With increasing µ, however, perturbations in
the direction of the other mode, A1, become increasingly important, eventually destabilizing
S2 at L2 in favor of the mixed modes S±. Since R1 � R2 in the vicinity of L2 and ν > 0,
S+ is the stable mixed mode (cf. (3.11)). In Figure 4(b) we have Λ < 0, and the roles of
S1 and S2 are switched. The mode S1, which is now stable at onset, is destabilized by a
perturbation in the direction of A2 at L−

1 , generating the mixed state S−. It undergoes a
second bifurcation involving a perturbation in the direction of A2 at L+

1 , leading to the mixed
mode S+. In this case S− is stable, not S+. In contrast with Figure 4(a), however, the pure
mode S2 is ultimately stabilized at large µ since ρ > s′ = 1. Therefore the cross-interaction
term ρ|A2|2 ≡ ρ(µ+ ∆µ)/s′ in (2.4), (2.5) dominates the linear growth rate µ of A1 for large
µ and suppresses the perturbations in the direction of A1.

Figure 5 shows diagrams for the case where the curves α = 0 and β = 0 do not cross
(χ < 0). In Figure 5(a) the pure mode S2 bifurcates first, while S1 does so in Figure 5(b).
The subsequent bifurcations that these states undergo are basically of the same type as those
in Figure 4. For example, in Figure 5(a) the mode S2 becomes unstable to the mixed modes at
L2, while S1 eventually gains stability at large µ because ρ > s′. A feature of Figure 5(b) that
is not present in the previous diagrams is the saddle-node bifurcation on the S+ branch. The
appearance of this bifurcation is not specific to the case χ < 0 but depends on the nonlinear
coefficients, in particular on the resonance coefficients ν and ν ′ (see (3.5)).
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Figure 4. Stability regions of the pure modes and mixed modes for the resonance 2 : 5. Figures on the right
are bifurcation diagrams associated with the vertical paths (dashed lines) in the stability diagrams on the left.
T stands for trivial state A1 = A2 = 0. (a) Same parameters as in Figure 3(a) but ∆µ = 0.366 and γ = 0.7.
(b) Same parameters as in Figure 3(b) but ∆µ = −0.5 and γ = 0.5. The branch of traveling waves that arises
from TW− in (a), or that (possibly) connects the S+ with the S− solutions in (b), is not shown.

A comment regarding the validity of the phase diagrams is in order. For the weak res-
onances we are considering in this paper the resonant terms proportional to ν and ν ′ are of
higher order in the amplitudes. Consequently, they have to be considered as perturbation
terms. Since they are responsible for the splitting of the lines L1 and TW into L±

1 and TW±,
only those aspects of the results presented in Figures 3, 4, and 5 that persist as this splitting
becomes small are expected to hold systematically. Thus, the transition to traveling waves
at k = 0 in Figure 4(b) is robust, while that at k = 0 in Figure 4(a) is shifted to ever larger
values of µ as the resonant terms become weaker. Similarly, the saddle-node bifurcation of S+

in Figure 5(b) is not robust. It disappears through a sequence of bifurcations that involves a
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Figure 5. Stability regions of the pure modes and mixed modes for the resonance 2 : 5. Figures on the right
are sketches of bifurcation diagrams associated with the vertical paths (dashed lines) in the stability diagram on
the left. T stands for trivial state A1 = A2 = 0. (a) ∆µ = 0.5, γ = 0.5, δ = 5, δ′ = 0.5, s = s′ = 1, ρ = 0.5,
ρ′ = 1.5, and ν = −ν′ = 0.085. (b) ∆µ = −0.1125, γ = 0.5, δ = δ′ = 1, s = s′ = 1, ρ = 1.5, ρ′ = 0.5, ν = 0.5,
and ν′ = −1.01. The branch of traveling waves that (possibly) connects the S+ with the S− solutions in (a), or
that arises from TW− in (b), is not shown.

merging of the branch S+ with S1. For very small |ν| and |ν ′| the branch S+ merges with S1

close to L−
1 .

4. Side-band instabilities. We now turn to the analytical core of this paper, the stability
of the spatially periodic solutions with respect to side-band instabilities. Such instabilities are
expected to destroy the periodicity of the solutions and provide a possible connection with
quasi-periodic patterns. We therefore consider perturbations of the periodic solutions in the
form

A1 = (1 + a1(X,T ))R1e
i(kX+φ̂1), A2 = (1 + a2(X,T ))R2e

i((nk/m)X+φ̂2),(4.1)
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where aj(X,T ) = (a+
j (T )eiQX + a−j (T )e−iQX) with Q �= 0 and j = 1, 2. Note that the

perturbation wavenumber Q is measured relative to the deviation wavenumbers k and nk/m.
The linear stability of the pure modes S1,2 and the mixed modes S± is calculated by inserting
the ansatz (4.1) into (2.4), (2.5) and linearizing in a±j . The details of these calculations are
given in Appendix A.

4.1. Pure modes S1,2. The linearized system for the perturbations associated with the
pure modes S1,2 separates into two uncoupled 2× 2-blocks, which allows the stability of each
pure mode to be calculated analytically. These two blocks can be associated with longwave
and shortwave instabilities, respectively. The block corresponding to the longwave instability
contains the eigenvalue related to spatial translations (i.e., phase modulations). The other
(shortwave) block describes the evolution of amplitude perturbations in a direction transverse
to the relevant pure-mode subspace. We find that in addition to the instabilities discussed in
section 3 the destabilization of the pure modes can occur by longwave (Eckhaus) or shortwave
instabilities.

In the case of S1, a straightforward calculation yields

E1 : µ− δk2 − γk − (γ + 2kδ)2/2δ = 0,(4.2)

Γ1 : (sβ − ρ′α)/s+ δ′(nk/m)2 +
{
ν ′2|α/s|n/4δ′(nk/m)2

}
m=2

= 0,(4.3)

where E1 is the Eckhaus curve and Γ1 is the stability limit associated with shortwave pertur-
bations. If the curve Γ1 is crossed, S1 undergoes a steady-state bifurcation with a perturbation
wavenumber Q given by

Q2=
( n
m

)2
k2 −

{
ν ′2
∣∣∣α
s

∣∣∣n(m
n

1

2δ′k

)2
}

m=2

.(4.4)

Whenm > 2 the bracketed terms in (4.3) and (4.4) are absent. The destabilizing eigenfunction
then takes the simple form (a1, a2) ∝ (0, e−ik n

m
X) (see (4.1) and (A.4) of Appendix A) and

allows a correspondingly simple physical interpretation: the wavenumber of the destabilizing
mode is the wavenumber at the band center of the other mode S2 (see (4.1)). This is no
longer the case for m = 2 because the resonance terms (which are linear in A2) affect the
stability of S1. One consequence of this is that the destabilizing mode is composed of two
wavenumbers: k n

m ± Q with Q given by (4.4). Moreover, it is possible to have one or more
nonzero wavenumbers k∗, say, for which the perturbation wavenumber Q vanishes. At these
points (k, µ) = (k∗, µ∗) the curve Γ1 merges with the curves L+

1 (or L−
1 ) describing stability

under homogeneous perturbations.
In the case of S2 we find

E2 : µ+ ∆µ− 3δ′(nk/m)2 = 0,(4.5)

Γ2 : (s′α− ρβ)/s′ + (γ + 2δk)2/4δ = 0,(4.6)

where E2 is the Eckhaus curve and Γ2 is the stability limit for shortwave instabilities. As Γ2 is
crossed the pure mode S2 undergoes a steady-state bifurcation with perturbation wavenumber
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Q given by

Q = ±|k + γ/2δ|.(4.7)

The associated eigenfunction is of the form (a1, a2) ∝ (e−i(k+ γ
2δ

)X , 0) (see (4.1) and (A.9))
and, as in the case of S1, points to a simple interpretation: the mode that destabilizes S2

lies at the band center of S1; i.e., its wavenumber is γ/(2δ) = γ̂ (cf. (4.1) and Appendix A;
see also Figure 1). This result holds for all resonances except m : n = 1 : 2, in which case
the linear stability of the pure mode S2 is affected by the resonance terms (as S1 was when
m = 2).

Stability results for the pure modes S1,2 are shown in Figures 6 and 7. In Figures 6(b),(d)
and 7(b) the parameters are as in Figures 4(a),(b) and 5(a), respectively, while in the diagrams
of Figures 6(a),(c) and 7(a) we depart from those parameters only in setting γ = 0. The
inclusion of these last three cases allows us to gauge how much the side-band instabilities are
affected by the detuning from perfect resonance.

Note that due to the large ratio δ/δ′ the detuning of γ = 0.5 has only a small effect on
the neutral curve of A1 (α = 0). Observe that in Figure 6(a),(b) the pure mode S2 is stable
within the region bounded by the curves E2 and Γ2, while S1 is everywhere unstable due to
shortwave instabilities. In contrast, Figure 6(c),(d) depicts a situation with stable regions for
both pure modes. Note that the pure mode S2 experiences only shortwave instabilities as the
forcing is decreased while the pure mode S1 can lose stability to either longwave or shortwave
perturbations, provided the wavenumber k is not within the interval defined by the merging
points of Γ1 and L−

1 (see Figures 6(c),(d)); over that interval the instability suffered by S1 is
to perturbations preserving the periodicity of S1 and gives rise to (steady) mixed modes. The
parameters of Figure 7 do not allow for codimension-two points (intersection of the curves
α = 0 and β = 0). Despite this difference, the stability results for S2 are qualitatively similar
to those of Figure 6. The effect of γ on S1, however, is more striking than in Figure 6(c),(d).
In particular, S1 can undergo a shortwave steady-state instability (along Γ1) when γ = 0.5
but not when γ = 0.

4.2. Mixed modes S±. The stability of the mixed modes S± is governed by four eigenval-
ues which must be determined numerically. Two of these are associated with amplitude modes
and are always real. The remaining two may be real or complex and are related, respectively,
with the translation mode and with the relative phase between the two modes A1 and A2.
Throughout this stability analysis we focus on the influence of the detuning parameter γ on
the (side-band) instabilities of S±. Furthermore, because of the invariance of (2.4), (2.5) under
the transformation

γ → −γ, X → −X,

we may take γ ≥ 0 without any loss of generality.

The results of this stability analysis are shown in Figure 6, which depicts a situation with
two codimension-two points, and Figure 7, which presents a case with no codimension-two
points. Since this difference seems to have only a minor effect on the stability of S±, we focus
our discussion on the case of Figure 6 (i.e., two codimension-two points).
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Figure 6. Stability regions of the pure modes S1,2 and the mixed modes S± for the resonance 2 : 5 and the
following parameter sets: (a) ∆µ = 0.366, δ = δ′ = 1, s = s′ = 1, ρ = 0.4, ρ′ = 0.67, ν = 0.62, ν′ = −1.02,
and γ = 0; (b) as in (a) but γ = 0.7 (cf. Figure 4(a); (c) ∆µ = −0.5, δ = 10, δ′ = 0.5, s = s′ = 1, ρ = 1.5,
ρ′ = 0.5, ν = −ν′ = 0.05, and γ = 0; (d) as in (c) but γ = 0.5 (cf. Figure 4(b)). The symbols in (b) and (d)
indicate the parameters used in the numerical simulations described in section 5.

4.2.1. Mixed mode S+. When γ = 0 (Figure 6(a),(c)), the mixed mode S+ becomes
unstable to short-wavelength perturbations on the part of Γ+ closer to L2, while a longwave
stability analysis captures the part of Γ+ closer to TW+ . Both instabilities are of steady-
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Figure 7. Stability regions of the pure modes S1,2 and the mixed modes S± for the resonance 2 : 5 and the
following parameter sets: (a) ∆µ = 0.5, γ = 0, δ = 5, δ′ = 0.5, s = s′ = 1, ρ = 0.5, ρ′ = 1.5, ν = −ν′ = 0.085.
(b) as in(a) but γ = 0.5 (cf. Figure 5(a)).

state type with the one close to TW+ breaking the reflection symmetry of the pattern. This
is expected to lead to a drift of the pattern; additional calculations for other parameter sets
(not shown) suggest that this situation is characteristic of S+ and γ = 0.

When γ �= 0 the mixed mode S+ displays both steady-state and Hopf bifurcations. The
two relevant eigenvalues are associated with the translation mode and the symmetry-breaking
mode, respectively, with the latter eigenvalue going to zero at TW+. The change in character
of the instability along Γ+ is illustrated in Figure 8. Figures 8(b),(c) give the growth rates
of the dominant modes as Γ+ is crossed at specific points marked in Figure 8(a). At points
1–5 the bifurcation is steady, but as one continues in a counterclockwise direction (points
4–6) the eigenvalues merge and become complex over an interval of Q-values. This interval
containing complex conjugate eigenvalues continues to grow, leading eventually to an oscil-
latory instability superseding the steady one. A codimension-two point therefore exists near
(k, µ) = (−0.155, 0.581) at the transition from steady-state to Hopf bifurcation; at this point
there are two unstable modes, at different Q, one steady and one oscillatory. As one goes still
further in the counterclockwise direction, the Q-band over which the eigenvalues are complex
reaches Q = 0 and the oscillatory instability becomes a long-wave instability. This interaction
was studied in the context of Taylor vortex flow [43] and has been found in many others
problems [41, 21].

Similar transitions occur if µ and γ are varied (rather than µ and k). We illustrate this
in Figure 9 by plotting the growth rate of the most unstable perturbations after crossing, at
fixed k = −0.1, the upper part of Γ+ which is close to TW+ (Figure 9(a)), and the lower
part of Γ+ which is close to L2 (Figure 9(b)). Along the upper part of Γ+ the mixed mode
S+ typically sees a shortwave oscillatory instability; for small γ, S+ can also lose stability
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Figure 8. Growth rates of the two most unstable perturbations of S+ when Γ+ is crossed at the points
indicated in the upper figure: Re(λ1) (solid-thin line) and Re(λ2) (dashed-thick); λ1 and λ2 are complex where
there is a single curve, i.e., where Re(λ1) = Re(λ2). We use γ = 0.4 with the remaining parameters as in
Figure 6(b).

to longwave perturbations. The lower part of Γ+ is characterized by either steady-state or
oscillatory instability of shortwave type (see Figure 9(b)). There is again a codimension-two
point, near (γ, µ) � (1.035, 0.47), where Hopf and steady-state bifurcations coalesce. For γ
less (greater) than this critical value the bifurcation is steady (oscillatory). The route to the
oscillatory instability is as described above: with increasing γ the two modes associated with
translation and reflection symmetry interact more and more, ultimately leading to a Hopf
bifurcation.

The steady-state shortwave instability of S+ (see Figure 9(b)) always appears in the vicin-
ity of L2. This proximity implies that the amplitude A1 of the mixed mode is very small.
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Figure 9. Growth rate of the most unstable perturbation of S+ when Γ+ is crossed vertically at k = −0.1
for the indicated values of γ, (a) on the upper part of Γ+ (close to TW+) and (b) on the lower part (close to
L2 ). The remaining parameters are as in Figure 6(a)–(b). Solid (dashed) lines correspond to real (complex)
eigenvalues.

Consequently, the behavior of S+ in this region is similar to that of the pure mode S2. The
growing perturbations are predominantly in the direction of A1, and the associated wavenum-
ber Q is given in a first approximation by (4.7), i.e.,

Q � ±|k + γ/2δ|.(4.8)

As demonstrated in Figure 10, (4.8) provides a good approximation over the interval
0.1 < γ < 0.7 when |k| ≤ 0.1. It is interesting to note that, when γ is not too small, (4.8)
applies independently of the resonance m : n. The robustness of this result is not unexpected
since the resonance terms do not influence at first order the stability properties of the mixed
mode S+ (because |A1| is small). However, (4.8) ceases to apply when γ becomes very small
because resonance effects start to play a significant role in the wavenumber selection of the
linear response when crossing the lower part of Γ+. In particular, for k = 0 and γ � 1 one
can show

Q � (γnν)1/4
[
r20(2s

′/(ss′ − ρρ′))3/4
]1/2

/2δ +O(γn+1),(4.9)
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Figure 10. Dependence of the perturbation wavenumber Q of the steady mode destabilizing S+ on the
detuning parameter γ for the resonance case m : n = 2 : 5. Parameters as in Figure 6(a),(b) with (a) k = −0.1
and (b) k = 0. Open circles correspond to the perturbation wavenumber Q calculated numerically from (B.2),
(B.3). Solid lines correspond to the indicated approximations.

where r20 denotes the amplitude of S2 (with k = 0) on the curve L2. The derivation of (4.9),
given in Appendix B, relies on the fact that for γ = 0 the curve Γ+ becomes tangent to the
curve L2 at k = 0. Figure 11 shows that (4.9) is in excellent agreement with the numerical
results obtained directly from the characteristic equation (B.2) and applies to other weak
resonances with m : n �= 2 : 5. Note that for larger values of n (4.9) is valid over a wider range
of γ values (since the error is O(γn+1)) and the cross-over to the behavior (4.8) is shifted to
larger values of γ.
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Figure 11. Dependence of Q on the detuning parameter γ for the indicated resonances m : n and k = 0.
Remaining parameters are ∆µ = 0.366, δ = δ′ = 1, s = s′ = 1, ρ = 0.4, ρ′ = 0.67, ν = 0.62, and ν′ = −1.02.
Open circles correspond to numerical results of (B.2), (B.3) and lines to the approximations (4.8) and (4.9),
Q ∝ γ/2δ (dashed) and Q ∝ γn/4 (solid), respectively.
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Figure 12. Growth rate of the most unstable perturbation when Γ− is crossed vertically at k = 0.5 for the
indicated values of γ and the remaining parameters as in Figure 6(a)–(b). (a) On the upper part of Γ− (close
to TW−) and (b) on the lower part (close to L−

1 ). A solid line is used when the associated eigenvalue is real
and a dashed line is used when it is complex.

4.2.2. Mixed mode S−. As illustrated in Figure 6(a), the mixed mode S− can be ev-
erywhere unstable when γ = 0. For the parameters of Figure 6(a), such a situation persists
until γ ≈ 0.6, when a stability region for S− emerges. This stability region widens as γ is
increased (see Figure 6(b)).

As in the case of S+, the two most important eigenvalues for the stability of S− are those
associated with the translation and parity-breaking modes. The oscillatory instability results
from an interaction between these two eigenvalues and, consequently, is found in the vicinity of
the bifurcation set TW−; the steady (shortwave) instability occurs near the initial bifurcation
producing the mixed mode S− from the pure mode (i.e., near L−

1 ). Thus, the mixed mode
S− undergoes the same kinds of transitions described above for S+. Depending on where Γ−
is crossed in the (k, µ)- or the (γ, µ)-plane, the instability may be either oscillatory or steady
and either of long-wave or short-wave type.

Note that on the upper part of Γ− in Figure 12(a), as γ is increased the two eigenvalues
merge and become complex at ever smaller values of Q. In contrast, on the lower part
of Γ− raising γ increases the damping of the parity-breaking mode, thus discouraging its
interaction with the translation mode; this behavior is opposite to what occurs with S+.
It is also interesting to note that variations in the detuning parameter γ do not induce a
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significant change in the perturbation wavenumber Q associated with the bifurcation. This is
because the instability of S− takes place close to L−

1 , where the destabilizing perturbations are
(preferentially) in the direction of A2. The perturbation wavenumber Q associated with the
instability is given, to first approximation, by (4.4). Thus Q depends mainly on the resonance
m : n and only implicitly on the parameter γ (through the function α defined in (3.3)).

Concerns similar to those discussed in section 3 about the robustness of the stability
diagrams when ν, ν ′ → 0 apply here. Because the stability properties of the mixed modes
with respect to side-band perturbations are essentially governed by the proximity to the
bifurcations L2, L

±
1 , and TW±, the stability diagrams in Figures 6(c),(d) and 7 are robust,

as are the steady-state instabilities of S+ that take place close to L2 in Figures 6(a),(b). In
the latter two cases, however, the oscillatory instabilities that S± undergo close to TW± will
be shifted toward larger µ-values as ν and ν ′ get smaller.

5. Numerical simulations. The main objective in this section is to investigate the nonlin-
ear evolution of the side-band instabilities of the pure and mixed modes discussed in section 4.
The results are obtained for a periodic domain of length L using a finite-difference code with
Crank–Nicholson time-stepping. Each simulation of (2.4), (2.5) uses as an initial condition an
unstable periodic steady state (i.e., a pure or mixed mode of the type discussed in section 3)
with a small random perturbation. The final solutions obtained in this way are typically quasi-
periodic although periodic solutions are also found. Here we use the term quasi-periodic to
refer to any solution for which the wavenumbers of A1 and A2 are not in the ratio m/n.
Therefore the full reconstructed field (2.2) will not be composed of wavenumbers in the ratio
m/n; in general it will be quasi-periodic.

First we describe the evolution of system (2.4), (2.5) when the pure modes become un-
stable. If the instability is longwave, it affects only the excited amplitude and the solution
remains in the pure-mode subspace. For example, in the case of S1 (see Figure 13) the long-
wave instability involves A1 but not A2, which remains zero. As expected, the changes affect
predominantly the phase of A1 and evolve into a series of phase-slips. The final state, which is
time-independent, is shown on the right part of Figure 13. In the case of S2 (not shown) the
longwave instability behaves analogously; it is now A2 that changes, while A1 remains zero.

Depending on the detuning parameter γ the transition from the pure modes to the mixed
modes can also involve side-band instabilities. For the parameters corresponding to the sta-
bility diagram shown in Figure 7 the pure mode S1 becomes unstable to the mixed mode S−
via a side-band instability for γ �= 0 and k > 0.15 (cf. Figure 7(b)), while for γ = 0, i.e.,
when the two critical wavenumbers are resonant, the instability preserves the periodicity of
the solution for all k (cf. Figure 7(a)). The final states that are reached after a small random
perturbation has been applied to a pure-mode solution S1 are depicted in Figure 14. The
movies 60055 01.avi and 60055 02.avi show the corresponding temporal evolution of A2. The
sequence of phase-slips that is evidenced in the sharp peaks of the local wavenumber during
the early stages of the evolution is a consequence of the random initial perturbation. After
this transient the relevant perturbation mode starts to dominate. In the case γ = 0.5 that
mode has a strongly modulated wavenumber reflecting the fact that the wavenumbers of A1

and A2 do not satisfy the resonance condition m : n = 2 : 5, resulting in a quasi-periodic
reconstructed solution u(x) (see also discussion leading to (5.1) below).

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60055_01.avi
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60055_02.avi
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Figure 13. Evolution of the longwave instability of the pure mode S1. Space-time diagram of the real part
of A1 (left) and final state (right) with thick (thin) lines denoting the real (imaginary) part of A1. Parameters
as in Figure 6(d) with k1 = k = 0.15, µ = 0.37 (indicated by a square in Figure 6(d) and L = 250.
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Figure 14. Final state after a small random perturbation of the pure mode S1. Parameters in (a) and (b)
as in Figure 7(a),(b), respectively, with L = 250 and γ = 0, k = 0.1, µ = 1.4 in (a) and γ = 0.5, k = 0.2,
µ = 1.4 in (b). The corresponding movies (60055 01.avi and 60055 02.avi) show the temporal evolution of A2.
Red and yellow lines show the real and imaginary part of A2, respectively, white its magnitude |A|, and green
the local wavenumber. Clicking on the above images displays the associated movies.

The longwave instability of the mixed modes affects A1 as well as A2 (see Figure 15).
As with the pure modes, the phase perturbations evolve into phase-slips, which change the
wavenumber and lead eventually to a stationary state. In the case shown in Figure 15 phase-
slips occur only in mode A2. As in the mixed mode shown in Figure 14(b), the strong
deviations of A1,2(x) from purely sinusoidal behavior, which are due to the resonant terms
proportional to ν and ν ′, indicate that the reconstructed solution u(x) is not periodic.

The mixed modes can undergo a shortwave steady instability as well. As discussed in
section 4 it occurs when the stability limit Γ+ (Γ−) of S+ (S−) is close to the transition line
L2 (L−

1 ). The instability is primarily in the direction of the mode with smaller amplitude: A1

for Γ+ near L2 and A2 for Γ− near L−
1 . The resulting evolution of system (2.4), (2.5) is shown

in Figure 16 for parameters near Γ+. It confirms the expectation that at least initially only
A1 changes, but not A2. The space-time diagram for Re(A1(X,T )) in Figure 16 shows how
the growing perturbation determines the wavenumber of the final state; this change from the

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60055_01.avi
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60055_02.avi
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Figure 15. Evolution of longwave instability of the mixed mode S+. Shown are space-time diagrams of the
real part of the amplitudes and the final state with thick (thin) lines denoting the real (imaginary) parts of A1

and A2, respectively. Parameters as in Figure 8(a) with k = 0.1, µ = 0.423 (indicated by rhomb) and L = 300.

initial wavenumber takes place via phase-slips. The wavenumber k1 of A1 in the final state
is controlled by the detuning parameter γ in the manner predicted by the linear analysis:
k1 � γ/(2δ). In other words, the number of maxima observed in A1 is N1 � Lγ/(4πδ) (see
lower figures of Figure 16).

The evolution of A1 and A2 after a shortwave steady instability on Γ− near L−
1 is shown

in Figure 17. This time the amplitude A1 remains nearly constant while A2 changes. The
destabilizing mode was shown in section 4 to be of the form a+

2 (T )ei(k
n
m

+Q)X+a−2 (T )ei(k
n
m
−Q)X

with Q defined by (4.4). For the cases illustrated in Figure 17 we have |a+
2 (T )| � |a−2 (T )|

and the wavenumber of the linearly unstable mode is approximately given by k2 ≈ k n
m − |Q|.

Note that this wavenumber is essentially determined by the resonance terms and would be
0 without them (see (4.4)). In particular, for the example considered in Figure 17(a), where
ν = 0.62 and ν ′ = −1.02, we have |k2| � 0.144, while in Figure 17(b) ν = −ν ′ = 0.05 and
|k2| � 0.018; note that with regard to this effect both cases are analogous, except for the
magnitude of the resonance coefficients.
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Figure 16. Space-time diagram showing the real part of the amplitudes A1 and A2. The lower figures show
the real (thick line) and imaginary (thin line) parts of A1 and A2 corresponding to the final stable stationary
state. The parameters are as in Figure 6(b) (square ) with k = −0.05, µ = 0.27, and L = 250.

In addition to the wavenumber k2 determined by the linear stability analysis, Figure 17
reveals a second prominent wavenumber k′2, which is the result of the resonance term Ām−1

2 An
1 .

It acts as a driving term for A2 and generates a mode with wavenumber k′2 that is determined
by

nk1 ± (m− 1)|k2| = ±|k′2|,(5.1)

where k1 is the wavenumber associated with amplitude A1. In the evolution shown in Figure
17 k1 remains unchanged. The same mechanism is at work for the short-wave instability of S+

(cf. Figure 16), which occurs near L2. There the wavenumber modulation of A1 is, however,
negligible. It is driven by the resonance term Ān−1

1 Am
2 , which is proportional to the fourth

power of the amplitude A1 (n = 5), which is very small where S+ branches off the pure mode
S2. This is not the case for the shortwave instability of S− (Figure 17), which occurs near
L−

1 . There it is A2 that is small; but it enters the resonance term Ām−1
2 An

1 linearly (m = 2)
and therefore the resonance term provides a relatively strong modulation of A2. Substituting
the final values of k1 (same as the initial value) and k2 (calculated above) into (5.1), one
obtains |k′2| = 2.644 in the case of Figure 17(a) and |k′2| = 0.63 for Figure 17(b). For the
numbers (N1,N2,N

′
2) of wavelengths associated with k1, k2, and k′2, respectively, this implies

(N1, N2, N
′
2) = (20, 6, 106) � L/(2π)(0.5, 0.144, 2.644) for Figure 17(a) (where L = 250) and
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Figure 17. Space-time diagram showing the real parts of A1 and A2 when mixed mode S− undergoes a
shortwave steady instability. The parameters in (a) are those of Figure 6(b) (circle) with k = 0.5, µ = 1.05,
and L = 250. Parameters in (b) are as in Figure 6(d) (circle) with k = 0.125, µ = 0.95, and L = 305.
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(N1, N2, N
′
2) = (6, 1, 31) � L/(2π)(0.124, 0.02, 0.63) for Figure 17(b) (where L = 305). These

results compare quite well with the results in Figure 17, where (N1, N2, N
′
2) = (20, 6, 106) in

Figure 17(a) and (N1, N2, N
′
2) = (6, 0, 30) in Figure 17(b).

Qualitatively different is the evolution of the oscillatory instability of the mixed mode, as
illustrated in Figures 18, 19, 20, and 21. Small perturbations initially evolve into standing-
wave oscillations. They do not last for long, however, and decompose into left- and right-
traveling disturbances, which then form localized low-wavenumber domains of waves drifting
to the right and to the left, respectively. Such localized, propagating regions of “drift waves”
are typical for parity-breaking instabilities because the extended drift waves are generically
unstable at onset [43, 6, 19] and may become stable only for larger amplitudes [4]. The
localized waves can be described using equations for the amplitude of the parity-breaking
mode and the phase of the underlying pattern and can arise stably when the parity-breaking
bifurcation is subcritical [9, 22] as well as when it is supercritical [43, 6]. They are related
to the solitary modes observed in experiments in directional solidification [46, 18] as well
as in Taylor vortex flow [49] and in simulations of premixed flames [4]. In these systems
the parity-breaking bifurcation arises from a 1 : 2 mode interaction [28, 43] rather than the
2 : 5-resonance considered here.

The localized drift waves do not always persist. In the simulation shown in Figure 18
a sequence of phase-slips occurs in mode A2 at the trailing end of the localized drift wave.
The phase-slips substantially reduce the wavenumber in the growing domain between the
location where the localized drift wave first is created (at x/L ≈ 0.6) and its trailing edge.
Since no phase-slips occur in mode A1, the wavenumbers of A1 and A2 are not resonant
anymore in this growing domain, which results in a strong modulation of the wavenumber.
Due to the periodic boundary conditions, the growing localized drift wave collides eventually
with this domain and is absorbed by it. After that the pattern becomes stationary. The
stationary domains with strongly modulated wavenumber do not always absorb the localized
drift waves. Figure 19 and the movie 60055 03.avi show a case in which the localized drift
waves at times are also reflected by the stationary domains or pass through them. We have not
investigated which factors determine the outcome of the collisions. In the simulation shown in
Figure 19 the system eventually evolves into a stationary state. It consists of relatively large
domains in which the wavenumber ratio is very close to 2 : 5 and small domains in which the
wavenumbers are strongly modulated and not in this rational ratio. One may have expected
that the localized stationary domains attract each other and eventually merge; but this was
not observed. Presumably, the strong wavenumber oscillations, which are particularly visible
in A2, lock the domains in place. Thus, in the final, stationary state shown in Figure 19(b)
one has a periodic pattern that is interrupted by small domains in which the pattern is not
periodic. Stationary localized structures have been investigated in the case of two nonresonant
Ginzburg–Landau equations (i.e., with no phase coupling between the two unstable modes)
in terms of homoclinic and heteroclinic solutions (in space) [16]. The extent to which these
patterns are related to our case is not clear, since the resonant terms may play a crucial role
in fixing the ratio of the wavenumbers of the background state (Figure 19).

The transients and the resulting final state depend very sensitively on the amplitude of the
initial perturbations of the periodic state. The relatively large perturbations used in Figure
19 lead to a large number of localized drift waves, which upon their collision generate localized

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60055_03.avi
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Figure 18. Space-time diagram of the phase-gradient and the magnitude of the amplitudes A1 and A2.
Lower figures: Real (thick) and imaginary (thin) part of A1 and A2 corresponding to the final stable state.
Parameter as in Figure 6(b) (triangle) with k = 0.5, µ = 1.308, and L = 250. In the gray-scale plots dark
(light) stands for low (high) amplitudes.
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Figure 19. (a) Space-time diagram of the phase-gradients amplitudes A1 and A2, respectively. Parameters
as in Figure 6(b) but γ = 1 and with k = 0.5, µ = 1.42, and L = 250. Lower figures correspond to the final
state: (a) Real and imaginary part of the amplitudes A1 and A2; (b) phase gradients of A1 and A2. Dotted
line indicates perfect 2 : 5 resonance. The temporal evolution of A2 is also shown in the corresponding movie
(60055 03.avi); red and yellow lines show the real and imaginary part of A2, respectively, white its magnitude
|A|, and green the local wavenumber. Clicking on the above image displays the associated movie.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60055_03.avi
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Figure 20. Space-time diagram for the magnitude and the phase-gradient of the amplitudes A1 and A2.
Parameters as in Figure 6(b) but γ = 1.3 and with k = 0.5, µ = 1.42, and L = 250. In the gray-scale plots dark
(light) stands for low (high) amplitudes. The temporal evolution of A2 is also shown in the corresponding movie
(60055 04.avi); red and yellow lines show the real and imaginary part of A2, respectively, white its magnitude
|A|, and green the local wavenumber. Clicking on the above image displays the associated movie.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60055_04.avi
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Figure 21. Final, localized drift wave reached after the transient shown in Figure 20. Dotted line in plot
of φ1X/φ2X indicates perfect 2 : 5 resonance.
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stationary structures. Since the localized stationary structures often absorb the localized drift
waves, the final state tends to be stationary in this case. If the initial perturbations are much
smaller, fewer drift waves arise. If they travel in the same direction, no stationary localized
structures are generated and the localized drift waves persist. Such a case is illustrated in
Figures 20 and 21 and movie 60055 04.avi. Here, uniformly distributed perturbations with
maximal amplitude 0.001 were applied independently to the real and imaginary part of both
amplitudes. In this case only a single domain forms. It develops a defect in its interior, which
eventually disappears at its trailing end (cf. movie 60055 04.avi). Initially, the propagation
velocities of the leading and the trailing front of the domain are not equal, and the domain
grows. As time goes on, however, the front velocities converge to a common value and one sees
a stable, localized, propagating domain of fixed size containing traveling waves (see Figure 21).
It is interesting to note that the wavenumbers selected in these traveling domains are in 2 : 5-
resonance, while the stationary regions have slightly shifted wavenumbers that are not in
resonance (see upper panel of Figure 21). The physical solution (cf. (2.2)) can therefore be
described as consisting of regions of localized periodic waves traveling through a stationary
quasi-periodic pattern. This type of solution is generally found when the side-band oscillatory
instability occurs very close to the parity-breaking bifurcation. To describe the parity-breaking
bifurcation in more detail the appropriate amplitude-phase equations [9, 43, 6, 4] could be
derived from the coupled Ginzburg–Landau equations. They would, in particular, allow a
better understanding of the localized drift waves. Such an undertaking is, however, beyond
the scope of this paper.

Finally, in order to determine the character of the bifurcations we have also integrated
(2.4), (2.5) using the final states as initial conditions and varying µ so as to take the system
back into the stable regions of mixed modes. The results obtained indicate that the instabilities
discussed in this section are subcritical (except for the cases shown in Figure 14). The solutions
persist over a large interval of the forcing giving rise to bistability between periodic and quasi-
periodic states. This behavior has been found in all cases we have considered. Therefore we
expect that the coexistence of periodic and quasi-periodic stable states may be regarded as a
characteristic property of the system (2.4), (2.5).

6. Conclusions. In this paper we have investigated a near-resonant steady m : n mode
interaction in one-dimensional dissipative systems with reflection and translation symmetry
using coupled Ginzburg–Landau equations that describe the slow evolution of the two relevant
mode envelopes. One of the goals was to shed some light on the competition between periodic
and quasi-periodic patterns by addressing in detail the stability of the periodic solutions,
emphasizing particular instabilities that can lead to quasi-periodic patterns.

The simplest stationary solutions of this system are reflection-symmetric periodic patterns:
the pure modes S1,2 and the mixed modes S±. Building on the results of Dangelmayr [13],
we established the stability properties of these solutions with respect to perturbations that
preserve the periodicity of the solution. Among the many possible choices of parameters we
restricted our attention to sets of values that produced two supercritical primary bifurcations
to pure modes followed by secondary bifurcations to mixed modes; these mixed modes, in
turn, suffered symmetry-breaking bifurcations to traveling waves.

Side-band instabilities modify the stability regions of the pure and mixed modes. In par-

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60055_04.avi
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60055_04.avi
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ticular, we find that these steady periodic patterns can undergo longwave as well as shortwave
instabilities. For the pure modes the side-band instabilities are always of steady-state type.
The destabilizing longwave perturbations correspond to the well-known Eckhaus instability
and depend only on the linear coefficients of (2.4), (2.5). In contrast, the shortwave instabili-
ties depend on nonlinear interactions and on the resonance considered (i.e., on m and n). In
particular, we find the following.

1. Ifm > 2 and a pure mode, S1, say, loses stability in a shortwave steady-state bifurcation,
the wavenumber of the growing perturbation lies at the band center of the other mode (i.e.,
of S2); this instability is affected by the detuning parameter γ̂ = γ/2δ, which measures the
mismatch between the two critical wavenumbers.

2. For wavenumber ratios of the form 2 : n, one of the resonant terms enters into the
stability calculation for the pure mode S1. Away from the band center, this pure mode can
experience shortwave instabilities, while close to the band center, it can lose stability only to
homogeneous or longwave perturbations. In the shortwave case, due to the resonant terms
the wavenumber selected by the instability is shifted with respect to the band center of the
other pure mode, S2. As the band center is approached the perturbation wavenumber of the
shortwave instability can go to 0.

Close to their bifurcation from the pure modes, the mixed modes inherit the stability
properties of the pure modes with respect to shortwave perturbations. In addition, they may
undergo an oscillatory instability. It results from the interaction of the translation and the
symmetry-breaking modes and can be strongly affected by the wavenumber mismatch.

The nonlinear evolution ensuing from the instabilities was investigated through direct
numerical simulation of (2.4), (2.5) with periodic boundary conditions for the slowly varying
envelopes. It was found that the transition from the pure modes to the mixed mode can
depend strongly on the wavenumber mismatch. We have identified cases in which without
a wavenumber mismatch the instability of the pure mode leads to a periodic mixed mode,
while in the nonresonant case the instability of the pure mode is determined by a side-band
instability resulting in a quasi-periodic pattern.

Side-band instabilities of the mixed modes generically destroy the spatial periodicity of
the stationary, reflection-symmetric states and produce quasi-periodic patterns. They are
typically characterized by a spatial modulation of the local wavenumber with a wavelength
that is determined by the detuning parameter (in a manner predicted by the linear analysis)
and the resonant terms (as indicated in (5.1)). The size of the modulation depends strongly on
the strength of the resonance terms. For the 2 : 5 case discussed here, as well as for resonances
of the form 2 : n with n > 5, the effect is only noticeable for S− (cf. Figure 17) because with
S+ the resonant terms are too small (cf. Figure 16). In contrast, the resonance terms in (2.4),
(2.5) are comparable for m : n = 2 : 3 and their influence should be felt by both mixed modes.

The oscillatory instability tends to lead to the formation of propagating fronts separating
reflection symmetric patterns from drift waves with broken reflection symmetry. The fronts
may interact to form stable localized drift waves. These may subsequently collide with each
other, destroying the initial periodic pattern completely in some cases and only partially
in others. In the latter case the system relaxes to a very interesting pattern composed of
alternating localized stationary domains of periodic and quasi-periodic states. We find other
cases where all the fronts travel in the same direction, eventually achieving the same velocity
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and producing stable localized propagating domains of drift waves. The wavenumbers in these
traveling domains are selected by the resonance condition (i.e., they are in the ratio m/n),
whereas the wavenumbers associated with the surrounding steady periodic pattern are no
longer resonant. Thus, the resulting patterns can be described as localized periodic traveling
wave structures propagating through a stationary quasi-periodic background. Similar types
of solutions have been found in the 1 : 2 resonance [4] and may be expected in the general
m : n case whenever the resonant coefficients ν and ν ′ are of opposite sign.

In this paper we have focused on the periodic solutions and their stability. Complementary
to this analysis would be a study of the quasi-periodic solutions. Of course, the set of solutions
in which the two modes have nonresonant wavenumbers is considerably larger than that of
the periodic solutions and such an analysis is beyond the scope of the present work. To
understand how spatially quasi-periodic solutions arise from periodic ones, the analogy of
the appearance of temporally quasi-periodic solutions through a Neimark–Sacker bifurcation
might prove useful [27]. However, this framework, applied to the time-independent solutions,
would not yield information about the stability of the quasi-periodic solutions.

In preliminary numerical simulations we have considered the stability of certain quasi-
periodic solutions and found that the range in the wavenumber mismatch over which they are
stable is smaller than that of periodic solutions with nearby wavenumbers [23]. Thus, at least
in the regime considered, the resonant terms enhance the stability of the periodic solutions.
Another promising line of investigation would be the reduction of the coupled Ginzburg–
Landau equations (2.4), (2.5) to two coupled phase equations. This should be possible for
longwave perturbations of the mixed-mode solution if the smallness of the resonant terms is
exploited and it is assumed that such terms are of the same order as the gradients in the
magnitude of the amplitudes (cf. (2.6), (2.7)).

Appendix A. Stability of pure and mixed modes.
In this appendix we provide some of the details of the stability analysis of the pure and

mixed modes, presented in section 4.

A.1. Pure modes. The perturbed pure mode S1 is written as

A1 = R1e
ikX

(
1 + a+

1 (T )eiQX + a−1 (T )e−iQX
)
,(A.1)

A2 = eik
n
m
X
(
a+

2 (T )eiQX + a−2 (T )e−iQX
)
.(A.2)

Inserting this ansatz in (2.4), (2.5) and linearizing in a±1 and a±2 , we obtain

ȧ±1 =
(
α− sR2

1 − δQ2 ∓ (γ + 2δk)Q
)
a±1 − sR2

1a
∓
1 ,(A.3)

ȧ±2 =
(
β − ρ′R2

1 − δ′Q2 ∓ 2δ′Q(nk/m)
)
a±2 +

{
ν ′Rn

1a
∓
2

}
m=2

,(A.4)

where the bracketed term with subscript m = 2 is present only if m = 2, and α and β are
defined by (3.3). The eigenvalues associated with (A.3) are

λ±1 = −(α+ δQ2) ±
√
α2 +Q2(γ + 2kδ)2,(A.5)

and those associated with (A.4) are

λ±2 = (β − ρ′
α

s
− δ′Q2) ±

√
4δ′2

(
k
n

m

)2
Q2 +

{
ν ′2
(α
s

)}
m=2

.(A.6)
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Equations (A.5) and (A.6) are related to longwave and shortwave instabilities, respectively.
Note that for m ≥ 3 the perturbation amplitudes a+

2 and a−2 decouple and the destabilizing
mode is composed of just one wave of the form (a+

2 , 0) or (0, a−2 ). In contrast, due to the
resonant term when m = 2, the eigenvectors have (in principle) components in both directions
and the destabilizing mode is composed of two waves with different wavenumbers.

For the pure mode S2 we have

A1 = eikX
(
a+

1 (T )eiQX + a−1 (T )e−iQX
)
,(A.7)

A2 = R2 e
ik n

m
X
(
1 + a+

2 (T )eiQX + a−2 (T )e−iQX
)
,(A.8)

where a±1 and a±2 satisfy

ȧ±1 =
(
α− ρR2

2 − δQ2 ∓ (γ + 2δk)Q
)
a±1 ,(A.9)

ȧ±2 =
(
β − 2s′R2

2 − δ′Q2 ∓ 2δ′(nk/m)Q
)
a±2 − s′R2

2a
∓
2 .(A.10)

The stability of S2 is determined by two eigenvalues:

λ±1 =

(
α− ρ

β

s′
− δQ2

)
± |Q||γ + 2kδ|,

λ±2 = −(β + δ′Q2) ±
√
β2 + 4δ′2

( n
m
k
)2
Q2,(A.11)

which are associated with the shortwave and longwave instabilities, respectively.

A.2. Mixed modes. In this case we consider the system (2.6)–(2.9) for the evolution of
the real amplitudes Rj > 0 and phases φj (for j = 1, 2). Thus (abusing notation) we write

R1(X,T ) = R1 + r1(X,T ), φ1(X,T ) = kX + ϕ1(X,T ),(A.12)

R2(X,T ) = R2 + r2(X,T ), φ2(X,T ) =
n

m
kX + ϕ2(X,T ),(A.13)

where

rj =
[
r+j (T ) − ir−j (T )

]
eiQX +

[
r+j (T ) + ir−j (T )

]
e−iQX ,

ϕj =
[
ϕ+
j (T ) − iϕ−

j (T )
]
eiQX +

[
ϕ+
j (T ) + iϕ−

j (T )
]
e−iQX

for j = 1, 2. The linearized problem for the perturbations r±j and ϕ±
j is given by

⎛
⎜⎜⎜⎜⎝

˙r±1
ϕ̇∓

1
˙r±2
ϕ̇∓

2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎝

a1 −2δQ(k + γ) a2 0
−2δQ(k + γ) b1 0 b2

c2 0 c1 −2δ′ nkm
0 d2 −2δ′ nkm d1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

r±1
ϕ∓

1

r±2
ϕ∓

2

⎞
⎟⎟⎠ ,(A.14)
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where

a1 = µ− δk2 − γk − δQ2 − (3sR2
1 + ρR2

2) + ν(n− 1)Rn−2
1 Rm

2 cos(nφ̂1 −mφ̂2),

a2 = −2ρR1R2 + νmRn−1
1 Rm−1

2 ,

b1 = −νnRn−2
1 Rm

2 − δQ2, b2 = νmRn−1
1 Rm−1

2 ,

c1 = µ− ∆µ− δ′(kn/m)2 − δ′Q2 − (3s′R2
2 + ρ′R2

1) + ν ′(m− 1)Rm−2
2 Rn

1 cos(nφ̂1 −mφ̂2),

c2 = −2ρ′R1R2 + ν ′nRn−1
1 Rm−1

2 ,

d1 = −ν ′mRn
1R

m−2
2 − δ′Q2, d2 = ν ′nRn−1

1 Rm−1
2 .

Appendix B. Derivation of (4.9).
To derive (4.9) we first consider the characteristic equation in the form

λ4 +G3λ
3 +G2λ

2 +G1λ+G0 = 0,(B.1)

where Gj (j = 0, . . . , 3) are polynomials in Q2 whose coefficients depend on the parameters
directly and also through the amplitudes of the mixed modes. When the bifurcation is steady
and of shortwave type the location of Γ+ and the wavenumber Q �= 0 are obtained as solutions
of the system G0 = ∂G0/∂Q

2 = 0, which yields

(g1g2)
2 − 4g0g

3
2 − 4g3

1 − 18g0g1g2 = 0(B.2)

for the location of the lower part of Γ+ and

Q2 = (g1g2 − 9g0)/(6g1 − 2g2
2)(B.3)

for the perturbation wavenumber of the most unstable perturbation. Here the functions g0,
g1, and g2 can be written as

g0 = −(a1c1 − a2c2)(δ
′b1 − δd1) − γ2c1d1,

g1 = δδ′(a1c1 − a2c2 + a1d1 + c1b1) + δ2c1d1 + δ′2a1b1 + γ2δ′(c1 + d1),

g2 = −δ2δ′(c1 + d1) − δ′2δ(a1 + b1) − γ2δ′2,

where aj , bj , cj , and dj (j = 1, 2) are as defined in Appendix A.

To proceed, we consider the case k = 0 and make use of the fact that for γ = 0 the stability
limit Γ+ coincides with L2 and remains close for γ � 1. We therefore expand the value of µ
on the stability limit,

µ = µc + η2, with η = c1γ + c2γ
2 + · · · , |γ| � 1,(B.4)
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where µc = ρ∆µ/(s′ − ρ) is the value of µ on the curve L2 at k = 0. The small parameter η
is a function of γ and must vanish when γ = 0. Moreover, the amplitudes of the mixed mode
S+ on Γ+ may be expressed as

R1 = ηr11 + η2r12 + · · · , R2 = r20 + η2r22 + η3r23 . . . ,(B.5)

where r20 =
√

∆µ/(s′ − ρ) is the amplitude of the pure mode on the line L2. The coefficients
rij are determined by substituting the expansions (B.5) into (3.5) and solving at successive
orders. The number of coefficients rij that must be kept depends on the particular resonance.
In fact, the expansion (B.5) must be carried out to O(ηn−2) for an m : n resonance. In
order to calculate the cj we substitute (B.5) into (B.2) and solve order by order. Finally, the
wavenumber Q is obtained by substituting these results into (B.3).

We now sketch the necessary calculations for the case m : n = 2 : 5 at k = 0. Inserting
(B.4) and (B.5) into (3.5) yields

sr211 + 2ρr20r22 = 1,
2s′r20r22 + ρ′r211 = 1,

}
=⇒ r211 = (s′ − ρ)/(ss′ − ρρ′),

r22 = (s− ρ′)/2r20(ss
′ − ρρ′)(B.6)

at O(η2), while at O(η3) we have

2sr11r12 + 2ρr20r23 = −νrm20r
3
11,

s′r20r23 + ρ′r11r12 = 0,

}
=⇒ r12 = −νs′r211r

m
20/2(ss′ − ρρ′),

r23 = νρ′r311r
m−1
20 /2(ss′ − ρρ′).(B.7)

If n > 5, we would find r12 = r23 = 0, and it would be necessary to consider higher-order
corrections. Near the curve L2 (i.e., near the point (µ, k) = (µc, 0)) (see Figure 6) the functions
gj , for j = 0, 1, 2, may be written as

g0 = ηn
(
4δ′ν(ss′ − ρρ′)rn11r

m+2
20

)
+O(ηn+1),

g1 = η2
(
4δδ′(ss′ − ρρ′)r211r

2
20

)
+ ηn−2(2s′n+ ∆µ(n− 1)rm20)δδ

′νan−2
1(B.8)

+ γ2δ′(−2s′r220 − η24s′r20r22 − η24s′r20r23) +O(ηn + γ2ηn−2)

g2 = δ2δ′(2s′r220) +O(η2),

where only those terms necessary to compute Q have been kept in (B.8). Finally, composing
the expansions (B.8) and (B.4) and substituting the result into (B.3), we find (after some
algebra) the result (4.9).
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Abstract. Despite the availability of preventive vaccines and public health vaccination programs, influenza in-
flicts substantial morbidity, mortality, and socio-economic costs and remains a major public health
problem. This is largely because the protection conferred by current vaccines is dependent on the
immune status of the individual, ranging between 70%–90% in healthy young adults and 30%–40%
among the elderly and others with weakened immune systems. Whether a strategic use of such par-
tially effective vaccines can control the spread of influenza within a certain population is unknown
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to determine criteria for control of an influenza epidemic and is used to compute the threshold vac-
cination rate necessary for community-wide control of influenza. Using two specific populations of
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1. Introduction. Influenza (also known as flu) is a respiratory disease caused by certain
RNA viruses of the Orthomyxoviridae family [13, 22, 30]. These viruses have a segmented
RNA genome that is replicated by an error-prone RNA polymerase leading to seasonal muta-
tions (drifts) in parts of the viral genome. Human influenza viruses appear as three distinct
serotypes: A, B, and C. Only influenza A viruses infect and multiply in avian species and non-
primate mammals, and their genomic segments are subject to occasional reassortment (shift)
giving rise to new viral strains consisting of novel hemagglutinin (HA) and/or neuraminidase
(NA) genes [23, 30, 39] (see Figure 1). The influenza A viruses have been responsible for the
vast majority of epidemics and all recorded pandemics (see Table 1), which usually result from
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Influenza viruses

A B C
(Hosts: humans, birds, non-primate mammals) (Host: humans) (Host: humans) 

(serotypes)

Re-assortment of 
genomic segments 
(strains)

H2N2 H5N1 H7N7 H9N2H1N1 H3N2

Figure 1. Types and known strains of human influenza viruses. Influenza A viruses are primarily associated
with epidemics in humans, and sometimes their replication in a host coinfected with more than one viral
strain leads to new viral strains due to the reassortment of HA and NA subtype genes. The individual strains
further diverge into independent lineages by genetic drift. The H 1N 1 and H 3N 2 are the most common strains
circulating in the human population [39].

Table 1
Influenza viral strains and outbreaks and epidemics. Most influenza outbreaks and epidemics, including

all pandemics of the last century, have been caused by the spread of a single influenza virus strain consisting
of a specific HA and NA subtypes. This is regardless of the cocirculation of any other viral strain during that
influenza season.

Year Outbreak/epidemic region Viral strain (lineage) Refs
1918 Pandemic (Spanish flu) H1N1 (A/Brevig Mission/1/18; A/South Carolina/1/18; [31, 39]

and A/New York/1/18)
1957 Pandemic (Asian flu) H2N2 (A/Singapore/1/57) [31, 39]
1968 Pandemic (Hong Kong flu) H3N2 (A/NT/60/68; and A/Hong Kong/1/68) [31, 39]
1977 Pandemic in children and H1N1 (A/USSR/90/77) [31, 39]

young adults (Russian flu)
2001-02 USA, Canada, Singapore, H1N2 (A/New Caledonia/20/99 [41]

Malaysia, Egypt, Europe H1 and A/Moscow/10/99 N2)
2001-02 Northern Italy Influenza B (B/Victoria/2/87) [2]
2001-02 St. Elisabeth Hospital, Tilburg H3N2 (A/Sydney/5/97) [6]

2003 Poultry farms in Netherlands H7N7 (Avian influenza A) [21]
2003-04 USA, Canada, Europe, Japan H3N2 (A/Fujian/411/2002) [37, 38]

uncontrolled replication and spread of a single virus strain [25, 39]. While concurrent circula-
tion of two or more viral strains during an influenza season is not uncommon, an outbreak in
a localized population usually involves a single strain [1]. Due to drift in the viral genome, a
lasting protective immunity against influenza viruses has been an elusive target to achieve.

Influenza viruses have coexisted with humans for centuries and have historically been a
cause of excessive morbidity and mortality [9, 10, 34]. Annually, the virus affects 25 to 50
million people, with an estimated 20 to 40 thousand influenza-related deaths, in the United
States [34]. Because of the illness and high number of deaths associated with influenza, par-
ticularly among the elderly [10, 11], much attention has been focused on preventive strategies
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[13, 17, 25]. Although vaccination has been an effective strategy against influenza infection
[5, 12, 17, 26, 28, 34, 40], current preventive vaccines consisting of inactivated virions do not
protect all vaccine recipients equally. The vaccine-based protection is dependent on the im-
mune status of the recipient (see [18, 35] for general references). Typically, influenza vaccines
protect 70%–90% of the recipients among healthy young adults and as low as 30%–40% of
the elderly and others with weakened immune systems (such as HIV-infected or immuno-
suppressed transplant patients) [5, 12, 15, 26]. Furthermore, due to the seasonal drift in the
viral genome, annual vaccination against the influenza virus strains anticipated to be in cir-
culation during the upcoming season is necessary to prevent new infections and subsequent
outbreaks.

The failure of current influenza vaccines to protect all vaccine recipients warrants the
determination of conditions necessary for a substantial reduction, approaching eradication,
of influenza infection in a population. Consequently, the aim of this study is to explore, via
mathematical modeling, the impact of immunization with a partially effective vaccine on the
transmission dynamics of influenza infection. The study addresses the question of whether
such a vaccine could ever completely stop the spread of infection and determines the minimal
vaccine efficacy and vaccination rate required to control or eradicate infection in a population.

Mathematical models have been used to determine the ability of an imperfect vaccine to
control other infectious diseases, and some of the findings have been corroborated by clinical
studies (see [14, 16, 19, 20, 27] for general references). There have been several published
mathematical models suggested for the transmission dynamics of influenza [4, 13, 18, 23, 36],
but to our knowledge none has fully analyzed the impact of an imperfect vaccine (see also [24]
and the references therein). Furthermore, these studies tend to classify all recruited individuals
into the population as susceptibles. In the context of influenza epidemiology, it is more realistic
to consider models that also allow for the continuous recruitment of infected individuals into
the population, as previously considered for other diseases such as HIV infection [7]. In the
model presented here, the use of an imperfect vaccine and recruitment of infected individuals
prove to be crucial factors determining the transmission dynamics of influenza.

The paper is organized as follows. A mathematical model for the transmission dynamics
of influenza infection is formulated and normalized in section 2. The existence of the equilibria
of the normalized-reduced (NR) model is discussed in section 3. Stability analysis of the NR
model is carried out in section 4, where it is also shown that the model has a stable endemic
equilibrium even when the threshold condition for disease eradication holds. In section 5,
some quantitative results are derived from the model to illustrate the effect of vaccination in
two typical environments consisting of equal-size populations: a personal care home and an
office setting. We conclude with a brief discussion of our findings.

2. Model formulation. In order to derive the equations of the mathematical model, we
divide the population (Ñ) into four subpopulations: susceptible (S̃), vaccinated (Ṽ ), infected
(Ĩ), and recovered (R̃). Since a typical outbreak of influenza is caused by the replication and
spread of a single viral strain [1], irrespective of the existing immunity to previous strains,
our model monitors the dynamics of influenza based on a single strain without effective cross-
immunity against the strain. It should be noted, however, that the model does not exclude
the possibility of two concurrent outbreaks, each caused by a different strain. In this case, the
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S̃ Ṽ Ĩ R̃� �

� � ��

� �
�(1 − ε)Π
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ω̃Ṽ (1 − σ)β̃Ṽ Ĩ
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α̃Ĩ
�

�

�
εΠ

Figure 2. Transfer diagram of the S̃Ṽ ĨR̃S̃ model.

model does not consider the effects of partial cross-immunity between the viral strains.
The susceptible population is increased by recruitment of individuals (either by birth or

immigration), and by the loss of immunity, acquired through previous vaccination or natural
infection. This population is reduced through vaccination (moving to class Ṽ ) and infection
(moving to class Ĩ), and by natural death or emigration.

The population of vaccinated individuals is increased by vaccination of susceptibles. Since
the vaccine does not confer immunity to all vaccine recipients, vaccinated individuals may
become infected but at a lower rate than unvaccinated (those in class S̃). The vaccinated
class is thus diminished by this infection (moving to class Ĩ) and further decreased by waning
of vaccine-based immunity (moving to class S̃) and by natural death.

The population of infected individuals is increased by recruitment of infected individuals
from outside the population, as well as by infection of susceptibles including those who remain
susceptible despite being vaccinated. It is diminished by natural death and by recovery from
the disease (moving to class R̃).

Since the immunity acquired by infection wanes with time, the recovered individuals be-
come susceptible to the disease again. Thus the recovered class is increased by individuals
recovering from their infection and is decreased as the natural immunity wanes (moving back
to class S̃).

The transfer diagram for these processes is shown in Figure 2. The details of the transitions
between the subpopulations can be mathematically expressed by the following differential
equations:

dS̃

dt̃
= (1 − ε)Π + ω̃Ṽ + δ̃R̃− β̃S̃Ĩ − ξ̃S̃ − µS̃,(2.1)

dṼ

dt̃
= ξ̃S̃ − (1 − σ)β̃Ṽ Ĩ − (ω̃ + µ)Ṽ ,(2.2)

dĨ

dt̃
= εΠ + β̃S̃Ĩ + (1 − σ)β̃Ṽ Ĩ − (α̃+ µ)Ĩ ,(2.3)

dR̃

dt̃
= α̃Ĩ − (µ+ δ̃)R̃,(2.4)

where Π is the rate of recruitment of individuals into the population; ε is the fraction of
recruited individuals who are already infected; ξ̃ is the rate at which susceptible individuals
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Table 2
Model parameters and their interpretations.

Parameter Description

Π recruitment rate of individuals
ε fraction of recruited individuals who are infected

β̃
contacts

time
×probability of infection per contact with an infected

ξ̃ rate at which susceptible individuals are vaccinated
σ vaccine efficacy

1/ω̃ average time to lose vaccine-induced immunity
1/α̃ average length of infection (duration of infectiousness)

1/δ̃ average time to lose immunity acquired by infection
1/µ average life-span

receive the vaccine; µ is the rate at which people leave the population, whether by death
or emigration (this rate is assumed to be the same for all subpopulations); β̃ represents
the probability of infection for susceptible individuals; ω̃ is the rate at which vaccine-based
immunity wanes; σ is the vaccine efficacy; α̃ is the recovery rate from infection; and δ̃ is the
rate of loss of immunity acquired by infection.

It is worth noting that recruitment of individuals into the vaccinated class (Ṽ ) does not
significantly alter the dynamics of the model (see the appendix). Furthermore, since the model
monitors the dynamics of the human populations, it is assumed that all the model parameters
and state variables are nonnegative. A description of the model parameters is given in Table 2.

To simplify the mathematical analysis of this study, we normalize the model (2.1)–(2.4)
by defining the new variables,

S =
µ

Π
S̃, V =

µ

Π
Ṽ , I =

µ

Π
Ĩ , R =

µ

Π
R̃,

and parameters,

t = µt̃, β =
Πβ̃

µ2
, ω =

ω̃

µ
, ξ =

ξ̃

µ
, δ =

δ̃

µ
, α =

α̃

µ
,

giving

dS

dt
= (1 − ε) − βSI − ξS − S + ωV + δR,(2.5)

dV

dt
= ξS − (1 − σ)βV I − (1 + ω)V,(2.6)

dI

dt
= ε+ βSI + (1 − σ)βV I − (1 + α)I,(2.7)

dR

dt̃
= αI − (1 + δ)R.(2.8)

Let N = S+V +I+R be the total population size of the model (2.5)–(2.8). Adding equations
(2.5)–(2.8) gives the equation for the total population:

dN

dt
= 1 −N.(2.9)
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Since N(t) → 1 as t→ ∞, it can be seen that the feasible region

Ω = {(S, V, I, R) : S, V, I, R ≥ 0; S + V + I +R = 1}

is positively invariant for the model (2.5)–(2.8). Therefore, we restrict our attention to the
dynamics of the model in Ω. Using R = 1 − S − V − I in Ω, (2.8) can be removed from the
model. This substitution gives the following NR model:

dS

dt
= (1 − ε) − βSI − ξS − S + ωV + δ(1 − S − V − I),(2.10)

dV

dt
= ξS − (1 − σ)βV I − (1 + ω)V,(2.11)

dI

dt
= ε+ βSI + (1 − σ)βV I − (1 + α)I.(2.12)

3. Equilibria of the NR model. In this section, the conditions for the existence of the
equilibria of the NR model, given by (2.10)–(2.12), are established. In order to do this, we first
consider the case ε = 0; that is, the population does not admit new infected individuals. The
results obtained in this case will subsequently be adapted and used in section 3.3 to discuss
the existence of the equilibria of the NR model with ε > 0.

3.1. Disease-free equilibrium (DFE). When ε = 0, the model assumes that all individuals
recruited into the population are susceptible. In this case, the NR model has a DFE given by

E0 =

(
1 + ω

1 + ω + ξ
,

ξ

1 + ω + ξ
, 0

)
.

To establish the conditions for the existence of endemic equilibria when ε = 0, it is useful
to analyze the stability of E0. This analysis provides a key threshold quantity which will be
used for stability analysis of the NR model throughout the paper. To determine the local
stability of E0, the Jacobian of the NR model is evaluated at the DFE to yield

J0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−(1 + δ + ξ) ω − δ − β(1 + ω)

1 + ω + ξ
− δ

ξ −(1 + ω) −(1 − σ)βξ

1 + ω + ξ

0 0
β(1 + ω)

1 + ω + ξ
+

(1 − σ)βξ

1 + ω + ξ
− (1 + α)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

The eigenvalues of J0 are

λ1 =
β(1 + ω)

1 + ω + ξ
+

(1 − σ)βξ

1 + ω + ξ
− (1 + α),

and the eigenvalues of the submatrix

J1 =

(
−(1 + δ + ξ) ω − δ

ξ −(1 + ω)

)
.
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It is easy to see that the eigenvalues of J1 are negative. Thus, the local stability of E0

depends on the sign of λ1. Let

R0 =
β[(1 + ω) + (1 − σ)ξ]

(1 + α)(1 + ω + ξ)
.(3.1)

Lemma 3.1. The DFE of the NR model is locally asymptotically stable if R0 < 1 and
unstable if R0 > 1.

Proof. Since the eigenvalues of J1 are negative, it follows that the DFE is locally asymp-
totically stable if λ1 < 0 and unstable if λ1 > 0. Noting that λ1 < 0 if and only if R0 < 1,
the proof is complete.

The threshold quantity R0 in (3.1) is the reproductive number of infection [3] which can be
interpreted as the number of infected people produced by one infected individual introduced
into the population in the presence of vaccination (see [35]). Biologically speaking, Lemma 3.1
implies that the disease can be eradicated from the population (when R0 < 1) if the initial
sizes of the subpopulations are in the basin of attraction of E0. This is, however, an insufficient
condition for disease control, since for arbitrary initial sizes of the subpopulations, the local
stability of E0 does not guarantee community-wide eradication of the disease. This scenario
will be discussed in section 4.

The quantity R0 can be rewritten as

R0 =

(
1 − σξ

1 + ω + ξ

)
r0,(3.2)

where r0 ≡ β
1+α is the basic reproductive number of the disease in the absence of vaccina-

tion [3], in which case R0 reduces to r0. Clearly, if r0 < 1, then R0 < 1 irrespective of the
value of ξ, and thus E0 is locally asymptotically stable.

Using the expression for R0 in (3.2) and the fact that ξ ≥ 0, it can be seen that

(1 − σ)r0 =
β

β∗
< R0 ≤ r0,

where

β∗ ≡ 1 + α

1 − σ
.

Thus, if β > β∗, then R0 > 1, and consequently no amount of vaccination can bring R0

below 1. The requirement β < β∗ can be rewritten so as to define a threshold vaccine
efficacy, σc:

σc = 1 − 1

r0
.(3.3)

If σ < σc, then β > β∗, and R0 > 1 regardless of vaccination rate. Figure 3 shows the regions
of vaccine efficacy and vaccination rate for which R0 < 1 for some chosen parameter values.

From now on, it is assumed that β satisfies

1 + α < β <
1 + α

1 − σ
≡ β∗.(3.4)
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Figure 3. Regions for reducing basic reproduction number to less than unity given an imperfect vaccine
with efficacy σ applied at rate ξ. The gray and white regions correspond to R0 > 1 and R0 < 1, respectively.
Other model parameters are α = 4500, δ = 1000, ω = 100, σ = 0.9, and β = 10000.

In this case, setting R0 = 1 and solving for ξ give the threshold vaccination rate

ξc =
(1 + ω)(r0 − 1)

1 − (1 − σ)r0
,(3.5)

which is positive.

3.2. Endemic equilibria (ε = 0). The endemic equilibria of the NR model with ε = 0 (if
they exist) cannot be cleanly expressed in closed form. In order to find the conditions for the
existence of these equilibria, we use (2.10)–(2.12) to express the variables S and V in terms
of the variable I when I �= 0. This gives (at equilibrium)

S =
(1 − σ)βI + 1 + ω

[(1 − σ)(βI + ξ) + 1 + ω]r0
,(3.6)

V =
1 − r0S

(1 − σ)r0
.(3.7)

Substituting (3.6)–(3.7) into (2.12) gives (at equilibrium)

Q(I) ≡ a1I
2 + a2I + a3 = 0,(3.8)

where

a1 = β2(1 − σ)(1 + α+ δ),(3.9)

a2 = β{(1 + α+ δ)[(1 − σ)ξ + 1 + ω] − (1 + δ)(1 − σ)[β − (1 + α)]},(3.10)

a3 = (1 + δ){(1 + α)(1 + ω + ξ) − β[(1 − σ)ξ + 1 + ω]}.(3.11)
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Since all the model parameters are nonnegative, it follows from (3.9) that a1 > 0. Further-
more, if R0 > 1, then a3 < 0. The existence of the equilibria is summarized in the following
theorem and illustrated in Figure 5.

Theorem 3.2. Suppose ε = 0 in (2.10)–(2.12).
(a) If a2(ξc) ≥ 0, then
(i) the model has a unique endemic equilibrium if ξ < ξc,
(ii) the model has no endemic equilibria if ξ > ξc.
(b) If a2(ξc) < 0, then there exists ξ∗ > ξc such that
(i) the model has a unique endemic equilibrium if ξ < ξc,
(ii) the model has no endemic equilibria if ξ > ξ∗,
(iii) the model has two endemic equilibria if ξc < ξ < ξ∗.
Proof. Since R0 is a continuous decreasing function of ξ for ξ > 0, if ξ < ξc, then R0 > 1

(a3 < 0). Since a1 > 0, it follows that Q(I) has a unique positive root.
Suppose ξ ≥ ξc. In this case, R0 ≤ 1 (a3 > 0). It is easy to see that a2(ξ) is an increasing

function of ξ. Thus, if a2(ξc) ≥ 0, then a2(ξ) > 0 for ξ > ξc, and Q(I) has no positive real
root, which implies that the model has no endemic equilibrium in this case. If a2(ξc) < 0,
consider D(ξ) = a2

2(ξ) − 4a1a3(ξ), the discriminant of Q(I). Since a3(ξc) = 0, D(ξc) > 0, and
D(ξ) is a quadratic function of ξ with positive coefficient for ξ2. Furthermore, since a2(ξ)
is a linear increasing function of ξ, there is a unique ξ∗∗ > ξc so that a2(ξ

∗∗) = 0, and thus
D(ξ∗∗) < 0 (since a1 and a3 are both nonnegative for ξ ≥ ξc). Let ξ∗ be the unique root of
D(ξ) in [ξc, ξ

∗∗]. Then, a2(ξ) < 0, a1 > 0, a3 ≥ 0, and D(ξ) > 0 for ξ ∈ (ξc, ξ
∗). Hence, Q(I)

has two positive roots, so that the model has two endemic equilibria, if ξc < ξ < ξ∗. Taking
into account a2(ξ) > 0 for ξ > ξ∗∗ and D(ξ) < 0 for ξ ∈ (ξ∗, ξ∗∗), it follows that the model
has no endemic equilibria if ξ > ξ∗.

If R0 = 1 (a3 = 0), then Q(I) reduces to (a1I + a2)I = 0. In this case, the NR model has
a unique endemic equilibrium if a2 < 0 and no endemic equilibrium if a2 ≥ 0.

3.3. Equilibria (ε > 0). Since influenza can also be introduced into the population by
the recruitment of infected individuals, it is more realistic to consider the NR model with
ε > 0. Mathematically speaking, if recruitment of infected individuals is allowed, the DFE
does not exist, and eradication of the disease may not be feasible. In this case the public
health objective is to minimize the level of epidemicity.

Consider now the NR model (2.10)–(2.12) with ε > 0. It can be shown that the equilibria
of the model are now the roots of the following cubic:

P (I, ε) = a1I
3 + a2I

2 + [a3 − εβ(1 + δ)(1 − σ)]I − ε(1 + δ)(ξ + ω + 1)

= IQ(I) − ε [β(1 + δ)(1 − σ)I + (1 + δ)(ξ + ω + 1)] ,(3.12)

where Q(I) is defined in (3.8).
Notice that when ε = 0, P (I) has roots which correspond to the roots of Q(I) (along with

I = 0). Furthermore, P (I, ε) < IQ(I) for ε > 0 and I > 0. We now consider three cases as
follows.

Case 1: a3 < 0. In this case, Q(I) has a unique positive root, denoted by I∗. Since P (I, ε)
is a decreasing function of ε for positive I, it follows that P (I∗, ε) < 0 for ε > 0. Furthermore,
P (I, ε) → ∞ as I → ∞. Thus, P (I, ε) has a unique positive root for all ε ≥ 0, and this
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unique positive root must be at I > I∗. That is, when the NR model has a unique endemic
equilibrium with ε = 0, recruitment of infected individuals introduces no new equilibria but
serves to shift the existing (unique) equilibrium to a higher disease state.

Case 2: a3 > 0 and a2 > 0. Let η1, η2, and η3 represent the roots of P (I, ε). In this case,
since a1 > 0 and a2 > 0, it follows that η1 + η2 + η3 = −a2/a1 < 0 and η1η2η3 > 0. This
implies that P (I) has a unique positive root for any ε > 0.

Case 3: a3 > 0 and a2 < 0. If a2
2 − 4a1a3 > 0, then from Theorem 3.2 it follows that Q(I)

has two positive roots. Thus, P (I, 0) has two positive roots if a2
2 − 4a1a3 > 0. Since P (I, ε)

is a cubic function of I and is a decreasing function of ε for I > 0, it can be seen that there
is a positive ε∗ such that P (I, ε) has three positive roots if 0 < ε < ε∗; two positive roots (one
with multiplicity 2) if ε = ε∗; and a unique positive root if ε > ε∗. It should be noted that
ε∗ < ε0, where

ε0 =
a3

β(1 − σ)(1 + δ)
.

To see this, suppose ε ≥ ε0. If P (I, ε) has exactly one real root, then it follows from
η1η2η3 = ε(1 + δ)(ξ+ω+ 1)/a1 > 0 that this root must be positive. If the roots of P (I, ε) are
all real, since

η1η2 + η1η3 + η2η3 =
a3 − εβ(1 + δ)(1 − σ)

a1
≤ 0,

when ε ≥ ε0, it can be seen that P (I, ε) also has a unique positive root in this case.

The above discussion shows that if the NR model has multiple endemic equilibria when
ε = 0, increasing ε to ε > ε∗ serves to remove this phenomenon and instead shifts the NR
model to a higher epidemicity which is characterized by a unique endemic equilibrium with a
higher number of infected individuals than for the case ε = 0. These results are summarized
below.

Theorem 3.3. (a) If ξ < ξc or ε > ε0, then the model (2.10)–(2.12) has a unique positive
endemic equilibrium.

(b) If ξ > ξc and a2 > 0, then the model (2.10)–(2.12) has a unique positive endemic
equilibrium for ε > 0.

(c) If ξ > ξc, a2 < 0, and a2
2 − 4a1a3 > 0, then there is a positive ε∗ < ε0 such that P (I)

has

(i) three positive roots if 0 < ε < ε∗;
(ii) two positive roots if ε = ε∗;
(iii) a unique positive root if ε > ε∗.
When ξ > ξc, a2 < 0, and a2

2 − 4a1a3 < 0, the existence of the equilibria of the model is
more complicated. In this case, the model can have one, two, or even three endemic equilibria
for ε > 0. Bifurcation diagrams for a set of parameter values and various values of ε, depicted
in Figure 6, support this claim. However, since P (I) is a decreasing function of ε, P (0, 0) = 0
and limI→∞ P (I, ε) = +∞, it follows that P (I, ε > 0) has at least one positive root and hence,
at least one endemic equilibrium always exists.
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4. Stability analysis of the NR model. In order to establish the stability of the equilibria
of the NR model, we first investigate the nonexistence of certain types of solutions such as
homoclinic orbits, periodic orbits, or polygons. From (2.10)–(2.12), it can be seen that the
following region is positively invariant for the NR model:

Ω1 = {(S, V, I) : S, V, I ≥ 0, S + V + (1 + d)I = 1},

where d ≡ α
1+δ . Therefore, the omega-limit set of each solution of the NR model is contained

in Ω1. Thus, by applying Lemma 3.1 in [8] to the model equations (2.10)–(2.12), the following
can be shown.

Lemma 4.1. The NR model (2.10)–(2.12) has no periodic orbits, homoclinic orbits, or poly-
gons (heteroclinic cycles) in Ω1.

4.1. Global stability with ε = 0. From Theorem 3.2, it is clear that if ξ < ξc, then the
NR model has a unique endemic equilibrium (which is located in Ω1) and the DFE is unstable.
Since Ω1 is positively invariant, it follows from Lemma 4.1 that the omega-limit set of each
solution of the NR model in Ω1 \ Ω0 must be the endemic equilibrium of the model, where

Ω0 = {(S, V, 0) ∈ Ω1 : S + V = 1}.

It is easy to see that the DFE attracts the solutions in Ω0. Thus, the unique endemic equi-
librium of the NR model is globally asymptotically stable in Ω1 \ Ω0.

Suppose ξ > ξc. In this case, the DFE is the only equilibrium of the NR model if a2 > 0
or a2

2 − 4a1a3 < 0 (Theorem 3.2). Since Ω1 is positively invariant, it follows from Lemma 4.1
that the DFE is globally asymptotically stable. Therefore, we have established the following
theorem.

Theorem 4.2. (a) If ξ < ξc, then the unique endemic equilibrium of the NR model is globally
asymptotically stable in Ω1 \ Ω0.

(b) Suppose ξ > ξc. The DFE (E0) is globally asymptotically stable if one of the following
statements holds:

(i) a2(ξc) ≥ 0;
(ii) a2(ξc) < 0 and ξ > ξ∗.
Now consider the case where the NR model has two endemic equilibria (ξc < ξ < ξ∗).

Using the expressions for ξc and r0, the coefficient a3 can be rewritten as

a3 = (1 + δ)(1 + α)[1 − (1 − σ)r0](ξ − ξc).

Noting that 1 < r0 < 1/(1 − σ) (from (3.4)), it follows that a3 > 0 as long as ξ > ξc.
Otherwise, the model has a unique endemic equilibrium which is globally asymptotically
stable (by Theorem 4.2).

Here, we shall show that the two endemic equilibria of the NR model cannot be repellers
(in Ω1) simultaneously. Thus, one of these equilibria must have a stable manifold in Ω1. This
stable manifold is located on a curve which is in the interior of Ω1.

Lemma 4.3. Suppose ξc < ξ < ξ∗ and a2(ξc) < 0. Then the two endemic equilibria of the
NR model cannot both be repellers in Ω1 simultaneously. Furthermore, the DFE is not globally
asymptotically stable.
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Figure 4. Feasible region in SVI space including three equilibria E0, E1, and E2. The gray region shows
the basin of attraction of E0 in Ω1, while the white region shows the basin of attraction of E2 in Ω1. The curve
∂Σ ∩ int(Ω1) is the stable manifold of E1 which separates the two basins of attraction.

Proof. Let Γ be the basin of attraction of E0 and Σ = Γ ∩ Ω1. Furthermore, since E0

attracts Ω0, it follows that Ω0 ⊂ Σ. Since Γ is an open set, it can be seen that ∂Σ∩int(Ω1) �= ∅,
where ∂Σ is the boundary of Σ and int(Ω1) is defined to be Ω1\∂Ω1. SupposeX0 = (S0, V 0, I0)
is an arbitrary point in ∂Σ ∩ int(Ω1), and let Φ(t,X0) be a solution of the NR model (2.10)–
(2.12) with Φ(0, X0) = X0 (see Figure 4). Since the endemic equilibria are located in the
interior of Ω1, we can pick X0 such that X0 is different from the two endemic equilibria,
denoted by E1 and E2. Since X0 is not in the basin of attraction of E0, it follows that
Φ(t,X0) cannot converge to E0. Since X0 ∈ Ω1 and Ω1 is positively invariant, it follows
that the omega-limit set of the solution Φ(t,X0) must be in Ω1 \ Σ. Furthermore, since the
model has no periodic orbits in Ω1 (Lemma 4.1), the solution Φ(t,X0) must converge to one
of the two endemic equilibria. This implies that both endemic equilibria cannot be repellers
in Ω1 simultaneously. Thus, although E0 is locally asymptotically stable (since R0 < 1), this
equilibrium is not globally asymptotically stable.

The above result shows that one of the two endemic equilibria (namely, E1) has at least
a one-dimensional stable manifold. If E1 is in the interior of Ω1 \ ∂Σ ∩ int(Ω1), then since
the basin of attraction of E0 is an open set, a discontinuity appears in the direction field of
the model in ∂Σ∩ int(Ω1). Note that solutions with initiating points very close to X0, but in
the basin of attraction of E0, approach E0. Hence, E1 is located in ∂Σ ∩ int(Ω1). Therefore,
the stable manifold of E1 separates Ω1 into two basins of attraction. Consequently, the other
endemic equilibrium (namely, E2) is stable. In summary, in this case, the model has two stable
equilibria and a saddle endemic equilibrium (E1) where the stable manifold of E1 separates
the basins of attraction of E0 and E2. This is summarized in the following theorem.

Theorem 4.4. Suppose ξc < ξ < ξ∗ and a2(ξc) < 0. Then the NR model has bistable
equilibria.

The epidemiological implication of this theorem is that a vaccination program with ξ >
ξc (R0 < 1) would not guarantee disease eradication. In this case, the initial sizes of the
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subpopulations determine whether the disease can be eradicated from the population. If these
subpopulations are initially in the basin of attraction of the locally stable endemic equilibrium
(E2), the disease will persist, and similarly, the disease can be eradicated if they are in the
basin of attraction of the DFE (E0).

4.2. Region of bistability with ε = 0. Here, we shall show that under certain conditions,
there is a positive interval such that the NR model with ε = 0 undergoes the phenomenon of
bistability (possessing a stable endemic equilibrium along with the stable DFE) for any β in
this interval.

By Theorem 3.2, bistability is determined by the sign of a2(ξc), which is given by

a2(ξc) =
β(b2β

2 + b1β + b0)

(1 + α)[1 − (1 − σ)r0]
,(4.1)

where

b0 = (1 + α) ((1 + α+ δ)(1 + σω) + (1 − σ)αδ) ,(4.2)

b1 = −(1 − σ)(2 − σ)(1 + α)(1 + δ),(4.3)

b2 = (1 − σ)2(1 + δ).(4.4)

Since (1 + α) < β < β∗, it follows that 1 − (1 − σ)r0 > 0. Thus, the sign of a2(ξc) is
determined by the sign of the quadratic f(β) = b2β

2 + b1β + b0. Consider the discriminant
b21 − 4b0b2 of this quadratic, and let

∆ =
σ(1 + δ)(1 + α)

4(1 + ω)(1 + α+ δ)
.

Noting that b21 − 4b0b2 > 0 if and only if ∆ > 1 and that b0, b2 > 0 and b1 < 0, it can be seen
that f(β) has two positive roots, β1 and β2 (with β1 < β2), if ∆ > 1. Then, bistability occurs
when β1 < β < β2 and β < β∗. It remains to show that this intersection is nonempty. It is
clear that β1 < βm, where βm = −b1

2b2
is the value of β which minimizes f(β). Thus,

β1 < βm =
(2 − σ)(1 + α)

2(1 − σ)
<

1 + α

1 − σ
= β∗,

and hence, for β1 < β < min(β2, β
∗), the NR model with ε = 0 has two endemic equilibria for

some value of ξ (see Figure 5). Therefore, we have established the following theorem.
Theorem 4.5. If ∆ > 1, then there exists a positive interval (with nonzero measure) such

that a2(ξc) < 0 for any β in this interval. Furthermore, there is a range of ξ > ξc such that
the NR model (with ε = 0) exhibits bistability.

Proof. The proof trivially follows from Theorems 3.2 and 4.4.
It should be noted that

∆ <
1 + δ

4(1 + ω)
,

irrespective of the value of the parameter α, and thus if δ < 4ω, then ∆ < 1. Therefore,
bistability is only possible in our model if the immunity acquired by infection (δ) wanes at least
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Figure 5. Graph of the roots of quadratic Q(I) as a function of the parameters ξ and β using α = 4500,
δ = 1000, ω = 100, and σ = 0.9. For µ = 0.02 (year)−1 (representing an average life-expectancy of 50 years),
the values of α, δ, ω represent an infectious period of 4 days, an average period of 10 days for the loss
of immunity acquired by infection, and a period of 6 months for the loss of immunity induced by vaccine,
respectively. The solid lines show the bifurcation behavior at β = 7000 (transcritical bifurcation) and β = 17000
(backward bifurcation), respectively.

four times faster than the vaccine-induced immunity (ω); this is, however, unlikely because
the immunity acquired by natural infection is usually more robust and lasts longer than
that induced by a vaccine consisting of inactivated virus particles such as current influenza
vaccines [29]. Thus, this study has shown that the coexistence of multiple stable solutions
is not feasible in influenza epidemics, which implies that the threshold condition R0 < 1
guarantees eradication of the disease within the population.

4.3. Stability analysis with ε > 0. Since Ω1 is a positively invariant region for the NR
model, it follows that the equilibria of the model are contained in Ω1. Thus, if the NR model
has a unique endemic equilibrium, then it follows from Lemma 4.1 that this equilibrium
is globally asymptotically stable. The epidemiological implication of this result is that the
disease will persist within the population.

It is important to note that disease eradication is not biologically feasible as long as ε > 0
(that is, the model allows for recruitment of infected individuals into the population). This fact
can mathematically be shown by the following discussion. When ε > 0, the model can have
one, two, or even three endemic equilibria which all are contained in the positively invariant
region Ω1 (see Figure 4). Since the two-dimensional simplex Ω1 is bounded and the model
has no periodic orbits, homoclinic orbits, or polygons, it follows from the Poincaré–Bendixson
theorem [33] that the omega-limit set of every solution in Ω1 is an equilibrium. Note that the
model has no DFE, so that the disease will persist within the population.

What is perhaps more important is that, although increasing the vaccination rate does not
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lead to disease eradication, it can prevent the high level of epidemicity which could occur for
a large proportion of infected individuals. To verify this fact, we use the equation P (I) = 0
(at equilibrium) to obtain ξ = G(I)/H(I) as a function of I, where

G(I) = β2(1 − σ)(1 + α+ δ)I3 + β[(1 − σ)(1 + δ)(1 + α− β) + (1 + ω)(1 + α+ δ)]I2

+ [(1 + δ)(1 + ω)(1 + α− β) − εβ(1 − σ)(1 + δ)]I − ε(1 + ω)(1 + δ),

and

H(I) = −β(1 − σ)(1 + α+ δ)I2 − (1 + δ)[1 + α− β(1 − σ)]I + ε(1 + δ).

Let I0 be the unique positive root of H(I). It is easy to show that G(I) (and, consequently,
ξ(I)) has a unique positive root. Let I1 denote this root. We shall show that I1 > I0. It is
clear that I1 corresponds to an endemic equilibrium of the NR model when ξ = 0. Thus, it
can be seen that I1 is a root of the following quadratic:

E(I) = −β(1 + α+ δ)I2 − (1 + δ)(1 + α− β)I + ε(1 + δ).

A simple calculation yields

L(I) ≡ E(I) −H(I) = βσI[1 + δ − (1 + α+ δ)I].

The quadratic L(I) has two roots, namely, I = 0 and I∗ = 1+δ
1+α+δ . It is easy to see

that E(I∗) < 0. Since L(I∗) = 0, it follows that H(I∗) < 0 and thus, I∗ > I0. Noting that
L(I) > 0 for I ∈ (0, I∗), it can be seen that I1 > I0. This implies that ξ(I) ≥ 0 for I ∈ (I0, I1]
and ξ(I) < 0 for I ∈ [0, I0) ∪ {I : I > I1}. Since ξ → +∞ when I → I+

0 , it follows that
increasing vaccination coverage reduces the number of infected individuals at equilibrium,
with I0 representing the smallest possible level of endemicity.

The results of this section are summarized in the following theorem.
Theorem 4.6. Suppose ε > 0.
(a) If the NR model has a unique endemic equilibrium, then it is globally asymptotically

stable. Furthermore, the NR model has no DFE and the disease will persist within the popu-
lation.

(b) Increasing vaccination coverage reduces the number of infected individuals (at equilib-
rium) and prevents the high level of epidemicity.

5. Outbreaks in two typical populations. We now provide a discussion of two specific
examples that illustrate the quantitative aspects of the model. We consider the spread of
influenza in two representative populations: one consisting of a geriatric population in a
personal care home, and the other healthy office workers. These populations were chosen in
view of the fact that outbreaks of influenza frequently occur among the elderly in personal
care homes who inadequately respond to the vaccine [11, 15, 28]. The dynamics of influenza in
this population was compared to that seen amongst office workers who in general adequately
respond to the vaccine.

We assumed the same steady state population Π/µ = 100 in each case and set the natural
death rate (including the rate of emigration) for the personal care home and office to µ =
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Figure 6. Bifurcation diagram showing I at equilibrium versus vaccination rate for three values of ε, the
fraction of recruited individuals who are infected. Other parameters are α = 4500, δ = 1800, ω = 100, and
σ = 0.9.

Table 3
Parameter values for the study populations.

Parameter Office Personal care home Unit

Steady state population, Π/µ 100 100 -
Death and emigration rate, µ 0.05 0.35 yr−1

Effective waning rate of immunity, δ̃ 1 1 yr−1

Waning rate of vaccine-induced immunity, ω̃ 1 1 yr−1

Vaccine efficacy, σ 0.8 0.3 -

Transmission rate, β̃ 4.5 4.5
yr−1

person
Recovery period, 1/α̃ 4 20 days

Vaccination rate, ξ̃ variable variable yr−1

0.35 yr−1 and µ = 0.05 yr−1, respectively. The higher rate of µ for the personal care home
accounts for excessive deaths common to such a population. As shown in Table 3, the two
populations differ in their ability to elicit protective immunity in response to the vaccine (the
vaccine efficacy, σ) [5, 12, 15, 26, 28] and their rate of recovery from influenza infection (α̃) [32].
The effective waning rate of immunity refers to the failure of any prior infection-induced
immunity against the circulating influenza virus strain(s). The values of rates of waning of
effective immunity and vaccine-induced immunity both reflect the annual drift in the virus
genome. The value for the rate of transmission (β̃) is taken within the range estimated by
Nuño et al. [32]. The parameter values are summarized in Table 3, and bifurcation diagrams
illustrating the relative fraction of infected cases as a function of vaccination rate in each
population are shown in Figure 7.

The model clearly shows that, due to notably lower efficacies of influenza vaccines in
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Figure 7. Fraction of the infected population versus vaccination rate for the two study populations. The
solid and dashed-dot curves represent the profiles of infected individuals in the office setting, where the vaccine
efficacy is 90%, without (ε = 0) and with (ε = 0.2) the recruitment of infected individuals into the office
population, respectively. The color dashed and dotted curves show the same profiles in a personal care home
with a vaccine efficacy of 30%. Evidently, infection ratios in the personal care home are considerably higher,
and vaccination has little effect on controlling the outbreak.

personal care homes (σ = 0.3) [15, 28] than in the office setting (σ = 0.8), the former is more
susceptible to a large-scale influenza outbreak. Vaccination would therefore have little effect
in controlling outbreaks in personal care homes. In fact, the parameters in Table 3 for the
personal care home yield σ < σc, and thus no amount of vaccination (with a partially effective
vaccine) can control the outbreak. Likewise, reducing the rate at which infected individuals are
recruited would have little effect in the personal care home scenario as well as in the sparsely
vaccinated workers in the office setting. On the other hand, adding a continuous inflow of
infected people to the office situation with high vaccination rate will drive the system away
from its disease-free state into an endemic state with low infection. Simulation of the model
using a larger population (Π/µ = 1000) in both scenarios yields results that are qualitatively
consistent with those reported in Figure 7, albeit in this case the epidemicity levels are higher.

We have chosen not to consider a large heterogeneous population (such as a city) for the
present study, mainly on account of the lack of reliable data on demography which signif-
icantly affects the level of vaccine-based protection. Factors affecting the results of such a
study include the proportion and distribution of immune-suppressed (such as HIV-infected
and geriatric) individuals and the nature of interaction between susceptible and infected indi-
viduals. With specified demography and parameter values, our model will be able to illustrate
the dynamics of influenza irrespective of the size of the population.

6. Conclusion. This paper evaluates the impact of a partially effective preventive vaccine
on the control of influenza infection, using a new deterministic mathematical model. The
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model allows for continuous recruitment of individuals into the susceptible and infected popu-
lations. It should be noted that this model can be applied to other infectious diseases that also
exhibit transitions between subpopulations as shown in Figure 2. In fact, this model extends
the classical model for infectious diseases, such as measles and whooping cough, with δ = 0;
that is, the immunity acquired by infection is permanent (see [3] for a general reference).

In the absence of recruitment of infected individuals, linear stability analysis shows that
the model has a DFE which is locally asymptotically stable when the basic reproductive num-
ber (R0) [3] is less than unity and unstable otherwise. However, in general, the local stability
of the DFE does not necessarily imply its global stability, and the stable DFE and an endemic
equilibrium may coexist. Several epidemic models have been proposed in which bistability
has been observed, particularly in models in which the population is divided into classes with
different degrees of susceptibility to the disease (see [20] for a general reference). In this case,
the persistence or control of the disease depends on the initial size of the subpopulations.
However, for reasonable estimates of the model parameters for influenza, and indeed for any
infection where immunity acquired by natural infection does not wane significantly faster than
that acquired by vaccination, we have shown that bistability does not occur, and therefore
the disease can be controlled if and only if the basic reproductive number (R0) is reduced
to values less than unity. This can be achieved only if infected individuals are not continu-
ously introduced into the population and if the vaccination rate (ξ) and vaccine efficacy (σ)
simultaneously exceed the thresholds ξc and σc, respectively (see (3.5) and (3.3)). However,
if infected individuals are continuously recruited, no amount of vaccination would be enough
to eradicate the disease. Increasing the level of vaccination nonetheless will always reduce
the level of epidemicity of the disease, and vaccination can still be used to prevent a severe
epidemic.

Due to the fact that typical outbreaks of influenza in a localized population are mostly
caused by replication and spread of a single virus strain [1] (see also Table 1), the model
presented here considers the dynamics of influenza transmission involving a single strain.
If an outbreak occurs due to simultaneous person-to-person transmission of two or more
viral strains (both of which are unaffected by partial cross-immunities), the model predicts
a similar dynamics of influenza infection in the population. Further, in the event of two
concurrent outbreaks, their dynamics would be similar, provided the viral strains involved are
not subject to partial cross-immunity, which would affect the transmissibility of the strains
[25, 32]. Although this fact is not considered in our study, the model presented here can be
extended to monitor the effect of partial cross-immunity on the influenza dynamics involving
two or more strains. It can also be extended to explore the long-term multiseason dynamics
of influenza infection by employing time dependent parameters to deduce vaccination timing
strategies (also known as pulse vaccination; see [23]).

Our model provides the vaccination rate, with a vaccine of known efficacy, necessary to
control the spread of influenza in a population. This rate is determined based on the duration
of infectiousness and the rate of contact between infected and susceptible individuals leading
to the infection. This information is crucial for public health implementation of influenza
control measures with the aid of a partially effective vaccine.
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Appendix. Here, we shall show that recruitment of individuals into the vaccinated class
Ṽ does not affect the dynamics of the model, as long as ξ > 0. To do so, we consider the
model with sources in all subpopulations as follows:

dS

dt
= (1 − εV − εR − εI) − βSI − ξS − S + ωV + δR,(A.1)

dV

dt
= εV + ξS − (1 − σ)βV I − (1 + ω)V,(A.2)

dI

dt
= εI + βSI + (1 − σ)βV I − (1 + α)I,(A.3)

dR

dt
= εR + αI − (1 + δ)R.(A.4)

Making the assumption that the total population has reached its limiting value, so that
R = 1 − S − V − I, gives the reduced model

dS

dt
= (1 − εV − εI − εR) − βSI − ξS − S + ωV + δ(1 − S − V − I),(A.5)

dV

dt
= εV + ξS − (1 − σ)βV I − (1 + ω)V,(A.6)

dI

dt
= εI + βSI + (1 − σ)βV I − (1 + α)I.(A.7)

Using the change of variables

S = κS1 −
εV
ξ
,

V = κV1,

I = κI1,

R = κR1,

t = µt1

gives

dS1

dt1
= (1 − εI − εR + δ)

µ

κ
+ (1 + δ)

εV µ

κξ
+ (1 − δ − ξ)µS1

+ (ω − δ)µV1 +

(
βεV µ

ξ
− δ

)
I1,(A.8)

dV1

dt1
= µξS1 − (1 − σ)µκβV1I1 − µ(1 − ω)V1,(A.9)

dI1
dt1

=
εIµ

κ
+ βµκS1I1 + (1 − σ)βµκV1I1 −

βεV µ

ξ
I1 − (1 + α)µI1.(A.10)

Setting the sum of the constant coefficients in (A.8)–(A.10) to µ(1+ δ) allows one to solve
for κ, giving

κ = 1 +
εV
ξ

− εR
1 + δ

.(A.11)
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Similarly, setting the coefficient of I1 in (A.8) equal to 1−µ(1+δ) gives the following equation
for µ:

µ =
ξ

ξ + βεV
.(A.12)

Now redefining the constants

1 + δ1 = µ(1 + δ),

1 + ω1 = µ(1 + ω),

ξ1 = µξ,

β1 = µβκ,

1 + α1 = µ

(
1 + α+ β

εV
ξ

)
,

ε′I =
εIµ

κ

yields

dS1

dt1
= (1 + δ1 − ε′I) − S1(1 + δ1 + ξ1) − β1S1I1 + (ω1 − δ1)V1 − δ1I1,(A.13)

dV1

dt1
= ξ1S − (1 − σ)β1V1I1 − (1 + ω1)V1,(A.14)

dI1
dt1

= ε′I + β1S1I1 + (1 − σ)β1V1I1 − (1 + α1)I1.(A.15)

Therefore, these transformations change the system into the form of (2.10)–(2.12). Thus
the model (A.5)–(A.7) with sources in all subpopulations can be reduced to a model with
sources only in I and S, albeit with different parameters.
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Abstract. A framework for understanding the global structure of near-integrable n DOF Hamiltonian systems
is proposed. To this aim two tools are developed—the energy-momentum bifurcation diagrams and
the branched surfaces. Their use is demonstrated on a few near-integrable 3 DOF systems. For
these systems possible sources of instabilities are identified in the diagrams, and the corresponding
energy surfaces are presented in the frequency space and by the branched surfaces. The main results
of this formulation are theorems which describe the connection between changes in the topology of
the energy surfaces and the existence of resonant lower dimensional tori.

Key words. near-integrable Hamiltonians, parabolic resonances

AMS subject classifications. 70H08, 37J20

DOI. 10.1137/030600106

1. Introduction. The study of the structure of energy surfaces of integrable systems and
the study of resonances and instabilities in near-integrable systems developed into vast dis-
parate research fields. The relation between the two received very little attention. Indeed, near
regular level sets of the integrable Hamiltonian, the standard Arnold-resonance web structure
appears, and the relation between the two fields reduces to the study of Arnold conjecture
regarding instabilities in phase space. Here, we demonstrate that near singular level sets of the
integrable Hamiltonian much information regarding possible instabilities of the near-integrable
case may be deduced from the structure of the energy surface and its relations with resonance
surfaces. We suggest that by adding some information to the traditional energy-momentum
diagrams [7], which we name energy-momentum bifurcation diagrams (EMBD), one achieves
a global qualitative understanding of the near-integrable dynamics. We relate the geometric
properties of the surfaces corresponding to lower dimensional tori in this diagram to both
bifurcations in the energy surface topology and the appearance of lower dimensional resonant
tori.

Recall that energy surfaces of generic integrable Hamiltonian systems are foliated almost
everywhere by n-tori,1 which may be expressed locally as a product of n circles on which the
dynamics reduces to simple rotations (the action-angle coordinates). A given compact regular
level set (the set of phase space points with given values of the constants of motion) may be
composed of several such tori. The energy surface is composed of all level sets with the same
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energy. If these iso-energy level sets have different numbers of components, then there exists
a singular level set on this energy surface which is not smoothly conjugate to a collection of
n-tori. Under quite general conditions, Lerman and Umanskii [33] show that by using the
reduction procedure [1] and Nehorošev results [42], such a connected singular level set may be
expressed locally as an n − s dimensional torus with frequencies depending on n − s actions
crossed with a fixed point and its asymptotic manifolds in the remaining s DOF subsystem
(s ≤ n). This s DOF subsystem is called the normal system and its structure generally
depends on the n− s actions. (See exact statements in the formulation section below. For a
complete treatment see [33].) The regular n-tori correspond to the case s = 0. The larger the
s the more cases and possibilities one has for the behavior in the normal directions. The larger
the n− s, the more possibilities to transfer between the different cases, namely, to encounter
bifurcations. In this context, the Lerman and Umanskii work [33] is mainly concerned with
n = s = 2, and the Lerman work [29] is mainly concerned with n = s = 3 (yet it includes
the generic bifurcation diagrams for the s = 1, 2 cases), whereas the works of Oshemkov [43],
Fomenko [16], and Bolsinov and Fomenko [4] are mainly concerned with n = 2, s = 1. Here,
we consider s = 1 and n ≥ 2, studying the implications of phase space bifurcations and
resonances as a source for instabilities in the near-integrable systems.

Our main result, Theorem 2 (section 8.2), roughly states that the existence of a nonde-
generate n − 1 dimensional torus of fixed points implies bifurcations in the topology of the
energy surface. Furthermore we prove that such a torus appears as an extrema of certain sur-
faces in the EMBD. In other words, this provides a relation among energy surface topology,
bifurcations in the EMBD, and lower dimensional resonant tori.

The local coordinate representation of the lower dimensional singular tori naturally leads
to investigation of critical points of the Hamiltonian function in the normal plane, with the
remaining n− s actions viewed as parameters [42]. Hence, as shown in [33, 29] and more re-
cently in [25], for small n−s, singularity theory may be used to classify all generic bifurcations
(or all generic bifurcations under given symmetries [25]) in the s DOF subsystem. Here we
consider, in addition to the above bifurcations, extrema in the action variables of the Hamil-
tonian function evaluated along the singularity surfaces. We relate these extrema to strong
resonances. A complete classification of all generic scenarios (of combinations of resonances
and bifurcations in the normal plane), using singularity theory, is yet to be developed.

Since the integrable system has n integrals of motion, a representation of the energy
surfaces corresponds to indicating the range of allowed motion and its character in some n
dimensional space (the innocent words “its character” hide a vast body of work dedicated to
understanding the topology of the level sets which are represented as points in this reduced
space as discussed below). Traditional spaces for such representation are the frequency domain
[27], the space of constants of motion (e.g., [2, 33, 40, 18, 17]), the energy-momentum space,
and the momentum space (e.g., [2, 1, 6, 7, 47, 10, 33, 40]). Such presentations are all equivalent
near regular level sets, where action-angle coordinates may be introduced. Furthermore, each
of these representations is inherently nonunique as one may choose any nonsingular vector
function of the conserved quantities to serve as the new set of coordinates. We propose that a
convenient representation appears in a specific combination of energy and momentum space.
Convenient here means the following.

C1. The geometric presentation supplies a concise summary of all the dynamics and geomet-
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rical features of the integrable system for all energy levels.
C2. The geometric presentation provides clear criteria for the location of special regions in

phase space which are expected to produce strong instabilities under a given form of
a perturbation.

While many presentations in the n dimensional space satisfy the first criteria, it appears
that the second one has not been explicitly addressed. Notice that the first criteria deals with
the integrable part of the Hamiltonian only. On the other hand, the second one depends on
the nature of the applied perturbation; hence the choice of the most convenient representation
of the integrable system depends on the form of the perturbation. These issues are explained
more fully in section 4, where we propose a choice of convenient coordinates. A similar
approach, in which the perturbation determines the appropriate integrable system, is taken
in the partial averaging procedure. Other related works, in which the geometry of the energy
surfaces and their intersection with the resonance web are related to the perturbed dynamics,
are those on “resonance streaming,” where it is argued that in 2 DOF integrable systems a
small angle between the intersecting resonance and energy curves (plotted in the frequency
space) enhances the effect of added noise [34, 48].

The various representations in the n dimensional spaces of the constants of motion identify
the regions of the allowed motion but do not, in general, supply information regarding the
topology of the level sets. Indeed, the classification of all the possible topologies of the level sets
of energy surfaces of integrable Hamiltonians is extremely challenging (see [2, 33, 40, 17, 1, 47])
and has been completed for the 2 DOF case only [17, 33]. Lerman and Umanskii use the n = 2
integrals of motion near fixed points to obtain local and global information regarding the level
sets of the integrable motion and to classify all possible generic homoclinic connections which
are induced by the local behavior [30, 31, 32]. We use their formulation in our treatment
of lower dimensional tori. Fomenko and coworkers suggested using graphs to represent all
topologically distinct tori which appear in the integrable dynamics [17, 18, 16, 43, 4]. Some of
these ideas have been extended to classify integrable 3 DOF dynamics such as the motion of
rigid body [17, 10, 11]. Oshemkov, Fomenko, and coworkers use the 2 DOF constructions on
given level sets of the third integral to analyze such systems [43, 17, 18], though Fomenko had
also formulated a higher dimensional generalization of his theory [17]. Dullin et al. (see, e.g.,
[10, 11, 51] and references therein) have shown that such approaches may be used to develop
schemes for computing action-angle coordinates even when the topology of the energy surfaces
is complicated and finding n topologically independent circles (n circles which are irreducible
to each other) is an a priori complicated task. Here we investigate the structure of energy
surfaces with very simple topological structure for which we are able to generalize Fomenko–
Oshemkov graphs to branched surfaces. These branched surfaces may be viewed as simple
examples of Fomenko’s higher dimensional theory.

The paper is ordered as follows: in section 2 we describe the type of the near-integrable
Hamiltonians we study, with prototype examples of 3 DOF systems which demonstrate the
appearance of nontrivial energy surfaces. In section 3 we formulate the notions of branched
surfaces, topological bifurcations of the energy surfaces, and the EMBD. In section 4 we
propose a convenient choice of momentum and explain how the choice of suitable coordinates
depends on the form of the perturbation. In section 5 we describe the structure of the energy
surfaces and the resonance web in the frequency space and in the energy momentum space
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near normally elliptic lower dimensional tori. The integrable structure in this a priori stable
case is trivial and we add essentially no new insights to the known results. It is included
here to build intuition for the next two sections. In section 6, we describe these structures
near level sets corresponding to normally hyperbolic invariant (n − 1)-tori. In section 7 we
proceed to describe these structures near normally parabolic tori. In section 8 we prove our
main theorems relating resonances and bifurcations. We conclude with a discussion section.

2. Formulation. Consider a near-integrable HamiltonianH(q, p; ε) = H0(q, p)+εH1(q, p; ε),
ε� 1, (q, p) ∈M ⊆ R

n × R
n, where M is a 2n dimensional smooth symplectic manifold and

H0, H1 are C∞ (smooth).2 We further assume that there exists ε0 > 0 such that H1 is
bounded3 for all real values of (q, p; ε) for ε ∈ [0, ε0]. H0 represents the completely integrable
part of the Hamiltonian (the unperturbed system) and its structure is described below. For
any ε, a perturbed orbit with energy h resides on the energy surface H0(·) = h − εH1(·; ε).
Hence, by assumption, the structure of the unperturbed energy surfaces and their resonance
webs in an O(ε)-interval of energies near h supplies global information on the allowed range
of motion of the perturbed orbits.

The integrable n DOF Hamiltonian, H0(q, p); (q, p) ∈ M ⊆ R
n × R

n, has n integrals
of motion, H0 = F1, F2, . . . , Fn ∈ C∞(M), which are functionally independent at almost
all points of M and are pairwise in involution: {Fi, Fj} = 0; i, j = 1, . . . n. Assume that
n ≥ 3 and that the Hamiltonian level sets, Mg = {(q, p) ∈ M, Fi = gi; i = 1, . . . , n},
are compact (this assumption implies, in particular, that the set F1, F2, . . . , Fn is complete;
see [33]). By the Liouville–Arnold theorem (see [42] and [2, 26]), the connected compact
components of the level sets Mg, on which all of the dFi are (pointwise) linearly independent,
are diffeomorphic to n-tori, and hence a transformation to action-angle coordinates (H0 =
H0(I)) near such level sets is nonsingular. Consider a neighborhood of a level set Mg0 which
possibly contains a singularity set at which s of the dFi’s are linearly dependent; on each
connected and closed component of such a Hamiltonian level set there is some neighborhood
D, in which the Hamiltonian H0(q, p) may be transformed by the reduction procedure to the
form (see [33], [42])

H0(x, y, I), (x, y, θ, I) ∈ U ⊆ R
s × R

s × T
n−s × R

n−s,(2.1)

which does not depend on the angles of the tori, θ. The symplectic structure of the new
integrable Hamiltonian (2.1) is

∑s
j=1 dxj ∧ dyj +

∑n−s
i=1 dθi ∧ dIi, where (x, θ, I) are the gener-

alized action-angle variables (s = 0 corresponds to the maximal dimensional tori—the n-tori
discussed above). The motion on the (n−s) dimensional family (parameterized by the actions
I) of (n− s)-tori is described by the equations

θ̇i = ωi(x, y, I), İi = 0.

The geometrical structure of the new Hamiltonian, H0(x, y, I), is such that for any fixed
I (I = (I1, . . . , In−s)) an (n− s)-torus is attached to every point of the (x, y) plane (space, for

2One may relax these requirements to the Cr case, but this is left for future studies.
3It is probably sufficient to assume that for large (q, p) H1 does not grow faster than H0, namely, that for

ε0 > 0 sufficiently small there exist constants C1, C2 ≥ 0 such that |H1(q, p; ε)| < C1 + C2 |H0(q, p)| for all
(q, p) ∈M and ε ∈ [0, ε0], but we leave the details of this case for future work.
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s > 1). The (x, y) plane (space) is called the normal plane (space) [2, 44, 3] of the (n− s)-tori
and defines their stability type in the normal direction to the family4 of tori. Invariant lower
dimensional tori, of dimension (n− l), generically exist for each 1 ≤ l ≤ n− 1; indeed, for any
given s consider anm-resonant value of I. Then, for each such I, there exists anm dimensional
family (corresponding to different initial angles) of n− s−m dimensional tori. All these tori
belong to the higher n − s dimensional resonant torus, associated with I. The existence of
such lower dimensional tori is restricted to the n − s −m dimensional resonant surface of I
values. A different type of lower dimensional invariant tori, which are of the main interest
here, corresponds to isolated fixed point(s) of the s dimensional normal space. These appear
on an n − s dimensional manifold of I values, the singularity manifold (such a generalized
fixed point corresponds to a manifold on which each dFi for i = 1, . . . , s is linearly dependent
on dI1, . . . , dIn−s, where dI1, . . . , dIn−s are pointwise linearly independent). Locally, one may
choose the (x, y, I) coordinate system so that for these tori

∇(x,y) H0(x, y, I)|pf = 0, pf = (xf , yf , If ).(2.2)

Following the terminology of [33], the invariant tori on which (2.2) is satisfied are called here
singular tori, and the manifolds of action values on which this equation is satisfied are called
singularity manifolds. The structure of these is discussed in the next section.

Hereafter, consider the case s = 1 only. The invariant (n − 1)-tori have an (n − 1)
dimensional vector of inner frequencies, θ̇ = ω(pf ). The normal stability type of such families
of (n − 1)-tori is determined by the characteristic eigenvalues (resp., Flouqet multipliers for
the corresponding Poincaré map) of the linearization of the system about the tori; generically,
these tori are either normally elliptic5 or normally hyperbolic.6 If the torus has one pair
of zero characteristic eigenvalues in the direction of the normal (x, y) space, it is said to be
normally parabolic. In addition, the normal frequency7 [2, 44], Ω, of the (n−1)-tori is defined
as the (nonnegative) imaginary part of the purely imaginary characteristic eigenvalues.8

Locally, in the (x, y, I) coordinate system, the normal stability of the invariant torus is
determined by

det

(
∂2H0

∂2(x, y)

∣∣∣∣
pf

)
= −λ2

pf
,(2.3)

where pf satisfies (2.2). Indeed, when λp
f

is real and nonvanishing the corresponding family
of tori is said to be normally hyperbolic, when it vanishes it is called normally parabolic,
and when it is pure imaginary it is normally elliptic. For more details on the above see
[33, 2, 5, 12, 13, 14, 15, 21, 22, 23, 24, 26, 44, 3] and references therein.

4Notice that a single torus belonging to this family has neutral stability in the actions directions. The normal
stability referred to in the Hamiltonian context ignores these directions; see [5, 3] and references therein.

5If all the characteristic eigenvalues of an invariant lower dimensional torus (with respect to its normal
(x, y) space) are purely imaginary (and do not vanish), it is said to be normally elliptic.

6If all the characteristic eigenvalues of an invariant lower dimensional torus (with respect to its normal
(x, y) space) have a nonzero real part, it is said to be normally hyperbolic.

7In some references, these are called characteristic frequencies.
8In some references, e.g., [5], the normal frequencies are defined as the positive imaginary parts of the

characteristic eigenvalues.
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An example of a 3 DOF integrable Hamiltonian which is in the form (2.1), possesses fam-
ilies of invariant 2-tori of all three normal stability types (elliptic, hyperbolic, and parabolic)
at x = y = 0, and satisfies all the stated above assumptions is

Hbif (x, y, I1, I2) =
y2

2
− x2

2
I1 +

x4

4
+

(
µ1 +

1

2

)
I2
1

2
+
I2
2

2
+ α2I2 + α3I1I2,(2.4)

where α2, α3, and µ1 are fixed parameters. Notice that this Hamiltonian has a Z2 symmetry
in the (x, y) coordinates. We will comment in the text when these symmetries play a role. In
fact, the form of 3 DOF integrable Hamiltonian families in general position having a parabolic
2-tori has been derived (see [16],[33]). A complete study of their structure will be discussed
elsewhere. We may compare it to a standard model of (Z2 symmetric) a priori stable systems
with bounded energy surfaces having a family of normally elliptic 2-tori at x = y = 0,

Hst(x, y, I1, I2) =
y2

2
+
x2

2
+

1

8

(
x2 + y2

)2
+ α1I1 + α2I2 +

I2
1

2
+
I2
2

2
(2.5)

=

2∑
i=0

(
αiIi +

I2
i

2

)
, α0 = 1,

and to the corresponding (symmetric) a priori unstable system

Hust(x, y, I1, I2) =
y2

2
− x2

2
+
x4

4
+ α1I1 + α2I2 +

I2
1

2
+
I2
2

2
,(2.6)

which has a family of normally hyperbolic 2-tori at x = y = 0.
In sections 5, 6, 7, the representative models (2.5), (2.6), and (2.4) are studied in detail.

In particular, for each of these models we construct the EMBD, find the branched surfaces
which supply a representation for the energy surfaces geometry, and plot representing energy
surfaces in the frequency plane. Below we define the branched surfaces and the EMBD. Some
readers may find it helpful to read sections 5, 6, 7 first.

3. EMBD and branched surfaces. Fomenko and his coworkers have developed a sophis-
ticated representation of integrable 2 DOF systems which leads to their orbital classification.
Roughly, on each energy surface, they have suggested representing families of regular 2-tori by
edges of a graph, whereas singular surfaces at which such families coalesce or undergo a change
of orientation correspond to the vertices of the graph. The vertices corresponding to singular
level sets are labeled according to the orbital changes they represent: “type A molecules” are
vertices corresponding to normally elliptic circles, and “type B molecules” are vertices corre-
sponding to a normally hyperbolic circle and its figure eight separatrices. Starred molecules
correspond to change of orientation. To deal with higher dimensional systems, Fomenko and
Oshemkov have suggested constructing tables of the 2 DOF molecules which list how these
graphs vary as the constants of motion are changed. Other setups, closer to our construction,
were suggested by Fomenko in [17] but, to the best of our knowledge, have not been examined
or used for any specific model. Here, we explicitly construct the branched surfaces which we
view as a different type of generalization of the simplest form (molecules A and B) of the
Fomenko graphs.
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Consider an integrable n DOF Hamiltonian on a 2n dimensional symplectic manifold M
and its associated n integrals of motion H0 = F1, F2, . . . , Fn. We call the set of constants of
motion valid if they are almost everywhere functionally independent on M , are pairwise in
involution, and are complete. Denote by Ah the set of allowed values of F2, . . . , Fn on the
energy surface Eh = {(q, p)| H0(q, p) = h}, namely, Ah = {(g2, . . . gn)| M(h,g2,...gn) �= ∅} (recall
that the level set Mg is defined as Mg = {(q, p) ∈ M, Fi = gi; i = 1, . . . , n}). It follows
that Eh = ∪(g2,...gn)∈Ah

M(h,g2,...gn). Let k(g) denote the number of disconnected components

of Mg, so M(h,g2,...gn) =
⊎k(h,g2,...gn)

j=1 l
(h,g2,...gn)
j , where lgj denotes a connected component of

Mg. Fixing h, k(h, g2, . . . gn) is constant when the level sets M(h,g2,...gn) deform smoothly with
g2, . . . gn (namely, at h, g2, . . . gn the energy-momentum mapping is a trivial fiber bundle; see
[2, 47]). Recall (see section 2) that the singularity surfaces of Ah are defined as the values of
(g2, . . . gn) for which there exists a point (q, p) ∈M(h,g2,...gn) at which s of the dFi are linearly
dependent and the rank of the n vectors dFi at the singularity is n − s. Let us denote the
union of the singularity surfaces of some given Ah by AS

h . For any finite range of (h, g) values,
by the assumption on the compactness of the level sets, k(h, g2, . . . gn) may change only across
a singular level set, and hence

AS
h ⊇ AGS

h = {(g2, . . . gn)| k(h, g2, . . . gn) is discontinuous in g2, . . . gn}.

Equality of these sets is expected in the generic case with s = 1. Nongeneric (e.g., symmetric)
coincidences, by which disconnected level sets coincide and split at the same g value, may be
similarly treated and will be ignored here (see [18] and [33] for discussion). The behavior of
k(h, g2, . . . gn) near singular level sets with s ≥ 2 will be studied elsewhere.

We remark that Smale [47, 2] has called the values at which the energy-momentum map
is not locally trivial in the differentiable sense (such as AS

h) the bifurcation set—these values
correspond to changes in the topology of the level sets. We follow here the Lerman and Uman-
skii terminology, referring to AS

h as the singularity set, and we reserve the term bifurcation
for changes in the energy surfaces structure (see Definition 3), which is the main focus of the
current work.

Define a function Sh : Eh → R
n as (recall that g1 = h)

Sh(q, p) = (δ(q, p), g2, . . . gn), where Fi(q, p) = gi, i = 1, . . . , n,

where the scalar function δ(q, p) satisfies the following:
• δ(q, p) = 0 iff k(g(q, p)) = 1;
• two points belonging to the same level set have the same δ iff they belong to a connected

component of Mg,

{(q, p), (q′, p′) ∈Mg and δ(q, p) = δ(q′, p′)} ⇔ (q, p), (q′, p′) ∈ lgj ;

• δ(q, p) is smooth (Cr for some r ≥ 1) for all (q, p) ∈ Eh with (g2, . . . gn) ∈ Ah\AS
h , and

δ(q, p) is continuous for (g2, . . . gn) ∈ Ah.
Hence, on each level set Mg, δ(q, p) (with g = F (q, p)) attains exactly k(g) distinct values,

i.e.,

{δ(q, p)| (q, p) ∈Mg} = {δ1(g), . . . , δk(g)(g)}
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and δi(g) �= δj(g) for i �= j. Therefore, we may define

δ(lgj ) = δ(q, p)|(q,p)∈lgj = δj(g), j = 1, . . . , k(g),

and hence

Sh(l
g
j ) = Sh(q, p)|(q,p)∈lgj = (δj(g), g2, . . . gn).

Furthermore, if lgj and lgi coalesce to a (singular) level set lg
∗

k as g → g∗, then δ(lgi,j) →
δ(lg

∗
k ). Summarizing, there is a 1-1 correspondence between the range of Sh and the connected

components of the level sets in Eh, and this correspondence depends continuously on the phase
space points even across singularities. In particular, if the level sets are compact, every point
at which Sh(q, p) is smooth corresponds to a single n-torus, and every point at which Sh(q, p)
is not smooth corresponds to a singular level set. Applying the above procedure for n = 2
leads immediately to the construction of the Fomenko graphs.

Definition 1. The branched surface of an energy surface Eh is given by the surface Sh(Eh);
namely, it is the n−1 dimensional surface embedded in R

n : F = {y| y = Sh(q, p), (q, p) ∈ Eh}.
Definition 2. Two branched surfaces are equivalent if there exists a diffeomorphism of R

n

which maps one branched surface to the other.
Notice that, by definition, two equivalent branched surfaces are topologically conjugate.

We require differentiable conjugacy so that the singular surfaces of two equivalent branched
surfaces will be topologically conjugate to each other as well.

Figure 9 demonstrates that such a construction is possible for simple systems with sin-
gularities of order 1 (namely, with s = 1). These branched surfaces generalize the simplest
molecules (A, B) of the Fomenko graphs. The application of this procedure to physical models
is under current investigation; it may lead to further development of the theory, generalizing
the other types of molecules which were constructed by Fomenko and his coworkers. Whether
this will finally lead to a complete classification of integrable higher dimensional systems, as
in the 2 DOF case, is unknown to us. First steps in this direction, in a more abstract setting,
are included in [17]. In any case, it is easy to see the following.

Corollary 1. Given an integrable Hamiltonian system, the branched surfaces constructed
from two different valid sets of constants of motion (with H0 = F1) are equivalent.

In particular, the construction of these surfaces from the EMBD, the frequency space
diagram and the constant of motion diagrams are all equivalent, as demonstrated in sections
5, 6, 7.

Nearby energy surfaces correspond usually to a smooth deformations of each other; hence
they will usually have equivalent branched surfaces. When nearby energy surfaces have dif-
ferent structures we say that the energy surface has undergone a bifurcation.

Definition 3. hc is an energy bifurcation point if the branched surfaces at hc and at hc ± ε
are not equivalent for arbitrarily small ε.

The EMBD supplies global information on the bifurcations of the energy surfaces structure
and their relation to resonances; consider an integrable Hamiltonian systemH0(q, p) in a region
D ⊆ M at which a transformation to the local coordinate system H0(x, y, I) with s = 1 is
nonsingular. The energy-momentum map assigns to each point of the phase space (x, y, I) a
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point in the energy-momentum space (h = H0(x, y, I), I). The EMBD is a plot in the (h, I)
space (for (h, I) in the range of D) which includes

• the region(s) of allowed motion (the closure of all regions in which the energy-momentum
mapping is a trivial fiber bundle; see [2, 47]);

• the s = 1 singular surfaces (h, I) = (H0(pf ), If ) (see (2.2)) where the normal stability
of the corresponding singular (n− 1)-tori, defined by (2.3), is indicated;

• the strongest resonance surfaces on which the inner frequencies of the tori vanish,
ωi = 0, and the regions in which back-flow occurs (where θ̇i(x, y, I) changes sign along
the level set (h = H0(x, y, I), I) for some i = 1, . . . , n− s);

• the energies at which topological bifurcations occur and the branched surfaces in the
intervals separate by these bifurcation points.

4. The dependence of the EMBD on the form of the perturbation. The EMBD depends
on the choice of the generalized action-angle co-ordinates (x, y, I). In particular, a symplectic
transformation of the (θ, I) coordinates to other generalized action-angle coordinates (ϕ, J)
may change some geometric properties of this diagram. Furthermore, transformations of the
form (θ, I) → (ϕ = θ −	(I)t, I), which correspond to moving relative to particular tori with

frequency vectors ω = 	(I), for which Hnew(J) = H0(J)−H(J) (where 	(I) = ∂H(I)
∂I ), may

change the topology of the energy surfaces, the structure of their singularity manifolds, and
the nature of their intersections with the resonance hypersurfaces. Hence, it appears that
finding the “correct” representation is ill defined in the context of the integrable system. We
propose that the form of the perturbation resolves these issues.

The role of the form of the perturbation is apparent when one considers the procedure of
partial averaging in near-integrable Hamiltonian systems (see [2, p. 173]). First, this procedure
implies that if for a given perturbation the number of independent resonant vectors, r, is
smaller than the number of angle variables (here n− 1), then, by averaging over the n− r− 1
nonresonant directions one can obtain a system which is exponentially close to the r + 1
dimensional system depending on the n − r − 1 parameters (the averaged actions). Hence,
with no loss of generality, we assume here that the perturbation includes n − 1 independent
resonant directions. Then, it follows that for autonomous systems the transformation (θ, I) →
(ϕ = θ − 	(I)t, I) produces time-dependent Hamiltonians, and hence 	(I) must vanish
identically.9 This trivial statement implies, in particular, that given an a priori stable near-
integrable system of the form (2.5), for generic vector α, it may not be transformed to a
system with α = 0 without introducing time-dependent perturbations.

The second issue which arises is the choice of the action variables, which implicitly de-
termines which resonances are considered strong. This issue is again well understood in the
context of partial averaging [2]; the form of the anticipated perturbation determines which of
the resonant surfaces will produce the strongest response; consider the near-integrable system
expressed near a singular level set in some local generalized action-angle coordinates:

H(q, p) = H0(x, y, I) + εH1(x, y, θ, I).(4.1)

9Here we need the assumption on having n − 1 independent resonant relations. Indeed, if n ≥ 3 and
H1(x, y, I, θ) = cos(θ1 − θ2), one can immediately see that this statement is false.
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Consider the Fourier series of H1:

H1(q, p) = H1(x, y, θ, I) =
∑

|k|=|k1|+···+|kn|≥r0

hk(x, y, I) exp(i 〈k, θ〉).

Then, provided hk are monotonically decreasing (if H1 is assumed to be analytic, hk decays
exponentially for large |k|, and if H1 is assumed to be Cr, the decay rate is of order |k|−r),
the strongest resonances are given by the frequencies satisfying 〈k, ω〉 = 0 for k values which
are included in the sum (hk �= 0 near the singular level set) and satisfy |k| ≈ r0; see [2] for
an exact definition and discussion. In particular, by a change of the action angle coordinates
(θ, I) → (ϕ, J) one may arrange the terms so that the first n terms in the above sum have kj =
rje

j
n = (0, . . . , rj , . . . 0) for j = 1, . . . , n (where rj is in the jth place, and are monotonically

increasing with j). Then, the strongest resonances occur along the action variables directions.
Summarizing the above observations, we propose the following.
Definition 4. The local generalized action-angle coordinates (x, y, θ, I) of the integrable part

of a near-integrable system are called suitable if the following hold:
• The perturbed system is autonomous.
• The strongest n− s resonant terms are nonzero and are aligned, in decreasing order,

along the n− s actions. More precisely, let

H1(q, p) = H1(x, y, θ, I) =
∑
j

hkj (x, y, I) exp(i
〈
kj , θ

〉
), j ∈ N,(4.2)

with
∣∣kj∣∣ monotonically increasing with j and ‖hkj‖ monotonically decreasing with j

for equal
∣∣kj∣∣ values. Then, kj ||ejn−s (i.e., kj is parallel to ejn−s) for j = 1, . . . , n− s,

where ejn−s is the n− s dimensional unit vector with 1 at the jth entry.
Notice that the sum in (4.2) is assumed to have at least n−s terms with n−s independent

kj vectors. In general the sum has an infinite number of nonzero terms, where the kj vectors
with j > n− s are linearly dependent on (k1, . . . , kn−s).

Lemma 1. If (x, y, θ, I) and (q, p, ϕ, J) are two suitable coordinate systems for the Hamil-
tonian (4.1), then I = J and ϕ = θ + f(I).

Proof. First, we recall that by generalized action-angle coordinates we assume that near
the singular level set the unperturbed equations of motion for (I, θ) are of the form

dI

dt
= 0 = −∂H0

∂θ
,
dθ

dt
= ω(x, y, I) =

∂H0

∂I
,

and similarly for the (J, ϕ) coordinates. Let W (J, θ) denote the generating function which
transforms (xf , yf , θ, If ) to (qf , pf , ϕ, Jf ). Since both θ and ϕ are angle coordinates, it follows
that W (J, θ) is of the form W (J, θ) = JTRθ+F (J), where R is a unimodular integral matrix
(see [2, p. 173]), so that

ITf =
∂W

∂θ
= JT

f R,

ϕ =
∂W

∂Jf
= Rθ + F ′(Jf ).
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In particular, the requirement that both θ and ϕ are 2π periodic in all their arguments and
that the transformation is smooth implies that R is a constant integral matrix, independent
of Jf . Furthermore, extending the transformation to a neighborhood of the singular level
set must still preserve this property. To complete the proof, we need to show that R = Id.
Indeed, expressing the perturbed part of the Hamiltonian in the (x, y, θ, I) coordinates and
using the above transformation in (4.2), we obtain

H1(q, p, ϕ, J) =
∑
j

h̃kj (q, p, J) exp(i
〈
kj , R−1ϕ

〉
), j ∈ N,

with kj ||ejn−s for j = 1, . . . , n − s (where R−1 is a unimodular integral matrix as well).
Therefore, insisting that q, p, ϕ, J are suitable implies that for all ϕ〈

ejn−s, R
−1ϕ

〉
=
〈
ejn−s, ϕ

〉
for j = 1, . . . , n− s

and hence that R−1 = R = Id.

Conversely, one may take the usual convention by which, given an integrable Hamiltonian
in a given coordinate system, the analysis determines which form of the perturbation will
cause the largest instability in the vicinity of a given resonance junction. In particular, by
the appropriate change of coordinates of the integrable system, one obtains that the strongest
resonances possible are realized when k = ejn = (0, 0, . . . , 0, 1, 0, . . . , 0). With this view the
notion of strongest resonances is inherently coordinate-dependent.

In our presentation of the energy surfaces in the energy-momentum plots we relate changes
in the energy surface singular structures to strong resonances of lower dimensional tori and
to instabilities in the near-integrable system. To make such statements well defined, we insist
that the coordinates we use are locally suitable coordinates. On the other hand, results which
relate strong resonances to topological changes in the energy surfaces (e.g., Theorem 2) are
independent of the choice of the coordinate system.

5. A priori stable systems. To obtain a good understanding of the proposed presentation
of the EMBD we begin with the simplest and most familiar model of a priori stable systems
near the lower dimensional torus. Let us examine the presentation of the regular part of the
energy surface first in the frequency space and then in the energy-momentum space.

5.1. Energy surfaces in the frequency space (S). For the standard Hamiltonian Hst (see
(2.5)) the transformation from momentum to frequency variables is a shift (ω(I) = α+I, α =
(1, α1, α2)) and is regular everywhere, so we can write

Hst(I) = Hst(ω) =
1

2
‖ω(I)‖2 − 1

2
‖α‖2 ,(5.1)

and we obtain the standard result that in the definite case the energy surfaces appear in the
frequency space as spheres centered at ω = 0. The natural oscillations near the elliptic fixed
point x = y = 0 (where the transformation from the (x, y) coordinates to the action-angle
coordinates is singular) correspond to the circle ω0 = α0 = 1, and in this representation appear
as a regular level set of the energy surface. Here it is natural to insist on positive I0 value,



536 A. LITVAK-HINENZON AND V. ROM-KEDAR

1
1.2

1.4
1.6

1.8
2

−2

−1

0

1

2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ω0ω1

ω
2

Figure 1. A resonance web on a cap of an energy surface of an a priori stable system ( (5.1) with h = 0.5).

leading to energy surfaces in the form of “caps” with boundaries: ωh = {ω| ‖ω‖2 = 2h+‖α‖2,
ω0 ≥ α0 = 1}. The boundary ω0 = α0 corresponds to the family of lower dimensional tori
x = y = 0 on the given energy surface; see Figure 1. In the figure we also show the dense
intersection of the resonance surfaces, given by planes passing through the origin, with this
cap (see [2, 23, 34] and references therein). The planes ωi ≡ 0, i = 0, 1, 2, correspond to the
strongest resonances. Notice that the only energy surface which includes the origin is a sphere
with diminishing radius, and such an energy surface is disallowed for systems of the form (5.1)
since10 ‖α‖ �= 0.

5.2. Energy surfaces in the energy-momentum space (S). In Figure 2, we construct the
EMBD of the system (2.5) by presenting the energy surfaces in the space (H0, I1, I2), where
Hst(x, y, I) = H0. For any given energy H0 = h, the allowed region of motion is bounded
by the family of normally elliptic 2-tori (x, y, I) = (0, 0, I(h)). The corresponding singularity
surface in the EMBD is given by the paraboloid

p0
ell(h, I1, I2) =

{
(h, I1, I2)| Hst(0, 0, I) =

1

2

2∑
i=1

(
(αi + Ii)

2 − α2
i

)
= h, h ≥ hell = 0

}
;

namely, for a given h, (I1, I2) belong to a circle of radius
√

2h+ α2
1 + α2

2 which is centered
at (−α1,−α2).The singularity manifolds corresponding to normally elliptic invariant tori are
denoted by a collection of solid curves in the EMBD as demonstrated in Figure 2. To see that

10Recall that changing α corresponds to considering perturbations which are quasi-periodic functions of
time.
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Figure 2. EMBD of an a priori stable system.

motion is allowed only for I values which are interior to this paraboloid notice that from (2.5)

0 ≤ y2

2
+
x2

2
+

1

8

(
x2 + y2

)2
= h− 1

2

2∑
i=1

(Ii + αi)
2 +

α2
1 + α2

2

2
.

The energy surfaces which appear as caps in the frequency space are “flattened” here to
discs in the energy-momentum space. An example of an energy surface in the (I2, I1) plane,
corresponding to the two dimensional (2D) slice of Figure 2 at H0 = 1, is presented in Figure
3A. The thin vertical lines in the 2D sections of the EMBD indicate the region of allowed
motion. In Figure 3B we present a 2D slice in the (H0, I1) plane at I2 = 0, on which we
schematically indicate the corresponding Fomenko graph by a thick black line. The Fomenko
graph for any positive h and an interior I2 value is simply a segment: each interior point on this
segment corresponds to a single 3-torus, and each of the end points corresponds to a normally
elliptic 2-torus (“atom A” in [18]). For such a fixed I2 value the energy surface appears as
a 2-sphere in the (x, y, I1) space. The poles of this sphere are normally elliptic 2D tori, and
they correspond to the boundaries of this component of the energy surface. Equivalently, we
may think of a natural generalization of the Fomenko graphs to branched surfaces, and in this
trivial case the branched surface is simply a single disk, as shown in Figure 9A: an interior
point to the disc corresponds to a 3-torus, and a point on the disc boundary corresponds to
a 2-torus.

The strong resonances ωi = 0, i = 1, 2, correspond here to the hyperplanes Ii = −αi.
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Figure 3. 2D slices of an EMBD of an a priori stable system. A: One energy surface. B: Range of energy
values for a fixed value of I2 and a schematic Fomenko graph.

Their intersections with the singularity manifold p0
ell satisfy

·
θi =

∂H

∂Ii

∣∣∣∣
x=y=0,Ii=−αi

=
dH(p0

ell)

dIi

∣∣∣∣
x=y=0,Ii=−αi

= 0.

Namely, it corresponds to a fold in the singularity manifold p0
ell. Here the relation between

total derivatives with respect to Ii along p0
ell and the corresponding partial derivatives of H

is trivial. Notice that the same relation is satisfied even when the location of the singularity
manifold depends on Ii since ∇x,yH vanishes on the singularity surfaces. This latter property
is coordinate-independent as long as the coordinates are suitable.

In Figures 2 and 3 we indicate the strongest resonant 3-tori by starred lines (for
·
θ1 = 0) and

dotted lines (for
·
θ2 = 0). The intersection of these surfaces (here planes) with the singularity

surface (x = y = 0) corresponds to the strongly resonant families of lower dimensional tori
{(x, y, I) = (0, 0,−α1, I2)},{(x, y, I) = (0, 0, I1,−α2)}. These two families of 2-tori intersect at
the minimal possible energy where (I1, I2) = (−α1,−α2), corresponding to a 2-torus of fixed
points. Namely, this torus of fixed points corresponds to a topological change in the energy
surface—for energies below the value at which this torus appears there is no allowed motion.
For energies above it we have one connected component of energy surface as described above.
This observation is a trivial manifestation of Theorem 2.

5.3. Qualitative behavior of the near-integrable system (S). The motion in the near-
integrable system H(θ, I) = Hst(I) + εH1(θ, I) is restricted to the energy level H = h. Since
H1(θ, I) is assumed to be bounded, we obtain that the unperturbed energy surfaces with
Hst(I) = h∗, |h∗ − h| < Cε supply an a priori bound to the motion. For energy surfaces of
large extent, such an a priori bound is irrelevant due to Nehorošev-type theorems and the
Arnold conjecture. Hence, in this case the only new information obtained from the EMBD is
regarding the appearance of strong lower dimensional resonant tori (and even this information
can be extracted from the frequency plot). Near the doubly resonant normally elliptic lower
dimensional torus, where (x, y, I) = (0, 0,−α1,−α2), one may expect small perturbations to
produce large instabilities. Our trivial observation regarding the extent of the energy surface
immediately shows that the extent of the instability cannot be larger than O(

√
ε), the extent
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in the I space of the energy surfaces with Hst(I) = h∗, |h∗ − h| < Cε. We may expect that
the behavior near the doubly resonant torus will be dramatically different if the dependence
on the actions is either linear or indefinite, e.g.,

Hst−unbounded(x, y, I1, I2) =
y2

2
+
x2

2
+

1

8

(
x2 + y2

)2
+ α1I1 + α2I2 −

I2
1

2
+
I2
2

2
;

namely, the energy surfaces are unbounded, and, in particular, the energy surface passing
through the elliptic double resonant fixed point is unbounded. Such considerations are the
trivial analogues to the nonlinear stability theorems of Arnold–Marsden and have been studied
and discussed in the context of normal forms near elliptic fixed points [2, 40].

6. A priori unstable systems. The phase space structure of the standard Hamiltonian
Hust (see (2.6)),

Hust(x, y, I1, I2) =
y2

2
− x2

2
+
x4

4
+

1

2

2∑
i=1

(
(αi + Ii)

2 − α2
i

)
(6.1)

= Hxy(x, y) +HI(I),(6.2)

is given by the product of a figure eight motion in the xy plane and a family of 2-tori in the
(θ, I) space. The precise structure of each energy surface, which demonstrates how a given
energy may divide between the three modes (degrees of freedom) requires a bit more attention.
Since there are no global action-angle coordinates in the (x, y) plane, it is instructive to start
with the presentation of the energy surfaces in the energy-momentum space and then discuss
the presentation in the frequency space.

6.1. Energy surfaces in the energy-momentum space (U). To construct the EMBD we
find the singularity manifolds of the Hamiltonian (6.1). These manifolds correspond to fixed
points of Hxy(x, y). The normally elliptic singularity surfaces, corresponding to {x = ±1, y =
0}, are given by the identical11 paraboloids

p±ell(h, I1, I2) =

{
(h, I1, I2)|

1

2

2∑
i=1

(
(αi + Ii)

2 − α2
i

)
= h+

1

4
, h ≥ hell

}
,

where

hell = −1

4
− 1

2

2∑
i=1

α2
i .

The normally hyperbolic singularity surface corresponding to x = y = 0 and its separatrices
is given by the paraboloid

p0
hyp(h, I1, I2) =

{
(h, I1, I2)|

1

2

2∑
i=1

(
(αi + Ii)

2 − α2
i

)
= h, h ≥ hhyp

}
,

11Adding an asymmetric term like ηx to Hust lifts this degeneracy.
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where

hhyp = −1

2

2∑
i=1

α2
i .

In Figure 4 an EMBD of system (6.1) is presented as two nested paraboloids. The singu-
larity manifolds are drawn according to the normal stability of the lower dimensional invariant
tori they represent—the normally elliptic singularity manifolds (p±ell(h, I1, I2)) are drawn as a
collection of solid curves, whereas the normally hyperbolic singularity manifold (p0

hyp(h, I1, I2))
is drawn as a collection of black dashed curves. Thus we follow the traditional notation in
bifurcation diagrams.

Given an energy surface Hust(x, y, I1, I2) = H0 = h with hell ≤ h < hhyp, the three
dimensional (3D) and 2D EMBD look locally similar to those of the a priori stable system,
presented in Figures 2 and 3: for each fixed energy value in this range the energy surface is
a disk in the (I2, I1) plane. However, each point interior to this disk corresponds to two sets
of 3-tori, one in each well of the potential of Hxy(x, y). Points on the boundary of the disk
correspond to the two normally elliptic 2-tori, {x = ±1, y = 0, Hust(±1, 0, I1, I2) = h}. Hence,
the Fomenko graph for any one dimensional (1D) section of each such disk is given by two
disconnected segments, as shown in Figure 5B. Equivalently, the generalized branched surfaces
for this range of energies is the union of two disconnected discs (see Figure 9B). Each point
belonging to the interior of the branched surfaces represents, as before, a single 3-torus, and
every point on the solid boundary of the discs represents, as before, a single, normally elliptic
2-torus. The multiplicity in the number of components of the level set corresponding to a
given (h, I1, I2) is expressed by the multiplicity in the number of components of the branched
surfaces for these values of (h, I1, I2); see section 3.

For h ≥ hhyp the energy surfaces include the singular level set of the separatrices, which
divides the energy surface into two topologically different regimes; see Figure 5A. A point
(h, I1, I2) inside the disk enclosed by p0

hyp(h, I1, I2) (the dashed circle in Figure 5A) corresponds
to a single 3-torus. Trajectories belonging to this torus encircle both wells in the xy plane. A
point inside the ring bounded between p0

hyp(h, I1, I2) and p±ell(h, I1, I2) corresponds to two sets
of 3-tori; trajectories belonging to one of these tori oscillate in one of the wells in the xy plane.
The Fomenko graph for this case is shown schematically on the cross-section in Figure 5B (in
thick black). The generalized branched surfaces here are two rings which are glued together
in a central disk (Figure 9C). Each regular point of the branched surface corresponds to a
single 3-torus, each point belonging to the dashed circle corresponds to a normally hyperbolic
2-torus and its separatrices, and each point belonging to the solid (outer) boundaries of the
rings corresponds to a single normally elliptic 2-torus.

Intersections of the singularity manifolds with the hypersurfaces of strongest resonances
correspond to folds of these singularity manifolds in the EMBD (see Figures 4 and 5). This
is the essence of Theorem 1 (see section 8.1). For example, the paraboloids p0

hyp(h, I1, I2) and

p±ell(h, I1, I2) fold as they cross the surface I1 = −α1 (and similarly at I2 = −α2) and indeed
·
θi|pf = αi + Ii. Thus, the families of 2-tori, p±ell(h,−α1, I2), p

±
ell(h, I1,−α2), p

0
hyp(h,−α1, I2),

and p0
hyp(h, I1,−α2), are all resonant and the 2-tori p±ell(hell,−α1,−α2) and p0

hyp(hhyp,−α1,
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Figure 5. 2D slices of an EMBD of an a priori unstable system with h > hhyp. A: One energy surface. B:
Range of energy values for a fixed value of I2 and a schematic Fomenko graph.

−α2) are doubly resonant; these are 2-tori of fixed points. In Figure 4 the strong resonance in
the I1 direction (θ̇1 = 0) is denoted by a surface of green starred lines and the strong resonance
in the I2 direction (θ̇2 = 0) by a surface of cyan dotted lines; the double fold corresponding to
a 2-resonant hyperbolic 2-torus (a hyperbolic torus of fixed points) is denoted by a red star.

Observe that the topology of the family of equi-energy normally hyperbolic lower dimen-
sional tori (p0

hyp(h, ·), with fixed h) changes exactly at this double fold point, p0
hyp(hhyp,−α1,

−α2), where a 2-torus of fixed points resides; for h < hhyp the singularity surface p0
hyp(h, ·) does

not exist and the energy surfaces have two disconnected components (Figure 9B), whereas for



542 A. LITVAK-HINENZON AND V. ROM-KEDAR

h > hhyp the singularity surface p0
hyp(h, ·) is a circle and the two components of the energy

surface connect on this circle (Figure 9C). This is again a manifestation of Theorem 2 (see
section 8.1). Similarly, for the natural n DOF generalization of Hust,

Hn
ust(x, y, I1, . . . , In−1) =

y2

2
− x2

2
+
x4

4
+

1

2

n−1∑
i=1

(
(αi + Ii)

2 − α2
i

)
(6.3)

= Hxy(x, y) +Hn
I (I),(6.4)

p0
hyp(h, ·) changes from nonexistence for h < hhyp to an n−2 sphere for h > hhyp. In particular,

for n = 2, there are either none or two nonresonant hyperbolic circles on each energy surface. If
the dependence on the I variables is indefinite, then one may have other topological changes
in p0

hyp(h, ·) occurring at the (n − 1)-resonant (n − 1)-torus; either the genus of p0
hyp(h, ·)

changes or two components of p0
hyp(h, ·) coalesce/separate. Notice that the flow along the

lower dimensional (n− 1)-torus reverses its direction as a strong resonance surface is crossed

(namely,
·
θi|pf changes its sign there). This property holds for the general case of nonseparable

systems as well (see [46, 38, 37]).
We emphasize that the appearance of an n− 1 dimensional torus of fixed points which is

normally hyperbolic is a persistent12 phenomena in integrable n (n ≥ 2) DOF Hamiltonian
systems [38] and is not related to the symmetric form of (6.3).

6.2. Energy surfaces in the frequency space (U). For small energy levels, hell ≤ h <
hhyp, we have seen that the disk Hust(x, y, I1, I2) = h in the (I2, I1) plane (see Figures 5B
and 9B) corresponds to two separate smooth compact components of the energy surface. In
the frequency space these appear as one cap of hyperbola, centered at the origin. Indeed,
the natural frequency in the xy plane at the elliptic points is ω0(h, I1, I2)|p±ell(h,I1,I2) =

√
2,

the direction of rotation is preserved for all orbits (so ω0(h, I1, I2) ≥ 0), and the frequency
monotonically decays as the action of the periodic orbits grows. Denoting by ω0 min(h) > 0
the frequency of the two symmetric periodic orbits in the xy plane satisfying Hxy(x, y) = h,
it follows that for this range of energies

ω0 min(h) ≤ ω0(h, I1, I2) ≤
√

2.(6.5)

In Figure 6 an example of such a cap shaped energy surface of system (6.1) in the frequency
space is shown.

For h ≥ hhyp the behavior near the separatrices needs to be presented. Since the frequency
in the xy plane is well defined for all orbits except the separatrices, and since ω0(x, y) → 0 as
the separatrix is approached, defining ω0(0, 0) = 0 makes ω0(x, y) a continuous (nondifferen-
tiable) function of the xy energy level. (This observation is used extensively in the frequency
map plots; see [28].) Hence, for H0 = h ≥ hhyp, an energy surface in the frequency space
has an annular cap component which meets at the (singular) circle ω0 = 0 a central cap;

12The existence of such a torus may be formulated as the existence of a transverse intersection of some finite
dimensional manifolds. Hence, using the transversality theorem, one proves that it exists for a C1-open set of
integrable Hamiltonians, which we take hereafter as the definition of persistence.
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Figure 6. Energy surface of an a priori unstable system in the frequency space for hell < H0 < hhyp.

see Figure 7. The annular cap corresponds to the two sets of tori for which the motion is
restricted to one of the wells in the xy plane, whereas the central cap corresponds to a single
family of 3-tori for which the motion in the xy plane surrounds both wells of the potential.
Recall that strong resonances are created when the energy surface intersects one of the ωi = 0
planes. However, here, the surface approaches the plane ω0 = 0 singularly, and the normally
hyperbolic torus is not resonant in the θ0 direction.

6.3. Qualitative behavior of the near-integrable system (U). Using the plots of the
EMBD we may read off all possible sources of instabilities for near-integrable n DOF systems
with unperturbed Hamiltonian of the form (6.3). Here we need to combine several effects:

• Instabilities associated with the regular resonance web. Such instabilities may appear
near any point in the EMBD.

• Instabilities associated with splitting of the separatrices (as in 1.5 DOF systems). Such
instabilities may appear for any h > hhyp in an ε neighborhood of the surface p0

hyp(h, ·).
• Instabilities associated with the existence of families of separatrices on the same energy

surface (as in Arnold’s conjecture for the existence of whiskered transition chain). For
n ≥ 3, these appear for any h > hhyp near the surface p0

hyp(h, ·).
• Instabilities associated with strongly resonant normally hyperbolic tori. For k < n−1,

the k-resonant normally hyperbolic tori appear for all h > hhyp, and their effect must
be included in the above mentioned transition chain.

• Instabilities associated with the topological bifurcation of the energy surface near
h = hhyp. There, p0

hyp(·) has an n − 1 fold point and the normally hyperbolic torus

p0
hyp(hhyp, ·) is a torus of fixed points. Hence, these are the instabilities associated
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Figure 7. Energy surface of an a priori unstable system in the frequency space for H0 > hhyp.

with perturbations of a normally hyperbolic torus of fixed points in the nondegenerate
case.

While the analysis of each of the above items is not yet well understood, we propose
that the inclusion of rough lower bounds on the instability associated with each of the above
phenomena supplies nontrivial information on the system. In Figure 8 we plot on a 2D
slice of the EMBD and O(ε) band around the separatrix level sets (the light shaded region),
and indicate an O(ε) slab of energies to which the perturbed motion is restricted near a
hyperbolic resonance (the dark shaded strip). The geometry near the hyperbolic resonant
tori immediately presents itself as a source for larger instabilities than the nonresonant terms.
The analysis of this case for n = 2 has been developed; see [23] and references therein. Here
we see that in the 3 DOF context the hyperbolic resonant 2-tori, phyp(h,−α1, I2(h)) and
phyp(h, I1(h),−α2), belong to the circle of equi-energy normally hyperbolic 2-tori, phyp(h, ·);
hence, one is lead to the study of whiskered transition chains with resonant gaps (see [9] and
references therein). The subject of transition chains of whiskers in a priori unstable systems
has received much attention in recent years (see, e.g., [8, 49, 50] and references therein).
Furthermore, as (I1, I2) → (−α1,−α2) we approach a double resonant hyperbolic torus—in
this case the 3D figure corresponds to a revolution of the EMBD in Figure 8 around the
starred line, with the strong resonant planes intersecting as in Figure 4. Here the radius (in
I) of the circle phyp(h, ·) scales as

√
ε (see Figure 8); hence the transition chain created near

such a double resonant hyperbolic torus cannot create large instabilities. If the terms in I
are indefinite near such a torus, this situation may change (though our preliminary numerical
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Figure 8. 2D slice of the EMBD of the perturbed motion. Shaded strip: Region of allowed motion for
perturbed orbits near hyperbolic resonance. Dashed region: Homoclinic chaos region.

simulations appear to indicate that even then the instability induced by the separatrices is
not significantly enhanced [38]).

Finally, we note that the doubly resonant elliptic tori p±ell(h,−α1,−α2) reside on two small
separate components of the energy surface and hence cannot induce large instabilities, and
that other cases corresponding to unbounded energy surfaces may be classified similarly.

7. Bifurcating systems. For n DOF systems with n ≥ 3 the appearance of parabolic
resonant tori is persistent (see [38]); hence their study is both mathematically fascinating and
physically relevant. Combining our understanding of the stable and unstable systems, we can
now study Hbif :

Hbif (x, y, I1, I2) =
y2

2
− x2

2
I1 +

x4

4
+

(
µ1 +

1

2

)
I2
1

2
+
I2
2

2
+ α2I2 + α3I1I2.(7.1)

The phase space structure of the Hamiltonian Hbif for any fixed I is obvious; for I1 > 0 it
is given by the product of a figure eight motion in the xy plane and a family of 2-tori in the
(θ, I) space as in Hust, whereas for I1 < 0 it corresponds to an elliptic motion around the
origin in the xy plane and a family of 2-tori in the (θ, I) space as in Hst. At I1 = x = y = 0
the system has a family of normally parabolic 2-tori. To understand the precise structure of
each energy surface, we again construct the EMBD and the corresponding branched surfaces
and then present the interesting energy surfaces in the frequency space.

The symmetric form of (7.1) implies that at I1 = 0 we have a pitchfork bifurcation in
the xy plane, whereas for a generic asymmetric integrable bifurcating Hamiltonian one should
consider instead a saddle-center bifurcation at I1 = 0. The EMBD and branched surfaces
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Figure 9. Generalized Fomenko graphs: The branched surfaces.

analysis of such systems is analogous to the one presented here. The phenomena of parabolic
resonances (PR) in the asymmetric case has not been investigated yet.

7.1. Energy surfaces in the energy-momentum space (B). Recall that the boundary of
the allowed region of motion is composed of the singularity surfaces corresponding to lower
dimensional normally elliptic tori. For (7.1), these are given by the normally elliptic tori at
{(x, y) = (±

√
I1, 0); I1 > 0},

p±ell(h, I1, I2) =

{
(h, I1, I2)| µ1

I2
1

2
+
I2
2

2
+ α2I2 + α3I1I2 = h; h ≥ h+

min, I1 > 0

}
,(7.2)

and the elliptic tori at {(x, y) = (0, 0); I1 < 0},

p0
ell(h, I1, I2) =

{
(h, I1, I2) |

(
µ1 +

1

2

)
I2
1

2
+
I2
2

2
+ α2I2 + α3I1I2 = h; h ≥ h0

min, I1 < 0

}
.

(7.3)

Another surface of singularity on which the hyperbolic tori {(x, y) = (0, 0); I1 > 0} and their
separatrices live is given by

p0
hyp(h, I1, I2) =

{
(h, I1, I2) |

(
µ1 +

1

2

)
I2
1

2
+
I2
2

2
+ α2I2 + α3I1I2 = h; h ≥ h0

min, I1 > 0

}
.

(7.4)
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Figure 10. EMBD for the bifurcating Hamiltonian, Hbif .

Expressing the Hamiltonian on these surfaces in a quadratic form,

Hbif (0, 0, I1, I2) =
1

2

(
µ1 +

1

2
− α2

3

)(
I1 −

α2α3

µ1 + 1
2 − α2

3

)2

(7.5)

+
1

2
(I2 + α2 + α3I1)

2 − 1

2
α2

2 −
1

2

(α2α3)
2

µ1 + 1
2 − α2

3

,

Hbif (±
√
I1, 0, I1, I2) =

1

2
(µ1 − α2

3)

(
I1 −

α2α3

µ1 − α2
3

)2

(7.6)

+
1

2
(I2 + α2 + α3I1)

2 − 1

2
α2

2 −
1

2

(α2α3)
2

µ1 − α2
3

,

shows that the sign of µ1−α2
3 determines whether the energy surfaces are bounded in I. Here,

for simplicity, we present a bounded case:

µ1 − α2
3 > 0, α2 > 0, 0 < α3 < 1.(7.7)

Other cases change some of the inequalities below, leading to a different EMBD and may be
similarly analyzed; see [36, 35, 37, 38], where we considered mainly unbounded models. Here,
(7.5) and (7.6) define paraboloids, and their intersections with the plane of constant energy
define ellipses (see Figures 10, 11, 12, 13, 14, 15, 16).
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The minimal energies for which these paraboloids are defined are

h+
min = −1

2
α2

2 −
1

2

(α2α3)
2

µ1 − α2
3

< h0
min = −1

2
α2

2 −
1

2

(α2α3)
2

µ1 + 1
2 − α2

3

,(7.8)

with the corresponding minimizing actions

(I1, I2)min 0 =

(
α2α3

µ1 + 1
2 − α2

3

,−
α2

(
µ1 + 1

2

)
µ1 + 1

2 − α2
3

)
,

(I1, I2)min + =

(
α2α3

µ1 − α2
3

,− α2µ1

µ1 − α2
3

)
.

Finally, notice that the surface I1 = 0 cuts the paraboloids p±ell(h, I1, I2) and p0
ell,hyp(h, I1, I2)

along a parabola which corresponds to a family of normally parabolic 2-tori,

p0
par(h, I1, I2) =

{
(h, I1, I2) | I1 = 0,

I2
2

2
+ α2I2 = h, h ≥ hpmin

}
,(7.9)

where

hpmin = −1

2
α2

2 > h0
min.

From these computations we can already conclude that for the chosen set of parameters the
energy surface’s structure is represented by the branched surfaces shown in Figures 11B–E.
Before describing the properties of these surfaces in detail, we examine the appearance of
strong resonances so that the topological bifurcations and the appearance of resonant tori
may be explicitly related.

Since

ω2(I1, I2) =
∂Hbif (x, y, I1, I2)

∂I2
= I2 + α2 + α3I1,(7.10)

resonances in θ2 (i.e., resonances in the direction of I2) are given by the intersection of the
domain of allowed motion with the plane

I2res = −α2 − α3I1.(7.11)

In particular, resonant lower dimensional tori appear when this plane intersects the paraboloids
p0
hyp(h, ·), p0

ell(h, ·), p
±
ell(h, ·), and p0

par(h, ·).
Due to the cross term x2

2 I1 in Hbif (see (7.1)) we cannot get such a simple and explicit
expression for the θ1-resonant tori surface ω1(I1, I2) = 0. However, the intersection of this
surface with the singularity surfaces may be easily found; the hyperbolic (resp., elliptic) lower
dimensional tori p0

hyp(h, ·) (resp., p0
ell(h, ·)) are resonant when ω0

1 = 0, where

ω0
1 =

∂Hbif (0, 0, I1, I2)

∂I1
=

(
µ1 +

1

2

)
I1 + α3I2,(7.12)
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Figure 11. 2D slices of the EMBD of the bifurcating system, Hbif . A: An energy surface in the energy
range h±

min < H0 < h0
min. B: An interval of energy values for a fixed value of I2 = −α2 and all three possible

types of (schematic) Fomenko graphs for Hbif .

so resonance occurs exactly at the fold of the singularity surface in the I1 direction. Hence,
the intersection of the plane

I1res0 = − α3

µ1 + 1
2

I2

with the paraboloid p0
hyp(h, ·) ∪ p0

par(h, ·) ∪ p0
ell(h, ·) corresponds to the family of lower di-

mensional tori that are resonant in the I1-direction (the green starred curves in Figure 10),
p0
res−1(h, I). These tori are normally hyperbolic for I1res > 0, normally elliptic for I1res < 0,

and, at Hbif = hpar−res1 = 0, normally parabolic (then I1res = I2 = 0). Similarly, the elliptic
lower dimensional tori at (x, y) = (±

√
I1, 0), p±ell, are θ1-resonant when ω±

1 = 0, where

ω±
1 =

∂Hbif (±
√
I1, 0, I1, I2)

∂I1
= µ1I1 + α3I2.

Hence, the intersection of the plane

I1res± = −α3

µ1
I2

with the paraboloids p±ell(h, I1, I2) corresponds to these two families of normally elliptic lower
dimensional tori that are resonant in the I1-direction, p±res−1(h, I) (denoted by green starred
curves in Figure 10 as well). The manifold of 3-tori, which are strongly resonant in θ1,
pres−1(h, I1, I2), intersects the paraboloids p0

hyp(h, ·) ∪ p0
par(h, ·) ∪ p0

ell(h, ·) and p±ell(h, I1, I2)
along the families p0

res−1(h, I) and p±res−1(h, I).
Clearly, from the form of (7.1), strong resonance in the xy plane (namely, the nor-

mal frequency Ω = ω0(h, I1, I2) = 0) may occur only at the parabolic tori p0
par(h, 0, I2) =

p0
hyp(h, 0, I2) = p±ell(h, 0, I2), where ω±

0 =
√

2I1 and ω0
0 =

√
−I1 vanish. Notice that here, at

I1 = 0, the natural frequency of the lower dimensional torus does vanish, as opposed to the
formal definition of vanishing ω0

0 which we had introduced for I1 > 0.
In Figure 10 a 3D EMBD of the system (7.1) (Hamiltonian Hbif ) is presented for typical

parameter values (µ1 = 0.3, α2 = 1, α3 = 0.4 in all the EMBD plots, and the corresponding
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Figure 12. 2D slices of EMBD showing the energy range h0
min ≤ H0 < h0

p. A: An energy surface cor-
responding to the energy value H0 = h0

min, showing the hyperbolic bifurcation point. B: A range of energy
values which includes the bifurcation value at which a hyperbolic double resonance occurs for a fixed value of
I2 = I2 min 0. C, D: Energy surfaces containing the singular ellipse (dashed line) corresponding to hyperbolic
2-tori and their separatrices.

energy bifurcation values are h+
min ≈ −1.0714, h0

min = −0. 625, hpmin = −0. 5, and hpar−res1 =
0). The plot includes a limited set of I2 values to allow a glimpse into its complicated inner
structure: the manifold of solid curves corresponds to the singularity manifold of elliptic
2-tori, p±ell(h, I1, I2) and p0

ell(h, I1, I2), the manifold of dashed curves to hyperbolic 2-tori,
p0
hyp(h, I1, I2), and the curve of red circles to parabolic 2-tori, p0

par(h, I1, I2); the strongest

resonance in the I2-direction (θ̇2 = 0) is denoted by a blue surface of dotted lines and the
2-tori with the strongest resonance in the I1-direction (〈θ̇1〉xy = 0) by green starred curves.
The yellow volume (or shaded regions in the 2D EMBD) corresponds to regular 3-tori on
which θ̇1 changes sign (back-flow). The surface of 3-tori which have strong resonance in the
I1-direction is contained in this region.

Taking the 2D slices H0 = h of Figure 10 for increasing h values, we describe below the
structure of the corresponding branched surfaces in Figures 9B–E. The intersections of the
strong resonance surfaces θ̇2 = 0 and ω1(I1, I2) = 0 with these 2D slices are denoted by a
dotted line and a starred curve (which is calculated numerically), respectively.

For energies in the range H0 = h, h+
min ≤ h < h0

min, the energy surfaces are composed
of two separate components corresponding to oscillations in each of the potential wells (as
in the low energy a priori unstable case). The energy surface in the EMBD is an ellipse, so
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any 2D section of Figure 10 for this range of energies is similar to the EMBD slices of system
Hst presented in Figure 3; see Figure 11A. The Fomenko graph for any 1D section of this
ellipse is simply two segments; see Figure 11B. Equivalently, the branched surfaces are two
identical discs as in Figure 9B, and the strong resonance surfaces ω1(I1, I2) = ω2(I1, I2) = 0
intersect the energy surface transversely, as shown by the starred and dotted lines in Figure
11A and schematically in Figure 14A. In particular, since the two resonant in the I1 direction
lower dimensional elliptic tori, p±res−1(h, I1, I2), are separated along the circle p±ell(h, I1, I2) by
the two resonant in the I2 direction lower dimensional elliptic tori, p±res−2(h, I1, I2), it follows
that the curves pres−1(h, I1, I2) and pres−2(h, I1, I2) of resonant 3-tori must intersect at least
once in a double resonant 3-torus as shown schematically in Figure 14A; indeed, a transverse
intersection of the strongest resonance curves is depicted in Figure 11A.

At H0 = h = h0
min (Figure 12A) a hyperbolic resonant bifurcation occurs; the singularity

surface p0
hyp(h, I1, I2) appears in a 2-fold (since I1min 0 > 0), creating a torus of fixed points

which is normally hyperbolic; see Figure 12B, where the 2D slice I2 = I2 min 0 of Figure 10 is
presented, and the newly born 2-resonant hyperbolic torus appears there in the fold of the
dashed curve. Figure 12A shows that this torus does not appear at the intersection of the
two strong resonance curves ω1 = ω2 = 0 (as in the a priori unstable case and as depicted
schematically in Figure 14B). It appears as an isolated star13 (θ̇1 = ω0

1 = 0) residing on the
dotted line (θ̇2 = ω2 = 0). Topologically, at this point the two disks of the branched surfaces
meet, so that for H0 = h, h0

min < h < hpmin, we have, as before, a ring of I values for which
two families of 3-tori, corresponding to oscillation in the wells, coexist and a central disk of
I values for which only one family of 3-tori, corresponding to motion around the two wells,
exists. The boundary between these regions is an ellipse of I values, corresponding to normally
hyperbolic 2-tori; see Figures 12C,D and the corresponding Figures 9C and 5A.

Using the computation of p0
res−1,2(h, I), the minimal number of intersections of the strong

resonance curves pres−1(h, I1, I2) and pres−2(h, I1, I2) in the interior disk is found to be one,
as shown in Figure 14C. The 2D sections of Figure 10 for these ranges of energies demonstrate
that for the bifurcating system (7.1) additional intersections appear14 (see Figure 12A,C,D).
A bifurcation in the iso-energetic strong resonance curve ω1 = 0 occurs at H0 = h = h0

min. For
h < h0

min this resonance curve has one component and it is smooth; at the bifurcation point
h = h0

min it splits to two components—a smooth curve of resonant 3-tori with two resonant
elliptic 2-tori at its boundary and a resonant hyperbolic 2-torus as a separate component (see
Figure 12A). For h0

min < h < hcω1
, the iso-energetic curve ω1 = 0 has three components: the

smooth component of resonant 3-tori with elliptic resonant 2-tori as its boundary and the
other two components, which reside above and below the ellipse of hyperbolic 2-tori and meet
at the two resonant hyperbolic 2-tori, as seen in Figure 12B. As the energy value increases, the
components of ω1 = 0 approach each other until at the next bifurcation point of this curve,
H0 = h = hcω1

, all three components meet again (for the parameters chosen here hcω1
≈ −0.59;

see Figure 12D), forming, for h > hcω1
, one nonsmooth component with cusp points at the

resonant hyperbolic 2-tori, as seen in Figure 13A. (So the resonant surface ω1 = 0 folds in the
shape of a nose looking toward the negative h values in the EMBD.)

13Look below the starred curve, at the boundary of the yellow shaded region.
14One can argue that this more complicated scenario is the generic one.
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Figure 13. 2D slices of EMBD of the bifurcating system, Hbif , showing the parabolic bifurcation point. A:
An energy surface corresponding to the energy value H0 = hp

min. B: A range of energy values which includes
the bifurcation value H0 = hp

min for a fixed value of I2 = −α2.

At H0 = h = hpmin the ellipses p0
hyp(h

p
min, ·) and p±ell(h

p
min, ·) touch the I1 = 0 plane at

I2 = −α2, creating a parabolic torus (see Figure 13A and the schematic representation of
Figure 9D). This bifurcation is, again, associated with a fold in the singularity surfaces of the
EMBD and therefore with a resonance of a lower dimensional torus (see Theorems 4 and 5
in section 8.2). Indeed, at H0 = hpmin, the parabola p0

par(h, I1, I2) folds in the I2 direction at
I2 = −α2; hence this parabolic 2-torus is resonant in θ2:

·
θ2

∣∣∣∣
(0,0,0,−α2)

=
∂Hbif (0, 0, 0, I2)

∂I2

∣∣∣∣
I2=−α2

= 0.

Furthermore, parabolicity of this torus implies that the torus is strongly resonant in the xy
plane; namely, ω0

0 = 0, so at h = hpmin a double resonance occurs at the torus (x, y, I) =
(0, 0, 0,−α2). This coincidence of resonances and of topological changes in the energy surfaces
is shown schematically in Figures 14C–E. Figures 12 and 13 demonstrate its occurrence for
(7.1). The dotted line, representing resonant tori in the I2-direction, intersects the boundary
of the allowed region of motion at the parabolic torus (a circle in the figure).

For h > hpmin, the branched surface is a disk with two flaps emanating from it (see Figure
9E), where the two end points of the flaps correspond to parabolic tori. For Hamiltonian (7.1),
the ellipse Hbif (0, 0, I1, I2) = h defines the boundary of this disc. The ellipse corresponds to
hyperbolic tori for I1 > 0 (the dashed part of the inner ellipses in Figure 15) and elliptic tori
for I1 < 0 (the lower solid part of the ellipses in Figure 15). The flaps’ upper boundaries
(upper solid line in Figure 15) are defined by the ellipse Hbif (±

√
I1, 0, I1, I2) = h for I1 ≥ 0.

The two meeting points of the flaps (denoted by circles) with this disk correspond to the two
parabolic tori which reside on the energy surface (see (7.9)).

Now, consider the relative location of the resonant in the I1-direction 2-tori, p0
res−1(h, I),

and the parabolic 2-tori, p0
par(h, I), on the ellipse Hbif (0, 0, I1, I2) = h. For h values which

are slightly larger than hpmin, this pair of resonant 2-tori lives on the upper part of the ellipse,
above the parabolic tori; hence they correspond to normally hyperbolic resonant 2-tori, as
shown schematically in Figure 14D. For such values of h the curve pres−1(h, I1, I2) intersects
only the upper part of the ellipse (the dashed part of the ellipse in Figure 15A, corresponding
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Figure 14. Energy branched surfaces and strong resonance curves.

Figure 15. 2D slices of an EMBD of the bifurcating system, Hbif . A: An energy surface with hp
min < H0 <

hpar−res1. B: An energy surface with H0 > hpar−res1.

to hyperbolic tori), so there are no resonant in the I1 direction normally elliptic 2-tori at
the origin (i.e., p0

hyp(h, I1, I2) ∩ pres−1(h, I1, I2) = ∅), as shown in Figure 15A. For energy
values greater than H0 = hpar−res1 = 0 (i.e., for h > hpar−res1), this situation changes;
for H0 = h > hpar−res1, the resonant plane pres−1(h, I1, I2) intersects each of the curves
p0
hyp(h, ·) and p0

ell(h, ·) at one point (see the schematic Figure 14F and the energy surface in
Figure 15B). Namely, one of the resonant hyperbolic lower dimensional tori becomes normally
elliptic for H0 = h > hpar−res1. Therefore, at the bifurcation value, H0 = hpar−res1 = 0,
the resonant plane in the I1-direction intersects the ellipse p0

hyp(h, ·) ∪ p0
par(h, ·) ∪ p0

ell(h, ·)
at I1 = I2 = 0, where a parabolic, resonant in the I1 direction, lower dimensional torus is
created (the schematic Figures 14E,F show the aforementioned intersections before and after
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Figure 16. A 2D slice of EMBD of the bifurcating system, Hbif . An energy surface with H0 = hpar−res1,
containing a strongly resonant in the I1-direction parabolic 2-torus.

this bifurcation). Indeed, Figure 16 shows that at H0 = hpar−res1 = 0 one of the resonant
hyperbolic tori changes its stability and becomes parabolic. (The end point of the starred
curve, ω1 = 0, intersects one of the circles denoting a parabolic 2-torus; note that at the
bifurcation point H0 = hpar−res1, the iso-energetic curve ω1 = 0 ceases to have two cusp
points and thereon has only one cusp point at the remaining resonant hyperbolic 2-torus.)
Figure 17A demonstrates that the resonance in the I1-direction is indeed associated with a
fold of the parabola p0

hyp(h, I1, 0)∪p0
par(h, I1, 0)∪p0

ell(h, I1, 0) at the origin; the 2D slice of the
EMBD at I2 = 0 shows that the circle denoting the parabolic torus and the star denoting the
strong resonance in the I1 direction coincide.

Bifurcation values for the parameters are now easily identified. First, we see that at
α2 = 0, h+

min = h0
min = hpmin = hpar−res1 = 0; namely, all the bifurcations mentioned above

occur at one energy surface, and a double resonant (torus of fixed points in the 3 DOF case)
normally parabolic torus is created, as shown in Figure 17B, where the star (ω1 = 0), the
dotted line (ω2 = 0), and the circle (a parabolic torus) coincide. Then, the energy surface
H0 = α2 = 0 of system (7.1) shrinks to one 2-resonant normally parabolic 2-torus of fixed
points. The existence of a double resonant parabolic torus is a codimension one phenomena
for 3 DOF systems and a persistent phenomena in 4 or larger DOF systems [38]. Normally
parabolic tori of fixed points are a codimension one phenomenon for any n ≥ 2 (see [45, 38, 37]
for more details).
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Figure 17. 2D slices of the EMBD at I2 = 0. A: Regular parameter values—at I1 = H0 = 0 a resonance
in the I1 direction occurs. B: At the special bifurcation value α2 = 0. Since α2 = 0, at I1 = H0 = 0 a double
resonance in the I1 and I2 direction occurs.

Second, notice that

d2Hbif (±
√
I1, 0, I1, I2)

dI2
1

= µ1;(7.13)

hence, the fold of the singular surface p+
ell(h, I1, I2) in the I1-direction becomes flatter as

µ1 → 0 (put differently, the dependence of the frequency ω±
1 on I1 becomes weaker). It is seen

that holding α3 fixed in this limit changes the character of the energy surfaces from being
bounded to being unbounded in I1, I2. We will not delve into the analysis of all the different
limits which may be taken here; some of these limits are studied in detail in previous works
(see [45, 46, 35, 36, 37, 38]). In particular, note that the appearance of flat parabolic resonant
tori in such a situation gives rise to strong instabilities (see [38] and [37]).

7.2. The frequency domain plots (B). We plot the energy surfaces (ωH) of the bifurcat-
ing system in the frequency space for typical and bifurcating energy values (h+

min, h
0
min, h

p
min,

and hpar−res1 and h values in between them) with the resonance web plotted on them. We
demonstrate that the structure of these webs differs from the structure of webs of a priori
stable systems in its nonuniformity and its behavior near the origin.

The simplest type of energy surface component contains only elliptic lower dimensional
tori. For H0 = h, h+

min < h < h0
min, it appears as a smooth codimension one surface with

boundaries, as shown in Figure 18, similar to Figure 6. This smooth compact component is a
smooth deformation of the disk appearing in the energy-momentum space, (H0, I2, I1). Trans-
verse intersection of a smooth component of ωH with one of the planes ωj = 0 corresponds
to a strong resonance; for energy surfaces in the range h+

min < h < h0
min this occurs only for

j = 1, 2 (it cannot occur for j = 0 since in this energy range ω0 > 0). In Figure 18 (and in
the following figures here) the red starred curve corresponds to the intersection of the energy
surface, ωH , with the resonance plane, ω1 = 0, and the black thick dotted line denotes the
intersection of ωH with ω2 = 0. The lower dimensional elliptic resonant tori correspond to
the intersections of the surfaces’ boundary, which is plotted in thick black, with the ωj = 0
(j = 1 or 2) planes.
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Figure 18. A typical energy surface corresponding to an elliptic energy value H0 = h with h+
min < h < h0

min.
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Figure 19. An energy surface corresponding to the bifurcation value H0 = h0
min, containing a double

resonant hyperbolic torus of fixed points. Left: The frequency map plot. Right: The resonance web on this
energy surface for |k| ≤ 21, where the size of the dots indicates the strength of the resonance.

The energy value H0 = h0
min is a bifurcation value at which one 2-resonant hyperbolic 2-

torus (hyperbolic torus of fixed points) appears. It creates a singular cusp point in the energy
surface ωH (see Figure 19), where this energy surface is presented in the three frequency space
in the left plot (each blue thin curve corresponds to a fixed value of I2, the red starred curve
to the strong resonance ω1 = 0, the black dotted line to the strong resonance ω2 = 0, and
the black thin curve to the boundary of ωH , consisting of 2-tori) and the resonance web on
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Figure 20. A typical energy surface in the hyperbolic energy range, corresponding to an energy value H0 = h
with h0

min < h < hp
min.

this energy surface is presented in the right plot. The resonance webs presented here are
calculated by finding (approximately) the points on the energy surface for which

〈
k, ωH

〉
= 0

for 0 < |k| = |k1|+ |k2|+ |k3| ≤ 21, where the size of the dots is in inverse relation to |k|; i.e.,
the stronger the resonance the larger the dot indicating it (note that for the weaker resonances
the difference in the size of the dots is indistinguishable). The hyperbolic 2-resonant 2-torus in
Figure 19 resides in the cusp, far from the other resonance lines and from the main resonance
junction, where the strong resonances intersect (this might suggest an additional reason for not
observing strong instabilities of the perturbed system near such hyperbolic double resonances
[38]).

Energy surfaces with H0 = h, h0
min < h < hpmin, include an ellipse of hyperbolic tori

with their separatrices. As for the a priori unstable case, we find that the energy surface ωH

collides at this singular ellipse with the plane ω0 = 0 and then bounces back with the same
sign of ω0 (since the direction of motion does not change from the exterior to the interior tori).
Using (7.12) and (7.10) we find that the singularity manifold corresponding to the family of
hyperbolic 2-tori is given by

Hbif (0, 0, I1, I2) = Hbif (0, 0, ω1, ω2)

=
1

2

(
ω0

1 − α3ω2

)2
µ1 + 1

2 − α2
3

+
1

2
(ω2)

2 − 1

2
α2

2 −
1

2

(α2α3)
2

µ1 + 1
2 − α2

3

.(7.14)

For our parameter range it is a tilted ellipse lying in the ω0 = 0 plane which is centered at
the origin; see Figure 20 (similar to Figure 7).
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On one side of this singularity manifold each point on the energy surface corresponds to
two 3-tori, and on the other side to a single 3-torus as summarized by Figure 9C. Each of the
surfaces ωj = 0 (j = 1, 2) intersects the ellipse at two points, at hyperbolic 1-resonant 2-tori.
In [38] we prove that such intersections are persistent. Recall that even though the singular
circle is contained in the ω0 = 0 plane it does not correspond to a double resonance of the
lower dimensional torus: ω0 = 0 at the homoclinic loop, whereas the normal frequency of the
hyperbolic torus is imaginary and is nonzero.
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Figure 21. An energy surface with H0 = hp
min. Left: The energy surface in the frequency space. Right: The

resonance web on this energy surface. Red circle: (Double) resonant (in the I0- and I2-directions) parabolic
2-torus.

At the bifurcation value H0 = hpmin a parabolic (resonant in the I2-direction) torus first
appears; see Figure 21. An important observation is that parabolic tori are a priori resonant :
their normal frequency vanishes. Indeed, let ω = (Ω, ωn−1) ∈ R

n denote the n dimensional
vector of frequencies, including the normal frequency Ω, and the inner frequencies (ωn−1 ∈
R
n−1) of the (n − 1)-torus. Parabolicity implies Ω = 0; hence, k1 = e1n = (1, 0, . . . , 0)

satisfies the resonance condition
〈
k1, ω

〉
= 0 (indeed, in the resonance web plots a large

dot indicating strongest resonance always appears on the parabolic tori; see, e.g., Figure 21).
Lower dimensional resonance implies that there exists at least one additional vector of integers,
k2 = (0, ln−1), ln−1 ∈ Z

n−1, such that
〈
k2, ω

〉
= 0. Hence, parabolic lower dimensional

resonant tori correspond to junctions in the resonance web with at least one strongest resonance
(indeed, the parabolic torus in Figure 21 is doubly resonant, residing on the junction ω0 =
ω2 = 0). In particular, if the parabolic torus appears at the origin, where all resonances
intersect, it corresponds to an (n− 1)-resonant (n− 1)-torus, namely to a parabolic torus of
fixed points. In [38] we prove that such a scenario is persistent in a one parameter family of
integrable n DOF Hamiltonian systems with n ≥ 2.

A typical energy surface in the energy range H0 = h, hpmin < h < hpar−res1 = 0, is shown
in Figure 22 and in the range H0 = h > hpar−res1 = 0 in Figure 23, where the two parabolic
tori are denoted by red circles. Then, the natural frequency in the xy-direction found from
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Figure 22. A typical energy surface with hp
min < H0 < 0.

linearization at the origin,

ω0
0 =

√
−I1 =

√
ω0

1 − α3ω2

µ1 + 1
2 − α2

3

− α2α3,

shows that the singularity ellipse (7.14) detaches from the ω0 = 0 plane with a square-root
distance. Topologically, the energy surface is well described by the branched surface in Figure
9E.

The colliding surface, at which ωH is singular (nonsmooth), is clearly of codimension two,
and it corresponds to the family of hyperbolic tori which live on the given energy surface.
The end points of this collision surface, where the projection singularity heals and the energy
surfaces cease to contain hyperbolic tori, correspond to parabolic tori, a codimension three
surface, namely, points in Figures 9, 21, 22, 23, and 24 (the parabolic tori are denoted by
red circles). At the parabolic lower dimensional tori the ω0 frequency vanishes. If such an
end surface (in the figures, a point) intersects another resonance surface, a parabolic (doubly)
resonant torus is born. It is now clear that with additional DOF such an intersection (of
the boundary of the collision surface and the resonances on the ω0 = 0 plane) is generically
transverse (see [38] for a proof); hence parabolic resonances (PR) are expected to occur on
surfaces corresponding to a range of energies. For the 3 DOF case, since generically the end
points (corresponding to the inner frequencies of the parabolic tori) change continuously with
the energy values, there exists a set of dense values of energies for which these end points hit
resonance surfaces and PR are created. When an end point of a singularity curve belongs to
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Figure 23. A typical energy surface in the range H0 > h0
par−res1 = 0.

0

1

2

3

4

−2
−1.5

−1
−0.5

0
0.5

1

−1.5

−1

−0.5

0

0.5

1

1.5

ω0ω1

ω
2

Η0=0.0, µ1=0.3, α2=1.0, α3=0.4

0

1

2

3

4

−2
−1.5

−1
−0.5

0
0.5

1

−1.5

−1

−0.5

0

0.5

1

1.5

ω0ω1

ω
2

Η0=0.0, µ1=0.3, α2=1.0, α3=0.4

Figure 24. An energy surface with H0 = hpar−res1 = 0, containing a strongly resonant in the I1 direction
parabolic 2-torus (hence, a double resonant parabolic torus). Left: This energy surface in the frequency space.
Right: The resonance web on this energy surface.

a strong resonance plane ωj = 0 (j = 1 or 2) it corresponds to a strong double resonance of
the parabolic lower dimensional torus (see the resonance webs in Figures 21 and 24).

Figure 23 shows an energy surface for positive H0, where the family of tori encircling the
two wells crosses the ω1 = 0 plane. Figure 24 shows an energy surface withH0 = hpar−res1 = 0,
which contains a resonant in the I1 direction parabolic torus (hence strongly doubly resonant
with ω0 = ω1 = 0) and the resonance web on this energy surface. Setting (in addition) α2 = 0,
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Figure 25. A resonance web on an energy surface near the (locally KAM degenerate) energy surface with
H0 = α2 = 0.

the energy surface with H0 = 0 shrinks to a parabolic torus of fixed points at the origin of
the frequency space. However, nearby energy surfaces (i.e., energy surfaces with α2 = 0 and
a small energy value) have a nondiminishing extent in the frequency space, with resonant
parabolic 2-tori residing near the main junction where many strong resonances intersect; see
Figure 25 (note the scale of the axis).

Summarizing, we discovered that the presentation in the frequency space of the energy
surfaces of Hamiltonians of the form H0(x, y, I) with n− 1 dimensional tori that change their
stability has the following properties:

• For a range of energies, the energy surface is singular along a codimension two surface
belonging to the ω0 = 0 plane. This singularity surface corresponds to hyperbolic lower
dimensional tori and their separatrices. The boundaries of the singularity surface (of
codimension three) correspond to parabolic tori.

• Parabolic resonant tori may be recognized as resonance junctions which belong to the
boundary of the hyperbolic singular surface. For 3 DOF systems these appear on a
dense set of energy values; for n ≥ 4 these appear for a range of energies.

• While the resonance surfaces still intersect the energy surfaces densely, the uniformity
seems to be lost.

• A parabolic torus of fixed points appears when the boundary of the singular surface
contains the origin. Such a scenario appears for special parameter values (a codimen-
sion one phenomena) and on specific energy surfaces.
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7.3. Qualitative behavior of the near-integrable system (B). Using the plots of the
EMBD we may read off all possible sources of instabilities. Here we need to combine several
effects:

• Instabilities associated with the regular resonance web, as in the elliptic case.
• Instabilities associated with the existence of equi-energy family of separatrices and

their resonances, as in the unstable case.
• Instabilities associated with resonant parabolic tori; their appearance implies the co-

existence of equi-energy families of separatrices and equi-energy families of lower di-
mensional elliptic tori, meeting at the parabolic tori. The flatness of the singularity
manifolds (see (7.13)) affects the extent of the instability.

• Instabilities associated with bifurcations in the structure of the singularity manifolds
(manifolds corresponding to lower dimensional tori) of the energy surfaces—namely,
the creation of elliptic, hyperbolic, and parabolic lower dimensional tori, all of which
are associated with resonant lower dimensional tori.

Once again, the analysis of each of the above items has not been done yet. For the
parabolic case we have mainly numerical indications for the behavior of the perturbed orbits;
initial steps of a rigorous analysis of instabilities associated with PR are presented in [39] (a
longer detailed version is in preparation). The behavior near a nonresonant parabolic torus
does not yield instability—the lower dimensional parabolic torus persists [24]—and it appears
that the behavior near it is indistinguishable from that appearing near the lower dimensional
normally elliptic torus. However, numerical simulations indicate that the behavior near PR
is dramatically different; orbits which appear to be chaotic and of a different nature than the
homoclinic chaos are abundant. The structure of these perturbed orbits near 1-PR, which
appear for a dense set of energy values, is similar to the one observed in the 2 DOF case;
see [37, 45]. Further degeneracies make the instabilities more pronounced, see [37, 38] for
examples.

One degeneracy we explore here is the existence of a normally parabolic torus of fixed
points which is of codimension one (α2 = 0) and corresponds to a local violation of the KAM
nondegeneracy condition. The induced strong instabilities of a perturbed orbit with initial
values near this point are presented in Figures 26 and 27; in Figure 26 the perturbed orbit
is projected on the (θ, I) planes, where its complicated structure, while it passes through
the successive resonance zones, may be seen; in Figure 27 we show the development of the
instabilities in the action variables depending on time. These figures were produced for the
perturbed Hamiltonian:

Hε
bif (x, y, θ1, I1, θ2, I2; ε) =

y2

2
− x2

2
I1 +

x4

4
+

(
µ1 +

1

2

)
I2
1

2
+
I2
2

2
+ α3I1I2(7.15)

+ ε

((
1 − x2

2

)
cos(3θ1) + cos(3θ2)

)
.

Graphically, in the frequency space, such a scenario happens when the boundary of the
singularity surface (here the end points of the singularity lines) passes through the origin,
where all the resonance planes intersect. The fact that a parabolic 2-resonant torus resides
at this junction point seems to induce strong instabilities in the perturbed system in both
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Figure 26. Instability in the action variables near 2-PR: A perturbed orbit projected on the (θ, I)
planes, corresponding to the total energy H ≈ 9.953e − 4, with initial conditions (x, y, θ1, I1, θ2, I2; ε) =
(0.2515, 0, 1.57, 0, 1.57, 0, 1e− 3, 1e− 3).

action directions, as seen in Figures 26 and 27. In Figure 28 the corresponding unperturbed
energy surface is shown in the (I2, I1) plane and in the frequency space (see the corresponding
resonance web in Figure 25). The perturbed orbit shown in Figures 26 and 27 approximately
covers the whole possible extent of the actions range on this surface. For more details and
upper bounds on the maximal instability rate see [37, 38, 39]; in particular, in [39] analytical
methods for studying instabilities near 2-PR are suggested.

Note that in 4 or more DOF systems the existence of a double resonant parabolic torus is
persistent without dependence of the system on external parameters, and the local violation
of the KAM iso-energetic nondegeneracy condition is avoided. Numerical simulations suggest
that near such double PR the instabilities and the orbit structure are similar to the ones
appearing in the locally degenerate 3 DOF system (with α2 = 0 ).

8. Bifurcations in the energy-momentum diagrams. Here we formulate the observed
relations between bifurcations in the EMBD and the appearance of lower dimensional res-
onances precisely. First we prove that extrema of the nonparabolic singularity surfaces in
the EMBD occur iff the corresponding tori are resonant. Then we prove that if on a given
energy surface there exists an (n − 1)-nonparabolic torus which is nondegenerately strongly
(n − 1)-resonant (see definitions below), then the topology of the energy surfaces changes at
this value of the energy. We end with formulating similar results for the parabolic case. After
stating the results for the generic parabolic case we show that our model Hamiltonian Hbif
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Figure 27. Instability in the action variables near 2-PR: A perturbed orbit projected on the time-actions
plane, with initial conditions as in Figure 26. Solid line: I1. Dashed line: I2.
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Figure 28. An energy surface of Hbif with α2 = 0, H0 = 1e − 3. Left: An EMBD in the (I2, I1) plane.
Right: In the frequency space.

is nongeneric in this context (because of its Z2 symmetry) and formulate the corresponding
results to a suitable class of Hamiltonians.

8.1. Folds in the EMBD and resonances. Consider the EMBD near a singular family
of n − 1 lower dimensional tori, pf . (Here we again take s = 1. General value of s will be
considered elsewhere.) The unperturbed Hamiltonian, expressed in suitable local coordinates
near pf , is given by H0 = H0(x, y, I), where pf = (xf , yf , If ) satisfies ∇x,yH0(x, y, I)|pf = 0.

By the implicit function theorem (IFT), if the Hessian of H0 with respect to x, y is nonsingular
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at pf (namely, det ∂2H(x,y,I)
∂x∂y |pf �= 0), we may express this manifold as a graph over the I

variables: pf = (xf (I), yf (I), I). Then, apart from parabolic points (where det ∂2H(x,y,I)
∂x∂y |pf =

0), pf is represented in the EMBD by the codimension one smooth manifold phf = {hf (I), I} =

{H0(xf (I), yf (I), I), I}.15 It is now natural to define extremal points of the singularity surface
in the EMBD.

Definition 5. pcf is a simple k-extremal point of the singularity manifold phf if pcf is non-
parabolic and hf (I) = H0(xf (I), yf (I), I) has a local extremal in k directions at pcf ; i.e., there
exist i1, . . . , ik ∈ {1, . . . , n− 1} such that

∂hf (I)

∂Ii

∣∣∣∣
pcf

= 0 for i = i1, . . . , ik.(8.1)

Theorem 1. Consider a family of singular nonparabolic n − 1 dimensional tori pf (I) =
(xf (I), yf (I), I), where (x, y, I) are suitable coordinates near pf (I). Then pcf = pf (I

c) is a
simple k-extremal point of the corresponding singularity manifold in the EMBD iff pcf corre-
sponds to a k-strongly resonant lower dimensional torus.

Proof. Since pcf is not parabolic the representation phf = {hf (I) = H0(xf (I), yf (I), I), I} is
nonsingular near pcf . Hence, pcf is a k-extremal point iff the surface {hf (I) = H0(xf (I), yf (I), I),
I} in the (h, I) space is extremal in k directions Ii1 , . . . , Iik at pcf . This occurs, by definition,

iff
∂hf (I)
∂Ii

vanishes in the corresponding k directions at pcf as expressed in (8.1). Since we use
suitable coordinates, and since ∇x,yH0(x, y, I)|pf = 0, it follows that for i = i1, . . . , ik

·
θi

∣∣∣∣
pcf

=
∂H(x, y, I)

∂Ii

∣∣∣∣
pcf

=
dH(pf (I))

dIi

∣∣∣∣
pcf

=
∂hf (I)

∂Ii

∣∣∣∣
pcf

= 0.(8.2)

Theorem 1 relates the extremal point of the singularity surfaces in the EMBD and reso-
nances. We have seen that the topology of the energy surfaces changes at folds of these singular
surfaces. We note here the triviality that folds imply extremum points, and extremum points
with first nonvanishing derivatives of even order imply folds.

8.2. Topological bifurcations. In the previous section we saw that Hbif has two values
hc = h+

ell, h
0
hyp which are simple 2-fold points of the elliptic and hyperbolic singularity surfaces

(namely, these singularity surfaces have an even order extrema in two action directions),
several families of curves on which a simple 1-fold occurs (corresponding to the intersection
of the singularity surfaces p±ell, p

0
hyp, p

0
ell with the corresponding resonances), and hc = h0

p is a
1-parabolic fold point corresponding to the first appearance of parabolic tori. We observe that
h+
ell, h

0
hyp, and h0

p correspond to a topological change in the energy surfaces’ structure, namely,
the corresponding topology of the branched surfaces changes across these energy values, but
that the families along which a simple 1-fold occurs do not correspond to such changes. We
would like to formulate these observations. First, we need to define the branched surfaces in
a precise way.

15With a slight abuse of notation we denoted it in previous sections by pf = (hf (I), I) as well (see, for
example, (7.2), (7.3), (7.4)).
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Recall that hc is a topological bifurcation point if the branched surfaces across hc are not
equivalent (definition 3). If the topology of AS

h , the singularity manifold for a given energy
surface, changes across h, then the branched surfaces across h are not equivalent. Using the
Morse lemma we establish that for s = 1 the singularity manifold, AS

h , changes its topology
near folds of the singularity surfaces. Since folds of the singularity surfaces imply extrema
and extrema imply resonances, the main result follows.

Definition 6. pcf is an n − k (0 < k < n) strongly resonant n − 1 dimensional singular
torus with nondegenerate frequency vector if in the suitable Arnold–Liouville–Nekhoroshev
coordinates

dH0(p
c
f )

dIj
= 0, det

(
d2H0(p

c
f )

dIidIj

)
�= 0, j = 1, . . . , k.(8.3)

The relation between (8.3) and resonances, as stated in the definition, follows from The-
orem 1.

Theorem 2. If pcf is a nonparabolic n−1 strongly resonant n−1 dimensional singular torus
with a nondegenerate frequency vector, then hc = H0(p

c
f ) is a topological bifurcation point.

Proof. The theorem essentially follows from the Morse lemma (see [26] or [41]); we include
some details to enhance the intuition. Using the suitable coordinates near pf , we may write

H0(pf − pcf ) = H0(p
c
f ) + (If − Ic)TA(If − Ic) +O(3),(8.4)

where A is the Hessian at pcf : A =
d2H0(pcf )

dIidIj
(recall that ∇x,yH0(pf − pcf ) ≡ 0). Hence, by

linear orthonormal transformation Uz = I, we may write (8.4) as

H0(pf − pcf ) −H0(p
c
f ) +

n−1−r∑
i=1

ai+rz
2
i+r =

r∑
i=1

aiz
2
i +O(3),

where ai > 0 for all i by the nondegeneracy assumption. In fact, r is the Morse index of
hf (I) = H0(xf (I), yf (I), I) at pcf (the dimension of the subspace for which the Hessian A is
positive definite). The Morse lemma, which applies to hf (I) by (8.3), states that by smooth
local change of coordinates we can eliminate all higher order terms and set all the ai’s to
unity. It follows immediately that intersection of the singularity surface {H0(pf ), If} with the
plane H0(pf ) = h near pcf changes its topology across hc = H0(p

c
f ); if r = n− 1 (resp., r = 0).

Namely, if A is positive (negative) definite, then for h < hc (h > hc) there is no branch of pf
near pcf satisfying H0(pf ) = h, whereas on the other side there is an n− 2 dimensional ellipse
satisfying this equation. If 0 < r < n−1, the hyperboloids pf (h, ·) change their orientation at
h = hc; namely, they do not depend smoothly on h at hc. Since the branched surfaces change
across the surfaces pf (h, ·), the claim is proved.

8.3. Parabolic tori and topological bifurcations. Consider the surface of parabolic lower
dimensional tori ppf = (xpf , ypf , Ipf ) so that

∇x,yH0(x, y, I)|ppf = det
∂2H(x, y, I)

∂x∂y

∣∣∣∣
ppf

= 0.(8.5)
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These three equations define (generically) a codimension two surface in the EMBD, the sin-
gularity surface, phpf . Along phpf two (or more, in symmetric/degenerate cases) singularity

surfaces representing families of nonparabolic (n − 1)-tori, phfi(I), i = 1, . . . , n, meet. For

example, in section 7, the four singularity surfaces phf1,2(I) = p±ell, p
h
f3,4

(I) = p0
hyp,ell meet at

phpf = p0
par. The natural oscillations in the xy plane of the n− 1 dimensional tori ppf vanish,

so these tori are strongly resonant in the ω0-direction. We now address the natural question
in view of Theorem 1: When do extremal points of this singularity surface (phpf ) in the EMBD
correspond to additional strong resonances? Here, one should take careful limits when con-
sidering derivatives across the singular boundary of phfi(I), namely, across phpf . To formulate
such conditions let us investigate more fully (8.5). Define the functions

f1(x, y, I) =
∂H(x, y, I)

∂x
, f2(x, y, I) =

∂H(x, y, I)

∂y
, f3(x, y, I) = det

∂2H(x, y, I)

∂x∂y
;

then (8.5) defines the surface f1(x, y, I) = f2(x, y, I) = f3(x, y, I) = 0. Can this surface be
represented as a graph over the n− 2 actions Jn−2 = (I1, . . . , Ijp−1, Ijp+1, . . . , In−1) for some

chosen index jp? By the IFT, this may be done if ∂(f1,f2,f3)
∂(x,y,Ijp ) is nonsingular, and hence we have

the following definition.
Definition 7. ppf is an n− 1 dimensional parabolic torus which is nondegenerate in the Ijp

direction if ppf satisfies (8.5) and

det
∂(∂H(x,y,I)

∂x , ∂H(x,y,I)
∂y ,det ∂2H(x,y,I)

∂x∂y )

∂(x, y, Ijp)

∣∣∣∣∣∣
ppf

�= 0.(8.6)

If p∗pf is an n− 1 dimensional parabolic torus which is nondegenerate in the Ijp-direction,
then in its neighborhood there is an n−2 dimensional family of parabolic tori ppf which may be
expressed as a graph over the n−2 actions Jn−2 = (I1, . . . , Ijp−1, Ijp+1, . . . , In−1) : ppf (J

n−2) =
(xpf (J

n−2), ypf (J
n−2), Ijp(J

n−2), Jn−2). It follows that the corresponding codimension two
surface in the EMBD can be represented as a graph over the same actions as well:

phpf (J
n−2) = {H0(xpf (J

n−2), ypf (J
n−2), Ijp(J

n−2), Jn−2), Ijp(J
n−2), Jn−2}

= {hpf (Jn−2), Ijp(J
n−2), Jn−2}.

Using (8.5), it follows that

∂hpf (J
n−2)

∂Ij

∣∣∣∣
ppf

=

(
∂H(x, y, I)

∂Ij
+
∂H(x, y, I)

∂Ijp

∂Ijp(J
n−2)

∂Ij

)∣∣∣∣
ppf

(8.7)

=

( ·
θj +

·
θjp

∂Ijp(J
n−2)

∂Ij

)∣∣∣∣
ppf

for j �= jp,

whereas

·
θjp

∣∣∣∣
ppf

=
∂H(x, y, I)

∂Ijp

∣∣∣∣
ppf

=
∂hfi(I)

∂Ijp

∣∣∣∣
pfi→ppf

,(8.8)
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and the independence of the last term on i follows from the smooth dependence of the Hamil-
tonian flow on I, even across the parabolic (in the xy-direction) point. The relation between

extremal points of hpf (J
n−2) (at which

∂hpf (I)
∂Ii

|ppf = 0) and resonances is now clear.
Theorem 3. Consider a family of normally parabolic n−1 dimensional tori ppf = (xpf , ypf ,

Ipf ) which is nondegenerate in the Ijp-direction at pcpf . Then, for j �= jp, an extremal point
in the Ij-direction of the corresponding singularity manifold in the EMBD at pcpf corresponds
to a strong resonance in this direction iff pcpf is strongly resonant in the Ijp-direction or if
Ijp is extremal in Ij at pcpf . p

c
pf is strongly resonant in the Ijp-direction iff the nonparabolic

singularity surfaces emanating from ppf are extremal in the Ijp-direction in the limit pfi →
pcpf .

An attempt to apply the above theorem to system (7.1) immediately fails—this system
does not satisfy the nondegeneracy condition (8.6). Considering all systems with natural
mechanical potential in the xy plane having a parabolic invariant (n− 1)-torus at the origin,

Hgen
bif (x, y, I) =

y2

2
− x2

2
f(I) + V (x, I),(8.9)

f(0) = 0,
∂V

∂x

∣∣∣∣
(0,0)

= 0,
∂2V

∂x2

∣∣∣∣
(0,0)

= 0,

shows that the nondegeneracy condition (8.6) corresponds to

∂3V

∂x3

∂2V

∂x∂Ijp

∣∣∣∣
(0,0)

�= 0;

namely, the system is asymmetric with respect to reflections in x, and the location of the
bifurcating invariant tori depends on Ijp . Hence, any natural mechanical system with Z2

symmetry does not satisfy (8.6).
We observe that another possibility (which is realized in our case of system (7.1)) of

satisfying (8.5) along a simple n − 2 dimensional surface is to require that the unperturbed
system separates to a sum of two Hamiltonians, the first depending on (x, y, Ijp) and the
second depending on the actions (I1, . . . , In−1). In this case equations (8.5) are independent
of Jn−2 = (I1, . . . , Ijp−1, Ijp+1, . . . , In−1), and any solution of these equations is satisfied for all
Jn−2 values. This separability assumption is of course highly nongeneric from a mathematical
point of view but is certainly of physical relevance (a similar approach appears in the theory
of partial averaging).

Definition 8. ppf is an n−1 dimensional parabolic torus fully degenerate in the Ijp-direction
if ppf does not satisfy (8.6) but does satisfy (8.5) and these equations are independent of Ij
for all j �= jp.

This condition is satisfied for any system of the form (8.9) if f(I) = f(Ijp), V (x, I) =
V (x, Ijp) + g(I). In this case ppf can be locally presented as the surface (xpf , ypf , Ijp,pf , J

n−2)

with xpf , ypf , Ijp,pf independent of Jn−2 so
∂Ijp,pf
∂Ij

= 0 for j �= jp. Indeed, for (7.1), we saw

that jp = 1 and ppf = (xpf , ypf , I1,pf , I2) = (0, 0, 0, I2). Hence, near a parabolic torus, which is
fully degenerate in the Ijp direction, we can present the n− 2 dimensional family of parabolic
tori as phpf (J

n−2) = {H0(xpf , ypf , Ijp , J
n−2), Ijp , J

n−2} = {hpf (Jn−2), Ijp , J
n−2}. The relation
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between extrema of hpf (J
n−2) and additional resonances follows immediately from (8.7) and

(8.8), where we use
∂Ijp
∂Ij

= 0 to conclude the following.

Theorem 4. Consider a family of normally parabolic n−1 dimensional tori ppf = (xpf , ypf ,
Ipf ), which is fully degenerate in the Ijp-direction at pcpf . Then, for j �= jp, the extremal point
in the Ij-direction of the corresponding singularity manifold in the EMBD at pcpf corresponds
to a strong resonance in this direction. pcpf is strongly resonant in the Ijp-direction iff the
nonparabolic singularity surfaces emanating from ppf are extremal in the Ijp-direction in the
limit pfi → pcpf .

As in section 8.2, by the Morse lemma, n − 2 nondegenerate folds in the direction of
the n − 2 actions Jn−2 of the codimension two surface phpf (J

n−2) correspond to topological
bifurcations. From (8.7) and (8.8) we conclude that such folds are not always associated with
resonances, and we should distinguish between three cases.16 For the fully degenerate case
folds and resonances are simply related.

Theorem 5. Consider an n−1 dimensional parabolic torus, pcpf . Assume pcpf is completely
degenerate in the Ijp-direction and that pcpf is n− 2 strongly resonant with nondegenerate fre-
quency vector in the I1, . . . , Ij−1, Ij+1, . . . , In−1-directions; then hpc = H0(p

c
pf ) is a topological

bifurcation point.

In section 7, the energy hpc = h0
p is a topological bifurcation point which is well described

by this theorem; at h0
p parabolic tori first appear, and we have seen that a resonance in the

I2-direction occurs there.

In the generic case, a fold of phpf (J
n−2) in the Ij-direction is associated with resonance if

·
θjp = 0 or if

∂Ijp (Jn−2)

∂Ij
|pcpf = 0. Hence, topological bifurcations occurring at an n − 2 fold of

phpf (J
n−2) are associated with a resonance only if additional conditions are satisfied. To satisfy

these additional conditions in a persistent way the system must have additional parameters
or symmetries.

Theorem 6. Consider an n− 1 dimensional parabolic torus, pcpf . Assume that pcpf is non-
degenerate in the Ijp-direction and that the Hamiltonian at pcpf is locally separable, namely,
∂Ijp (Jn−2)

∂Ij
|pcpf = 0 for all j �= jp. Then, if pcpf is n− 2 strongly resonant with nondegenerate

frequency vector in the I1, . . . , Ij−1, Ij+1, . . . , In−1-directions, then hpc = H0(p
c
pf ) is a topo-

logical bifurcation point. Without imposed symmetries, such a phenomenon is of codimension
n− 2.

Theorem 7. If pcpf is an n − 1 dimensional parabolic torus of fixed points which is non-
degenerate in the Ijp-direction and has nondegenerate frequency vector in the I1, . . . , Ij−1,
Ij+1, . . . , In−1-directions then hpc = H0(p

c
pf ) is a topological bifurcation point. Without im-

posed symmetries, such a phenomenon is of codimension one.

9. Discussion. We have shown that when the generalized action-angle coordinates can be
extended globally (as in our prototype models of normally stable, unstable, and bifurcating

16Note that there are two different (independent) types of nondegeneracies. One corresponds to the standard
assumption regarding changes in the frequency vector (Definition 6) and is needed for applying the Morse
lemma. The other corresponds to the nondegenerate (degenerate) dependence of the parabolic tori on a
specific action (Definitions 7,8).
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tori) the combination of the EMBD and the branched surfaces supply global qualitative de-
scription of the near-integrable dynamics; on these diagrams the topological changes in the
energy surfaces and the appearance of lower dimensional resonances are apparent, and thus
various mechanisms for instabilities (such as homoclinic orbits, hyperbolic resonances, and
PR) may be clearly identified. In particular, we proved that topological bifurcations of the
energy surfaces correspond to folds of singularity surfaces in these diagrams and hence to res-
onances. In other works [37, 38] we have demonstrated that the curvature of these singularity
surfaces at the folds plays a crucial role in the extent of the instabilities in the perturbed
system. Again, such effects are easily identified in these diagrams.

Many issues remain for future studies:

• We have seen (sections 6.3 and 7.3) that there is a long list of instabilities associated
with the near-integrable motion near families of lower dimensional tori which is not
well understood yet.

• For 2 DOF systems, the description of the energy surfaces as graphs gives a useful
insight regarding the evolution of the instabilities in the action variables (or, more
generally, in the adiabatic variables of the system) under small conservative perturba-
tions or conservative noise [20]. These ideas were generalized to n DOF systems with
strong conservative noise which destroys all integrals of motion and small nonconser-
vative noise which leads to diffusion between different energy surfaces [19]. In view
of our work, one is lead naturally to investigation of motion in integrable (or near-
integrable) systems with small conservative noise by studying random motion along
branched surfaces.

• The behavior of systems for which the local generalized action-angle coordinates cannot
be globally extended is yet to be studied. In particular, one would like to extend
the presentation here so it will be applicable to the work of Fomenko and coworkers
in which the topology of complicated systems, like the rigid body, is fully analyzed
[17, 18]. On one hand, one may use general constants of motion plots in a similar
fashion to what we have proposed for the EMBD, yet the relation between folds and
resonances will be lost. On the other hand, even for such plots, finding the branched
surfaces topology from the Fomenko graphs is challenging.

• The restriction to systems with compact level sets excludes important examples such as
the Kepler problem. Delicate issues related to the possible appearance of noncompact
critical level sets and singularities of the potential need to be addressed (see [47]).

• Notice that the generalized action-angle local representation naturally leads to inves-
tigation of the Hamiltonian function evaluated along the singularities as a function of
the n − s actions. Hence, as noted in [33], singularity theory may be used to classify
all persistent bifurcations in the s DOF subsystem. Here, we further observe that
resonances are also associated with singularities of this function. Full classification, as
had been achieved for some of the bifurcation scenarios, is yet to be developed.

• Finally, the effect of n−s dimensional tori with various stabilities in the 2s dimensional
normal space for s > 1 (as in [33]) on the EMBD structure and the branched surfaces
structure is yet to be understood.
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Evans Functions for Integral Neural Field Equations with Heaviside Firing Rate
Function∗
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Abstract. In this paper we show how to construct the Evans function for traveling wave solutions of integral
neural field equations when the firing rate function is a Heaviside. This allows a discussion of wave
stability and bifurcation as a function of system parameters, including the speed and strength of
synaptic coupling and the speed of axonal signals. The theory is illustrated with the construction
and stability analysis of front solutions to a scalar neural field model, and a limiting case is shown to
recover recent results of Zhang [Differential Integral Equations, 16 (2003), pp. 513–536]. Traveling
fronts and pulses are considered in more general models possessing either a linear or piecewise
constant recovery variable. We establish the stability of coexisting traveling fronts beyond a front
bifurcation and consider parameter regimes that support two stable traveling fronts of different
speeds. Such fronts may be connected, and depending on their relative speed the resulting region of
activity can widen or contract. The conditions for the contracting case to lead to a pulse solution
are established. The stability of pulses is obtained for a variety of examples, in each case confirming
a previously conjectured stability result. Finally, we show how this theory may be used to describe
the dynamic instability of a standing pulse that arises in a model with slow recovery. Numerical
simulations show that such an instability can lead to the shedding of a pair of traveling pulses.
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1. Introduction. Traveling waves in neurobiology are receiving increased attention from
experimentalists, in part due to their ability to visualize them with multielectrode recordings
and imaging methods. In particular, it is possible to electrically stimulate slices of pharmaco-
logically treated tissue taken from the cortex [19], hippocampus [31], and thalamus [28]. For
cortical circuits such in vitro experiments have shown that, when stimulated appropriately,
waves of excitation may occur [12, 40]. Such waves are a consequence of synaptic interactions
and the intrinsic behavior of local neuronal circuitry. The propagation speed of these waves
is of the order cm s−1, an order of magnitude slower than that of action potential propagation
along axons. The class of computational models that are believed to support synaptic waves
differ radically from classic models of waves in excitable systems. Most importantly, synap-
tic interactions are nonlocal (in space) and involve communication (space-dependent) delays
(arising from the finite propagation velocity of an action potential) and distributed delays
(arising from neurotransmitter release and dendritic processing). In many continuum models
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for the propagation of electrical activity in neural tissue it is assumed that the synaptic input
current is a function of the presynaptic firing rate function [39]. These infinite dimensional
dynamical systems typically take the form [15]

1

α

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
dyw(y)f ◦ u(x− y, t) − ga(x, t),(1.1)

1

ε

∂a(x, t)

∂t
= −a(x, t) + u(x, t).(1.2)

Here, u(x, t) is interpreted as a neural field representing the local activity of a population of
neurons at position x ∈ R, f ◦u denotes the firing rate function, and w(y) denotes the strength
of connections between neurons separated by a distance y (assuming a spatially homogeneous
system). The constant α is the synaptic rate constant, while the neural field a(x, t) represents
a local feedback signal, with strength g > 0, that modulates synaptic currents. Numerical
simulations, with sigmoidal f , show that such systems support unattenuated traveling waves as
a result of localized input. In the absence of local feedback dynamics (i.e., g = 0), Ermentrout
and McLeod [16] have established that there exists a unique monotone traveling front solution
for sigmoidal firing rate functions and positive spatially decaying weight functions. Indeed,
there are now a number of results about existence, uniqueness, and asymptotic stability for
integral differential equations, such as can be found in [2, 10, 11, 9]. Recently Pinto and
Ermentrout [34, 35] have constructed traveling pulse solutions using a singular perturbation
argument for a general class of continuous firing rate functions. Moreover, for the special choice
of a Heaviside firing rate function they have made extensive use of techniques pioneered by
Amari [2] for the explicit construction of bumps and waves. For the case of standing pulses
(and a more general form of local feedback than (1.2)) they have also given a rigorous analysis
of the linearized equations of motion, allowing a discussion of bump stability. In this paper
we extend this work to cover the stability of traveling (as well as standing) waves, using an
Evans function approach. Moreover, we shall consider a general class of neural field theories
that contains standard models, such as (1.1) and (1.2), as limiting cases.

The Evans function is a powerful tool for the stability analysis of nonlinear waves on
unbounded domains. It has previously been used within the context of PDEs but has also
been recently formulated for neural field theories [41] and more general nonlocal problems [25].
The main use of the Evans function is in locating the point spectrum (isolated eigenvalues)
of some relevant linearized operator. While its computation is typically only possible in
perturbative situations, Zhang [41] has found an explicit formula for the Evans function for
traveling waves of (1.1) and (1.2) with a Heaviside firing rate function. His approach makes
explicit use of the inhomogeneous ordinary differential equation structure of the linearized
equations of motion around a traveling wave. These are solved via the method of variation
of parameters, with the source term arising from the nonlocal nature of the model. In this
way he first constructs an intermediate Evans function for the homogeneous problem before
using this to determine the full Evans function in an appropriate right half plane. From
here he is able to establish that the fast traveling pulse solution of the singularly perturbed
system (1.1) and (1.2) with ε � α is exponentially stable. By working with integral rather
than integro-differential models, we shall develop three important extensions of this approach,
side-stepping the need to construct an intermediate Evans function. These extensions cover
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(i) the study of exponential wave stability in an integral framework rather than an integro-
differential framework, which contains models like (1.1) and (1.2) as special cases, (ii) avoiding
the need to resort to the study of some singularly perturbed system, and (iii) including the
effects of space-dependent delays arising from axonal communication.

In section 2 we introduce the form of integral neural field model that we are concerned
with in this paper. To solve the stability problem of the traveling wave solution, we rewrite
the integral equations in moving coordinates and linearize about the traveling wave. Special
solutions of this linearized system give rise to an eigenvalue problem and a linear operator
L. To establish the exponential stability of traveling wave solutions it suffices to investigate
the spectrum of this operator. Since we are concerned with systems where the real part of
the continuous spectrum has a uniformly negative upper bound, it is vitally important to
determine the location of the isolated spectrum for wave stability. For the case of a Heaviside
firing rate function we show in section 3 how this spectrum may be determined by the zeros of
a complex analytic function, which we identify as the Evans function. For illustrative purposes
the focus of this section is on scalar integral models with traveling front solutions. In the next
two sections we consider models with linear and nonlinear recovery variables, respectively,
that can also support traveling pulses. Throughout sections 3, 4, and 5 a number of examples
are presented to illustrate the application of this theory. Moreover, we are able to establish
a number of previously conjectured stability results. Finally, in section 6 we discuss natural
extensions of this work.

2. Traveling waves. In this section we introduce a more general integral form of (1.1)
and consider the analysis of traveling wave solutions. For clarity we reserve discussion of
feedback until later sections and take g = 0. Apart from a spatial integral mixing of the
network connectivity function with space-dependent delays, arising from noninstantaneous
axonal communication, integral models can naturally incorporate a temporal integration over
some appropriately identified distributed delay kernel. These distributed delay kernels are
biologically motivated and represent the response of (slow) biological synapses to spiking
inputs. For a general firing rate function of synaptic current we consider the scalar integral
equation

u(x, t) =

∫ ∞

−∞
dyw(y)

∫ ∞

0
dsη(s)f ◦ u(x− y, t− s− |y|/v).(2.1)

Here v represents the velocity of action potential propagation [39, 23], while η(t) (η(t) = 0
for t < 0) models the effects of synaptic processing. With the choice η(t) = αe−αt we recover
the model given by (1.1). Some discussion of traveling wave solutions to (2.1) has previously
been given in [13], where for some specific choices of w(x) the equivalence to a certain PDE
was exploited. Throughout this paper we shall avoid the use of such techniques and always
work with integral equation models directly. However, again for simplicity, we shall consider
the restriction w(x) = w(|x|).

Following the standard approach for constructing traveling wave solutions to PDEs, such
as reviewed by Sandstede [36], we introduce the coordinate ξ = x − ct and seek functions
U(ξ, t) = u(x − ct, t) that satisfy (2.1). In the (ξ, t) coordinates, the integral equation (2.1)
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reads

U(ξ, t) =

∫ ∞

−∞
dyw(y)

∫ ∞

0
dsη(s)f ◦ U(ξ − y + cs+ c|y|/v, t− s− |y|/v).(2.2)

The traveling wave is a stationary solution U(ξ, t) = q(ξ) (independent of t) that satisfies

q(ξ) =

∫ ∞

−∞
dyw(y)

∫ ∞

0
dsη(s)f ◦ q(ξ − y + cs+ c|y|/v).(2.3)

The linearization of (2.2) about the steady state q(ξ) is obtained by writing U(ξ, t) = q(ξ) +
u(ξ, t), and Taylor expanding, to give

u(ξ, t) =

∫ ∞

−∞
dyw(y)

∫ ∞

0
dsη(s)f ′(q(ξ − y + cs+ c|y|/v))

× u(ξ − y + cs+ c|y|/v, t− s− |y|/v).(2.4)

Of particular importance are bounded smooth solutions defined on R for each fixed t. Thus
one looks for solutions of the form u(ξ, t) = u(ξ)eλt. This leads to the eigenvalue equation
u = Lu:

u(ξ) =

∫ ∞

−∞
dyw(y)

∫ ∞

ξ−y+c|y|/v
ds

c
η(−ξ/c+ y/c− |y|/v + s/c)

× e−λ(−ξ/c+y/c+s/c)f ′(q(s))u(s).(2.5)

Let σ(L) be the spectrum of L. We shall say that a traveling wave is linearly stable if

max{Re(λ) : λ ∈ σ(L), λ �= 0} ≤ −K(2.6)

for some K > 0, and λ = 0 is a simple eigenvalue of L. Furthermore, we shall take it
that linear stability implies nonlinear stability. Although this is known to be true in a broad
range of cases, including for asymptotically constant traveling waves in both reaction-diffusion
equations and viscous conservation laws (see, for example, [21]), it is an open challenge to
establish this for the integral equations that we consider in this paper.

In general the normal spectrum of the operator obtained by linearizing a system about
its traveling wave solution may be associated with the zeros of a complex analytic function,
the so-called Evans function. This was originally formulated by Evans [17] in the context
of a stability theorem about excitable nerve axon equations of Hodgkin–Huxley type. Jones
subsequently employed this function with some geometric techniques to establish the stability
of fast traveling pulses in the FitzHugh–Nagumo model [24]. Following from this, Alexan-
der, Gardner, and Jones formulated a more general method to define the Evans function for
semilinear parabolic systems [1]. Indeed this approach has proved quite versatile and has
now been used to study the stability of traveling waves in a number of PDE models, such
as discussed in [32, 4, 8, 36]. The extension to integral models is far more recent [41, 25].
However, it is fair to say that although there are many nonlinear evolution equations which
support traveling wave solutions, there are very few which possess explicit Evans functions
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[33], except perhaps when the underlying PDE is integrable [26, 27, 30]. It is therefore all
the more interesting that work by Zhang [41] on integral neural field models has shown that
such explicit formulas are possible for the choice of a Heaviside firing rate function. This is
one reason for us to pursue the choice of a Heaviside firing rate function. Another being that
the qualitative features of traveling wave solutions for smooth sigmoidal firing rate functions,
often used to describe biological firing rates, have previously been found to carry over to the
case with a nonsmooth Heaviside firing rate function [16, 34, 13]. Throughout the rest of this
paper we shall therefore focus on the choice f(u) = Θ(u − h) for some threshold h. In this
case the traveling wave is given by

q(ξ) =

∫ ∞

0
η(s)ψ(ξ + cs)ds,(2.7)

where

ψ(ξ) =

∫ ∞

−∞
w(y)Θ(q(ξ − y + c|y|/v) − h)dy,(2.8)

with f ′(q) = δ(q−h). Note that this has a legitimate interpretation as f ′(q) only ever appears
within an integral, such as (2.5). In the next section we will describe how to construct the
Evans function for traveling wave solutions given by (2.7) and (2.8).

3. Fronts in a scalar model. In this section we introduce the techniques for constructing
the Evans function with the example of traveling front solutions to (2.1). Previous work on
the properties of such traveling fronts, i.e., speed as a function of system parameters, but not
stability, can be found in [23, 34, 13]. Note also that a formal link between traveling front
solutions in neural field theories and traveling spikes in integrate-and-fire networks can be
found in [14]. We look for traveling front solutions such that q(ξ) > h for ξ < 0 and q(ξ) < h
for ξ > 0. It is then a simple matter to show that

ψ(ξ) =

{∫∞
ξ/(1−c/v)w(y)dy, ξ ≥ 0,∫∞
ξ/(1+c/v)w(y)dy, ξ < 0.

(3.1)

The choice of origin, q(0) = h, gives an implicit equation for the speed of the wave as a
function of system parameters.

The construction of the Evans function begins with an evaluation of (2.5). Under the
change of variables z = q(s) this equation may be written

u(ξ) =

∫ ∞

−∞
dyw(y)

∫ q(∞)

q(ξ−y+c|y|/v)
dz

c
η(q−1(z)/c− ξ/c+ y/c− |y|/v)

e−λ(q−1(z)/c−ξ/c+y/c) × δ(z − h)

|q′(q−1(z))|u(q
−1(z)).(3.2)

For the traveling front of choice we note that when z = h, q−1(h) = 0 and (3.2) reduces to

u(ξ) =
u(0)

c|q′(0)|

∫ ∞

−∞
dyw(y)η(−ξ/c+ y/c− |y|/v)e−λ(y−ξ)/c.(3.3)
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From this equation we may generate a self-consistent equation for the value of the perturbation
at ξ = 0, simply by setting ξ = 0 on the left-hand side of (3.3). This self-consistent condition
reads

u(0) =
u(0)

c|q′(0)|

∫ ∞

−∞
dyw(y)η(y/c− |y|/v)e−λy/c.(3.4)

Importantly there are only nontrivial solutions if E(λ) = 0, where

E(λ) = 1 − 1

c|q′(0)|

∫ ∞

−∞
dyw(y)η(y/c− |y|/v)e−λy/c.(3.5)

From causality η(t) = 0 for t ≤ 0 and physically c < v, so

E(λ) = 1 − 1

c|q′(0)|

∫ ∞

0
dyw(y)η(y/c− y/v)e−λy/c.(3.6)

We identify (3.6) with the Evans function for the traveling front solution of (2.1). The Evans
function is real-valued if λ is real. Furthermore, (i) the complex number λ is an eigenvalue of
the operator L if and only if E(λ) = 0, and (ii) the algebraic multiplicity of an eigenvalue is
equal to the order of the zero of the Evans function. To establish the last two results requires
some further work, which we briefly discuss.

Consider for the moment the case that η(t) is an exponential. We do this without sig-
nificant loss of generality since the discussion below generalizes to the case that η(t) is the
Green’s function of a linear differential operator. For the choice η(t) = αe−αt, we may rewrite
(3.3) in the form

u(ξ) = u(0)

[
1 − α

c|q′(0)|

∫ c±ξ/c

0
dyw(y)e−αy/c±e−λy/c

]
e(λ+α)ξ/c,(3.7)

where c−1
± = c−1 ∓ v−1 and we take c− when ξ < 0 and c+ when ξ > 0. Taking the limit as

ξ → ∞ gives

lim
ξ→∞

u(ξ) = u(0)E(λ) lim
ξ→∞

e(λ+α)ξ/c.(3.8)

Assuming that Re λ > −α (which we shall see shortly is to the right of the essential spectrum),
then u(ξ) will be unbounded as ξ → ∞ unless E(λ) = 0. This is precisely our defining
equation for an eigenvalue. Hence, E(λ) = 0 if and only if λ is an eigenvalue. To prove (ii)
is more involved, and as such we merely present the key component of a more rigorous proof.
Differentiating both sides of (3.7) with respect to λ and taking the large ξ limit give

−1

c
u(0)E(λ)ξ + e−(λ+α)/cdu(ξ)

dλ
= u(0)E ′(λ) +

du(0)

dλ

[
1 − α

c|q′(0)|

∫ c±ξ/c

0
dyw(y)e−αy/c±e−λy/c

]
.

(3.9)
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For the case that the order of the zero of the Evans function is two, defined by the conditions
E(λ) = 0 and E ′(λ) = 0 we have (in the large ξ limit) simply that

du(ξ)

dλ
=

du(0)

dλ

[
1 − α

c|q′(0)|

∫ c±ξ/c

0
dyw(y)e−αy/c±e−λy/c

]
e(λ+α)ξ/c,(3.10)

which is the same as (3.7) under the replacement u → du/dλ. This shows that for the same
eigenvalue there are two solutions (at least in the large ξ limit). Hence, a repeated root of
the Evans function leads to an algebraic doubling of the eigenvalue. In a similar fashion mth
order roots of the Evans function can be shown to lead to m distinct solutions with a common
eigenvalue. These solutions are linear combinations of dlu/dλl, l = 0, . . . ,m. Although we do
not attempt to do so here, a rigorous proof of (ii) may be developed based around this idea.

From (2.7) and (2.8) it is straightforward to calculate q′(ξ) in the form

q′(ξ) =

∫ ∞

−∞
dyw(y)

∫ ∞

0
dsη(s)δ(q(ξ − y + cs+ c|y|/v) − h)q′(ξ − y + cs+ c|y|/v).(3.11)

Proceeding as above for the construction of the Evans function it is simple to show that

q′(ξ) = u(ξ)|λ=0 ,(3.12)

where u = Lu. Thus q′(ξ) is an eigenfunction of L for λ = 0 (expected from translation
invariance). It is also possible to check that E(0) = 0, as expected. Introducing

H(λ) =

∫ ∞

0
dyw(y)η(y/c− y/v)e−λy/c(3.13)

and using the fact that E(0) = 0 allow us to write the Evans function in the form

E(λ) = 1 − H(λ)

H(0)
.(3.14)

To calculate the essential spectrum of the operator L we make use of the fact that u(ξ)
has the convolution form

u(ξ) =
u(0)

c|q′(0)|

∫ ∞

−∞
dyw(y)η(y/c± − ξ/c)e−λ(y−ξ)/c.(3.15)

Introducing the Fourier transform

û(k) =

∫ ∞

−∞
u(ξ)e−ikxdξ,(3.16)

taking the Fourier transform of (3.15), and rearranging and taking the inverse Fourier trans-
form give

|q′(0)|
u(0)

∫ ∞

−∞
dk

û(k)

η̂(−iλ− kc)
eikξ =

∫ ∞

−∞
dkŵ

(
kc

c±
± i

λ

v

)
eikξ.(3.17)

Assuming that w(ξ) decays exponentially quickly then in the limit |ξ| → ∞ the right-hand
side of (3.17) vanishes. Seeking solutions of the form u(ξ) = eipξ, where p ∈ R, gives

1

η̂(−iλ− pc)
= 0.(3.18)

This is an implicit equation for λ = λ(p) that defines the essential spectrum of L.
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3.1. Example: A traveling front. Here we consider the choice η(t) = αe−αt and w(x) =
e−|x|/2 so that we recover a model previously analyzed by Zhang [41]. Assuming c > 0 the
traveling front (2.7) is given in terms of (3.1) which takes the explicit form

ψ(ξ) =

{
1
2em−ξ, ξ ≥ 0,

1 − 1
2em+ξ, ξ < 0,

m± =
v

c± v
.(3.19)

The speed of the front is determined from the condition q(0) = h as

c =
v(2h− 1)

2h− 1 − 2hv/α
.(3.20)

The essential spectrum is easily found using

η̂(k) =
1

1 + ik/α
,(3.21)

so that, from (3.18), λ(p) = −α + ipc, i.e., a vertical line at Re λ = −α. Hence, as stated
earlier, the real part of the continuous spectrum has a uniformly negative upper bound and
is not important for determining wave stability. The Evans function is easily calculated using
the result

H(λ) =
α

2

1

1 + α
(

1
c −

1
v

)
+ λ

c

,(3.22)

so that

E(λ) =
λ

c+ α
(
1 − c

v

)
+ λ

.(3.23)

The equation E(λ) = 0 has only the solution λ = 0. We also have that

E ′(0) =
1

c+ α
(
1 − c

v

) > 0,(3.24)

showing that λ = 0 is a simple eigenvalue. Hence, the traveling wave front for this example
is exponentially stable. Note that in the limit v → ∞ we recover the result of Zhang [41].
We make the observation that axonal communication delays affect wave speed but not wave
stability.

4. Traveling waves in a model with linear recovery. In real cortical tissues there is an
abundance of metabolic processes whose combined effect is to modulate neuronal response. It
is convenient to think of these processes in terms of local feedback mechanisms that modulate
synaptic currents. Such feedback may act to decrease activity in the wake of a traveling front
so as to generate traveling pulses (rather than fronts). We will consider simple models of so-
called spike frequency adaptation (i.e., the addition of a current that activates in the presence
of high activity) that are known to lead to the generation of pulses for network connectivities
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that would otherwise support only traveling fronts [34]. Generalizing the model in the previous
section, we write

Qu(x, t) = (w ⊗ f ◦ u)(x, t) − ga(x, t),(4.1)

Qaa(x, t) = u(x, t),(4.2)

and we have introduced the notation

(w ⊗ f)(x, t) =

∫ ∞

−∞
w(y)f(x− y, t− |y|/v)dy.(4.3)

The (temporal) linear differential operators Q and Qa have Green’s functions η(t) and ηa(t),
respectively, so that

Qη(t) = δ(t), Qaηa(t) = δ(t).(4.4)

This is a generalization of the model defined by (1.1) and (1.2). In its integrated form this
more general model may be written

u = η ∗ w ⊗ f ◦ u− gηb ∗ u,(4.5)

where

(η ∗ f)(x, t) =

∫ t

0
η(s)f(x, t− s)ds(4.6)

and ηb = η ∗ ηa. Proceeding as before, we find that traveling wave solutions are given by

q(ξ) =

∫ ∞

0
η(s)ψ(ξ + cs)ds− g

∫ ∞

0
ηb(s)q(ξ + cs)ds,(4.7)

with ψ(ξ) given by (2.8). To obtain a solution for q(ξ) it is convenient to take Fourier
transforms and rearrange to give

q̂(k) = η̂c(k)ψ̂(k), η̂c(k) =
η̂(k)

1 + gη̂b(k)
,(4.8)

where η̂b(k) = η̂(k)η̂a(k). Equation (4.8) may then be inverted to give q(ξ) in the explicit
form

q(ξ) =

∫ ∞

0
ηc(z)ψ(ξ + cz)dz,(4.9)

where

ηc(t) =
1

2π

∫ ∞

−∞
η̂c(k)e

iktdk.(4.10)

This last integral may be evaluated using a contour in the upper half complex plane for t > 0
(with ηc(t) = 0 for t < 0).
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A traveling front solution is given by (4.9) and (3.1). The speed of the wave is again
determined by the condition q(0) = h. Linearizing around the traveling front and proceeding
as before (for the case without recovery), we obtain an eigenvalue equation of the form u = Lcu,
where

Lcu =
u(0)

c|q′(0)|

∫ ∞

−∞
dyw(y)ηc(−ξ/c+ y/c− |y|/v)e−λ(y−ξ)/c.(4.11)

The essential spectrum λ = λ(p) is determined from the solution of 1/η̂c(−iλ− pc) = 0. The
Evans function of a front in this model with recovery is given by (3.14) with

H(λ) =

∫ ∞

0
dyw(y)ηc(y/c− y/v)e−λy/c.(4.12)

The model defined by (4.5) is also expected to support traveling pulses of the form q(ξ) ≥ h
for ξ ∈ [0,∆] and q(ξ) < h otherwise. In this case the expression for ψ(ξ) is given by

ψ(ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
F
(

−ξ
1+c/v ,

∆−ξ
1+c/v

)
, ξ ≤ 0,

F
(
0, ξ

1−c/v

)
+ F

(
0, ∆−ξ

1+c/v

)
, 0 < ξ < ∆,

F
(

ξ−∆
1−c/v ,

ξ
1−c/v

)
, ξ ≥ ∆,

(4.13)

where

F(a, b) =

∫ b

a
w(y)dy.(4.14)

The dispersion relation c = c(∆) is then implicitly defined by the simultaneous solution
of q(0) = h and q(∆) = h (∆ > 0). Linearizing around the traveling pulse solution and
proceeding as before, we obtain an eigenvalue equation of the form u = Jcu, where for
ξ ∈ [0,∆]

Jcu(ξ) = Ac(ξ, λ)u(0) +Bc(ξ, λ)u(∆).(4.15)

Here the functions Ac(ξ, λ) and Bc(ξ, λ) are given by

Ac(ξ, λ) =
1

c|q′(0)|

∫ ∞

ξ
1−c/v

dyw(y)ηc(−ξ/c+ y/c− y/v)e−λ(y−ξ)/c,(4.16)

Bc(ξ, λ) =
1

c|q′(∆)|

∫ ∞

ξ−∆
1+c/v

dyw(y)ηc((∆ − ξ)/c+ y/c− |y|/v)e−λ(y−(ξ−∆))/c.(4.17)

Demanding that the eigenvalue problem u = Jcu be self-consistent at ξ = 0 and ξ = ∆ gives
the system of equations[

u(0)
u(∆)

]
= Ac(λ)

[
u(0)
u(∆)

]
, Ac(λ) =

[
Ac(0, λ) Bc(0, λ)
Ac(∆, λ) Bc(∆, λ)

]
.(4.18)
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There is a nontrivial solution of (4.18) if E(λ) = 0, where E(λ) = det(Ac(λ)−I). We interpret
E(λ) as the Evans function for the traveling pulse solution.

Note that standing pulses are defined by c = 0 so that from (4.9)

q(ξ) = η̂c(0)

∫ ∆

0
w(ξ − y)dy.(4.19)

Hence, for a standing pulse

q′(ξ) = η̂c(0)[w(ξ) − w(ξ − ∆)],(4.20)

and |q′(0)| = |q′(∆)|. Moreover, since w(y) is relatively flat compared to ηc(y/c)e
−λy/c/c when

c = 0, the expressions for (4.16) and (4.17) simplify to

Ac(ξ, λ) =
1

|q′(0)| η̂c(−iλ)w(ξ)e−λξ/v, Bc(ξ, λ) = Ac(∆ − ξ, λ).(4.21)

In this case it can be shown that the Evans function E(λ) has zeros when

η̂c(0)

η̂c(−iλ)
= Γ±(λ),(4.22)

where

Γ±(λ) =
w(0) ± w(∆)e−λ∆/v

|w(0) − w(∆)| .(4.23)

Note that λ = 0 is a solution as expected.

4.1. Example: A front bifurcation. Here we consider an example that recovers a model
recently discussed by Bressloff and Folias [6] by choosing η(t) = αe−αt, ηa(t) = e−t, and
w(x) = e−|x|/2. From (4.10) the function ηc(t) is easily calculated given the pole structure of
η̂c(k). Using the facts that η̂(k) = (1 + ik/α)−1 and η̂a(k) = (1 + ik)−1, this is given by

η̂c(k) =
−α(1 + ik)

(k − ik+)(k − ik−)
,(4.24)

where

k± =
1 + α±

√
(1 + α)2 − 4α(1 + g)

2
.(4.25)

Hence, upon evaluating (4.10), using the calculus of residues, we obtain

ηc(t) =
α

k− − k+

{
(1 − k+)e−k+t − (1 − k−)e−k−t

}
.(4.26)

Using (4.9) and (3.19), the equation q(0) = h gives an implicit expression for the front speed
as

h =
α

2

1 − cm−
(cm−)2 − cm−(1 + α) + α(1 + g)

, c > 0,(4.27)

h = −α
2

1 − cm+

(cm+)2 − cm+(1 + α) + α(1 + g)
+

1

1 + g
, c < 0.(4.28)
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Figure 4.1. Wave front speed as a function of α for a model with linear recovery (red curve). If g = gc,
where 2h(1 + gc) = 1, there is a front for all α with speed c = 0. At a critical value of α this stationary
front undergoes a pitchfork bifurcation leading to a pair of fronts traveling in opposite directions. This case
is illustrated in the middle figure, where v = 4, h = 0.25, and g = 1. Away from this critical condition the
pitchfork bifurcation is broken as illustrated in the left and right figures, where g = 0.9 and g = 1.1, respectively.
Solid (dashed) lines are stable (unstable). The blue curves illustrate the existence of stable (solid) and unstable
(dashed) pulses, whose speed and width are determined by the simultaneous solution of (4.33) and (4.34).

Note that in the limit v → ∞, m± → ±1 and we recover the result of Bressloff and Folias [6].
Rearranging (4.27) and (4.28) gives c in the form

cm− =
1

2

[
1 + α− α

2h
±

√(
1 + α− α

2h

)2
− 4α

(
1 + g − 1

2h

)]
, c > 0,(4.29)

cm+ =
1

2

[
1 + α− α

2h∗
±

√(
1 + α− α

2h∗
)2

− 4α

(
1 + g − 1

2h∗

)]
, c < 0,(4.30)

where h∗ = 1/(1 + g)−h. If g = gc, where 2h(1 + gc) = 1, there is a front for all α with speed
c = 0. At a critical value of α this stationary front undergoes a pitchfork bifurcation leading
to a pair of fronts traveling in opposite directions. If this critical condition is not met, then
the pitchfork bifurcation is broken as illustrated in Figure 4.1. Since the zeros of 1/η̂c(k) = 0
occur when k = ik±, we see that the essential spectrum is contained within the closed strip
bounded by the two vertical lines λ(p) = −k± + ipc. The Evans function may also be easily
computed using

H(λ) =
α

2(k− − k+)

{
1 − k+

1 + k+(1
c −

1
v ) + λ

c

− 1 − k−
1 + k−(1

c −
1
v ) + λ

c

}
.(4.31)

On the branch with c = 0 and g = gc (defining a stationary front) we find that

E(λ) = λ
(λ+ k+ + k− − k+k−)

(λ+ k+)(λ+ k−)
,(4.32)

which has zeros when λ = 0 and λ = k+k−− (k+ +k−) = αgc−1. Hence, the stationary front
changes from stable to unstable as α is increased through 1/gc. This result may also be used
to infer the stability of the other branches in Figure 4.1 (rather than laboriously evaluating
the Evans function on each branch).
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Examples of stationary fronts and fronts traveling in opposite directions, as predicted by
the above analysis, are illustrated in Figure 4.2. These simulations were implemented using
the numerical scheme of Hutt, Bestehorn, and Wennekers [22] to calculate the integral arising
on the right-hand side of (2.1). Fourier methods, as used previously by Coombes, Lord, and
Owen [13], were found to give similar results. In Figure 4.2, g = 1.0, h = 0.25, and v = 4,
as in the second part of Figure 4.1. The stationary front is stable for α = 0.9, but for
α > 1 it loses stability in favor of a pair of moving fronts. As illustrated in Figure 4.3, this
symmetry breaking is reflected in the u-a phase-plane. Here the stationary front lies on a = u,
while the forward and backward fronts are distinguished by their trajectories on either side of
a = u. Similar waves and bifurcations are found in a wide class of reaction-diffusion systems
[20]. Note that initial conditions must be specified along with a history: the forward wave is
generated by stimulating a previously inactive region, whereas the reverse wave is initiated
by removing stimulation from a previously active region.
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Figure 4.2. Illustrations of stationary, backward, and forward waves. In all cases, g = 1.0, h = 0.25, and
v = 4, corresponding to the second part of Figure 4.1. The stationary front has α = 0.9, and the propagating
waves have α = 10.
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Figure 4.3. Phase planes corresponding to Figures 4.1 and 4.2. The dashed black line denotes a = u, and
the solid black line a = (Θ(u− h) − u)/g. Forward and backward waves connect the same fixed points, but the
different trajectories describe propagation in opposite directions.
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4.1.1. Beyond the front bifurcation. Motivated by results from the last example, it is
interesting to consider whether a stable traveling front and back with different speeds (that
are stable in isolation) can interact to form new types of persistent solutions. Numerical
simulations show that initially well-separated front and back solutions move apart if the
relative speed of the two is positive and converge if negative. In the former case this leads to
a widening region of activity of the type shown in Figure 4.4(a). In the latter case the fronts
can either annihilate or merge to form a traveling pulse, as illustrated in Figures 4.4(b) and
4.4(c).
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Figure 4.4. Interacting fronts either separate or converge. In the latter case a stable pulse may arise if
parameters allow. (a) g = 0.9; (b), (c) g = 1.1; the front moves more slowly than the back, and a pulse exists
for these parameters (v = 4, α = 10, h = 0.25). Part (b) shows the early evolution as the back begins to catch
up with the front, and part (c) shows the final convergence to a pulse solution. Clicking on the above images
displays the associated movies (60595 01.mov and 60595 02.mov).

The parameter regime that supports traveling pulses can be found by explicit construction.
The existence of a pulse solution is determined by enforcing q(0) = h = q(∆), giving

h =
α(1 − e∆m−)(1 − cm−)

2((cm−)2 − cm−(1 + α) + α(1 + g))
,

(4.33)

h =
1

1 + g
+ α

cm− − 1

2((cm−)2 − cm−(1 + α) + α(1 + g))
− α

(1 − cm+)e−∆m+

2((cm+)2 − cm+(1 + α) + α(1 + g))

+
α

k− − k+

{
(1 − k−)e−∆k−/c

(
1

k−
+

1

2(cm− − k−)
+

1

2(cm+ − k−)

)

−(1 − k+)e−∆k+/c

(
1

k+
+

1

2(cm− − k+)
+

1

2(cm+ − k+)

)}
.

(4.34)

Figure 4.5 shows the speed and width of such a traveling pulse as the conduction velocity v
varies. Note that pulses are not supported when the conduction velocity is too small, as there
is a fold bifurcation with decreasing v. The speed of pulses as a function of α is also plotted
in conjunction with that of fronts in Figure 4.1, showing that stable pulses are preferred for
g > gc and sufficiently large α.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60595_01.mov
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60595_02.mov
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60595_02.mov
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Figure 4.5. Speed and width of the traveling pulse as a function of v in a neural model with linear recovery.
The faster wave has the largest width. We note the fast and slow traveling pulse are annihilated in a saddle-node
bifurcation with decreasing v. Here, h = 0.25, α = 1, and g = 1.1. Solid (dashed) lines are stable (unstable).

4.2. Example: An unstable standing pulse. In this example we consider the system
discussed in section 4.1 but focus on standing pulses rather than traveling waves. For simplicity
we shall also consider the limit v → ∞. From (4.13)

ψ(ξ) =

⎧⎪⎨
⎪⎩

1
2(eξ − eξ−∆), ξ ≤ 0,

1 − 1
2(eξ−∆ + e−ξ), 0 < ξ < ∆,

1
2(e−(ξ−∆) − e−ξ), ξ ≥ ∆,

(4.35)

and from (4.8) η̂c(0) = 1/(1 + g). The pulse width is determined by setting q(0) = h or,
equivalently, q(∆) = h to give

∆ = − ln[1 − 2h(1 + g)], h ≤ 1

2(1 + g)
.(4.36)

From (4.22) and (4.8) the zeros of the Evans function satisfy

λ2 + λ[1 + α− α(1 + g)Γ±(0)] − α(1 + g)(Γ±(0) − 1) = 0.(4.37)

Since Γ−(0) = 1 there are solutions of (4.37) with λ = 0 and λ = αg − 1. The remaining
solutions are given by

λ± =
−Λ ±

√
Λ + 4α(1 + g)(Γ+(0) − 1)

2
,(4.38)

with

Λ = 1 + α− α(1 + g)Γ+(0).(4.39)

Since Γ+(0) > 1 it follows that λ+ > 0, and, hence, the stationary pulse is always unstable. In
section 5 we shall consider a model with nonlinear recovery that can support a stable standing
pulse.
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4.3. Example: A pair of traveling pulses. Once again we consider the system discussed
in section 4.2 but construct traveling rather than standing pulses. However, to recover a
model discussed by Pinto and Ermentrout [34] we consider the case Qa = ∂t or, equivalently,
η̂a(k) = limε→0(ε+ ik)−1. The function ηc(t) is easily calculated as

ηc(t) =
α

k+ − k−

{
k+e−k+t − k−e−k−t

}
,(4.40)

with

k± =
α±

√
α2 − 4αg

2
(4.41)

and ψ(ξ) given by (4.35). It just remains to enforce the conditions q(0) = h = q(∆), giving
the two equations

h =
αc(1 − e−∆)

2(c2 + αc+ αg)
,

h =
α

k+ − k−

{
e−k−∆/c +

k−
2

(
e−∆ − e−k−∆/c

k− − c
+

1 − e−k−∆/c

k− + c

)

−e−k+∆/c − k+

2

(
e−∆ − e−k+∆/c

k+ − c
+

1 − e−k+∆/c

k+ + c

)}
.(4.42)

We plot the simultaneous solution of these two equations in Figure 4.6, showing the speed
and width of the traveling pulse as a function of g. We note that there are two solution
branches: one describing a fast wide pulse and the other a slower narrower pulse. Motivated
by numerical experiments, Pinto and Ermentrout have conjectured that the larger (fast) pulse
is stable and the narrower (slower) pulse unstable. We are now in a position to confirm this
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Figure 4.6. Speed and width of the traveling pulse as a function of g in a neural model with linear recovery.
The faster wave, with speed c+, has the largest width. We note that the fast and slow traveling pulse are
annihilated in a saddle-node bifurcation with increasing g and that the width of the faster pulse diverges to
infinity with decreasing g. Here, h = 0.25 and α = 1. Solid (dashed) lines are stable (unstable).
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by examining the Evans function for a traveling pulse. The functions Ac(0, λ) and Bc(0, λ)
are calculated to be

Ac(0, λ) =
1

c|q′(0)|
α

k+ − k−
1

2

{
k+

1 + k+/c+ λ/c
− k−

1 + k−/c+ λ/c

}
,(4.43)

Bc(0, λ) =
1

c|q′(∆)|
α

k+ − k−
1

2

{
k+

(
e−(k++λ)∆/c − e−∆

1 − k+/c− λ/c
+

e−(k++λ)∆/c

1 + k+/c+ λ/c

)

−k−

(
e−(k−+λ)∆/c − e−∆

1 − k−/c− λ/c
+

e−(k−+λ)∆/c

1 + k−/c+ λ/c

)}
,(4.44)

with Ac(∆, λ) = e−∆Ac(0, λ), Bc(∆, λ) = |q′(0)/q′(∆)|Ac(0, λ). Using the fact that for v →
∞,

q′(ξ) =

∫ ∞

0
ηc(s)[w(ξ + cs) − w(ξ − ∆ + cs)]ds,(4.45)

we have that q′(∆) = −h and

q′(0) =
h

1 − e−∆
− α

2(k+ − k−)

{
k+(e−k+∆/c − e−∆)

c− k+
− k−(e−k−∆/c − e−∆)

c− k−

+
k+e−k+∆/c

c+ k+
− k−e−k−∆/c

c+ k−

}
.(4.46)

The Evans function E(λ) = det(Ac(λ) − I) may then be calculated using (4.18). In Figure
4.7 we show a section of the Evans function along the real axis for a wave on the fast branch
and a wave on the slow branch. Also plotted is the Evans function for the wave that arises
at the limit point in Figure 4.6, where the fast and slow waves annihilate. This figure nicely
illustrates that for a wave on the fast branch the Evans function has no zeros on the positive
real axis, while the slow wave does. Moreover, as one moves around the branch from a fast to
a slow wave the Evans function develops a repeated root at the origin, as expected. To further
illustrate that the traveling pulse changes from stable to unstable as one moves around the
limit point in Figure 4.6, we track out the zero solution from Figure 4.7 along the solution
branch of Figure 4.6 and plot this in Figure 4.8.

5. Pulses in a model of nonlinear recovery. In this section we consider a system in which
the recovery variable is governed by a nonlinear model, rather than a linear one as in section
4. Moreover, we shall consider the recovery process itself to be nonlocal and write

Qu(x, t) = (w ⊗ f ◦ u)(x, t) − g(wa ⊗ a)(x, t),(5.1)

Qaa(x, t) = f ◦ u(x, t).(5.2)

In keeping with earlier sections we consider the case when wa(x) = wa(|x|). In its integrated
form this model may be written

u = [η ∗ w ⊗−gηb ∗ wa⊗]f ◦ u.(5.3)
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Figure 4.7. A plot of E(λ) along the real axis for three different points on the solution branch shown in
Figure 4.6. In the figure on the left g = 0.15 with c = c+ showing that a point on the fast branch has at least
one zero on the negative real axis. Plotting over a much wider domain shows that there are no zeros on the
positive real axis and that this graph asymptotes to 1. In the middle figure we see a repeated root at λ = 0 when
g = .1793, corresponding to the limit point in Figure 4.6 where a fast and a slow wave merge. In the right-hand
figure g = 0.15 with c = c−, and there is a zero of the Evans function on the positive real axis, showing that
the slow branch is unstable. Note that λ = 0 is always a solution (as expected from translation invariance).
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Figure 4.8. A plot of the zero of the Evans function, denoted λ∗, as seen in Figure 4.7 along the solution
branch seen in Figure 4.6. Note that there is always a branch of solutions with λ∗ = 0. The other branch passes
through the origin, where the slow and fast waves of Figure 4.6 merge. We conclude that the fast wave (c = c+)
is stable and the slow wave (c = c−) is unstable.

This can be interpreted as a lateral inhibitory network model as in the paper of Pinto and
Ermentrout, or for the case with a relatively narrow footprint for wa(x) it may be regarded
as a variant of the model with recovery described in section 4. In either case we shall show
that the model can support stable standing pulses, unlike the case when the recovery variable
evolves according to a linear model.

In a comoving frame we have a modified form of (2.2) under the replacement w(y)η(s) →
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w(y)η(s) − gwa(y)ηb(s). Hence, traveling wave solutions are given by

q(ξ) =

(∫ ∞

−∞
dyw(y)

∫ ∞

0
dsη(s) − g

∫ ∞

−∞
dywa(y)

∫ ∞

0
dsηb(s)

)
× Θ(q(ξ − y + cs+ c|y|/v) − h).(5.4)

Linearizing around a traveling pulse solution and proceeding as before, we obtain an eigenvalue
equation of the form u = Lu− gJ u, where

J u =

∫ ∞

−∞
dywa(y)e

−λ|y|/v
∫ ∞

0
dsηb(s)e

−λsf ′(q(ξ − y + cs+ c|y|/v))

× u(ξ − y + cs+ c|y|/v),(5.5)

and L is defined by (2.5). We may then proceed analogously to the case for the front solution
described in section 3, for ξ ∈ [0,∆], to obtain

Lu(ξ) = A(ξ, λ)u(0) +B(ξ, λ)u(∆), J u(ξ) = C(ξ, λ)u(0) +D(ξ, λ)u(∆),(5.6)

where

A(ξ, λ) =
1

c|q′(0)|

∫ ∞

ξ
1−c/v

dyw(y)η(−ξ/c+ y/c− y/v)e−λ(y−ξ)/c,(5.7)

B(ξ, λ) =
1

c|q′(∆)|

∫ ∞

ξ−∆
1+c/v

dyw(y)η((∆ − ξ)/c+ y/c− |y|/v)e−λ(y−(ξ−∆))/c,(5.8)

C(ξ, λ) =
1

c|q′(0)|

∫ ∞

ξ
1−c/v

dywa(y)ηb(−ξ/c+ y/c− y/v)e−λ(y−ξ)/c,(5.9)

D(ξ, λ) =
1

c|q′(∆)|

∫ ∞

ξ−∆
1+c/v

dywa(y)ηb((∆ − ξ)/c+ y/c− |y|/v)e−λ(y−(ξ−∆))/c.(5.10)

Demanding that perturbations be determined self-consistently at ξ = 0 and ξ = ∆ gives the
system of equations[

u(0)
u(∆)

]
= A(λ)

[
u(0)
u(∆)

]
, A(λ) =

[
A(0, λ) − gC(0, λ) B(0, λ) − gD(0, λ)
A(∆, λ) − gC(∆, λ) B(∆, λ) − gD(∆, λ)

]
.(5.11)

There is a nontrivial solution of (5.11) if E(λ) = 0, where E(λ) = det(A(λ)− I). We interpret
E(λ) as the Evans function of a traveling pulse solution of (5.3). Working along identical lines
to earlier sections the essential spectrum is defined by

1

η̂(−iλ− pc)

1

η̂a(−iλ− pc)
= 0.(5.12)

For standing pulses with c = 0, Qu = u and Qaa = a so that

q(ξ) =

∫ ∆

0
wb(ξ − y)dy,(5.13)
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where we have introduced the effective interaction kernel wb(x) = w(x) − gwa(x). Hence,

q′(ξ) = wb(ξ) − wb(ξ − ∆),(5.14)

and we note that |q′(0)| = |q′(∆)|. For c = 0, w(y) and wa(y) are relatively flat compared to
η(y/c)e−λy/c/c and ηb(y/c)e

−λy/c/c, and we obtain the further simplification

A(ξ, λ) =
1

|q′(0)| η̂(−iλ)w(ξ)e−λξ/v, B(ξ, λ) = A(∆ − ξ, λ),(5.15)

C(ξ, λ) =
1

|q′(0)| η̂b(−iλ)wa(ξ)e
−λξ/v, D(ξ, λ) = C(∆ − ξ, λ).(5.16)

5.1. Example: A pair of traveling pulses. Here we consider the choice η(t) = αe−αt,
ηa(t) = e−t, w(x) = e−|x|/2, and wa = δ(x) so that we recover a model recently discussed by
Coombes, Lord, and Owen [13]. With the use of the Evans function we will now establish the
earlier conjecture of these authors that of the two possible coexisting traveling pulses in this
model, it is the faster of the two that is stable. The traveling pulse solution for this model is
given by [13]

q(ξ) =
α

c

∫ ∞

ξ
eα(ξ−z)[ψ(z) − ga(z)]dz,(5.17)

where

a(ξ) =

⎧⎨
⎩

[1 − e−∆/c]eξ/c, ξ ≤ 0,

[1 − e(ξ−∆)/c], 0 < ξ < ∆,
0, ξ ≥ ∆.

(5.18)

Using (4.13) ψ(ξ) is given by

ψ(ξ) =

⎧⎨
⎩

1
2(em+ξ − em+(ξ−∆)), ξ ≤ 0,

1 − 1
2(em+(ξ−∆) + em−ξ), 0 < ξ < ∆,

1
2(em−(ξ−∆) − em−ξ), ξ ≥ ∆.

(5.19)

In Figure 5.1 we plot the speed of the pulse as a function of g, obtained by the simultaneous
solution of q(0) = h and q(∆) = h. This is reminiscent of that obtained for the model with
linear recovery in section 4.3 (as also is the plot of ∆ = ∆(g), not shown). The essential
spectrum for this problem is easily calculated and can be shown to contain the closed strip
bounded by the two vertical lines λ = −α + ipc and λ = −1 + ipc. It is also straightforward
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Figure 5.1. Speed of traveling pulse as a function of g in a model with nonlinear recovery. Parameters are
h = 0.1, α = 2, and v = 10.

to obtain C(0, λ) = C(∆, λ) = D(∆, λ) = 0 and

A(0, λ) =
1

c|q′(0)|
α

2

1

1 + α
(

1
c −

1
v

)
+ λ

c

,(5.20)

B(∆, λ) =

∣∣∣∣ q′(0)

q′(∆)

∣∣∣∣A(0, λ),(5.21)

A(∆, λ) = e−∆(v+λ)/(v−c)A(0, λ),(5.22)

B(0, λ) =
1

c|q′(∆)|
α

2

{
e−(α+λ)∆/c − e−(v+λ)∆/(v+c)

1 − α(1
c + 1

v ) − λ
c

+
e−(α+λ)∆/c

1 + α
(

1
c −

1
v

)
+ λ

c

}
,(5.23)

D(0, λ) =
αe−∆(1+λ)/c

c|q′(∆)|

(
1 − e−∆(α−1)/c

α− 1

)
.(5.24)

Moreover, we have simply that −cq′(φ) = −h + ψ(φ) − ga(φ) for φ ∈ {0,∆}. One natural
way to find the zeros of E(λ) is to write λ = ν + iω and plot the zero contours of Re E(λ)
and Im E(λ) in the (ν, ω) plane. The Evans function is zero where the lines intersect. We do
precisely this in Figure 5.2 for three distinct points on the solution branch shown in Figure
5.1. On the fast branch it would appear that all the zeros of the Evans function lie in the
left-hand complex plane, while for the slow wave there is at least one in the right-hand plane
(on the real axis). As expected there is a double zero eigenvalue as one passes from the fast to
the slow branch of traveling pulse solutions. Hence, the fast wave is stable and the slow wave
unstable, confirming the numerical observations made in [13]. We note that in the presence of
a discrete synaptic transmission delay of duration τd, we have the replacement η(t) → η(t−τd).
This causes the corresponding changes A(ξ, λ) → A(ξ + cτd, λ)e−λτd , etc., and it is a simple
matter to recalculate expressions (5.20)–(5.24). Although discrete delays influence the speed
of solution, a direct examination of the Evans function in this case shows that they do not
induce any new instabilities.
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Figure 5.2. Evans function for a traveling pulse in a model with nonlinear recovery. Red lines indicate
where Re E(λ) = 0 and blue where Im E(λ) = 0. Zeros of the Evans function occur at the intersection of red
and blue lines. In the left-hand figure, g = 2 and a solution is taken from the fast branch. In the middle, the
value of g is that at the saddle-node bifurcation from Figure 5.1. On the right, g = 2 with a solution taken from
the slow branch. Other parameters are h = 0.1, α = 2, and v = 10.

5.2. Example: A dynamic instability of a standing pulse. In this section we choose
η(t) = αe−αt, ηa(t) = e−t, w(x) = e−|x|/2, and wa(x) = e−|x|/σa/(2σa) to recover a model of
Pinto and Ermentrout [35]. In this case the standing pulse is given by

q(ξ) =

⎧⎪⎨
⎪⎩

1
2(eξ − eξ−∆) − g

2(eξ/σa − e(ξ−∆)/σa), ξ ≤ 0,

1 − g − 1
2(eξ−∆ + e−ξ) + g

2(e(ξ−∆)/σa + e−ξ/σa), 0 < ξ < ∆,
1
2(e−(ξ−∆) − e−ξ) − g

2(e−(ξ−∆)/σa − e−ξ/σa), ξ ≥ ∆.

(5.25)

Enforcing the condition q(0) = h or q(∆) = h generates the pulse width as a function of
system parameters:

1

2
(1 − e−∆) − g

2
(1 − e−∆/σa) = h.(5.26)

A plot of the pulse width as a function of the threshold parameter h is shown in Figure 5.3,
showing that solutions come in pairs. We may then use (5.15) and (5.16) to construct the
Evans function and plot it in the same fashion as the last example. However, unlike the last
example we find that there is not a simple exchange of stability as one passes through the limit
point defining the transition from a broad to a narrower pulse. Indeed we see from Figure
5.4 that it is possible for a solution on the upper branch of Figure 5.3 to undergo a dynamic
instability with increasing α. By dynamic we mean that a pair of complex eigenvalues crosses
into the right-hand plane on the imaginary axis so that the standing pulse may begin to
oscillate, as originally described in [35].

For the parameter values in Figure 5.4 and choosing a value of α below that defining
a dynamic instability, direct numerical simulations show that a bump solution is stable to
random perturbations. In contrast, beyond the dynamic instability point, a bump solution
can destabilize in favor of a homogeneous steady state. These two cases are illustrated in
Figure 5.5. The critical value of α defining a dynamic instability is found to depend only
weakly on the value of the axonal conduction velocity v.

For small values of the threshold h the bump solution can develop a dimple such that
q′′(0) > 0. We plot the Evans function for a dimple solution in Figure 5.6 and note that it also
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Figure 5.3. Pulse width as a function of threshold h in a model with lateral inhibition and nonlinear
recovery. Here σa = 2 and g = 1.
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Figure 5.4. Evans function for the model with lateral inhibition and nonlinear recovery. Here h = 0.1 and
v = 10 and a solution is taken from the branch with largest width ∆. On the left α = 0.5, and in the middle
α = 1.0, while on the right α = 1.5. This illustrates the possibility of a dynamic instability with increasing α
as a pair of complex eigenvalues crosses over to the right-hand plane through the imaginary axis.

Figure 5.5. 3-d plot of stable bump (α = 0.8) and destabilized bump (α = 1.1). v = 1, h = 0.1. The first
has noisy initial data, with rapid convergence to the stable bump solution. The second case has initial data
with u(x, 0) = 1.05q(x), where q(x) is the stationary bump solution. Clicking on the above images displays the
associated movie (60595 03.mov).

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60595_03.mov
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60595_03.mov
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Figure 5.6. Evans function for the model with lateral inhibition and nonlinear recovery. Here h = 0.025
and v = 1 and a solution is taken from the branch with largest width ∆. On the left α = 0.5, and in the middle
α = 0.9, while on the right α = 1.5. This illustrates the possibility of a dynamic instability with increasing α
as a pair of complex eigenvalues crosses over to the right-hand plane through the imaginary axis.

undergoes a dynamic instability with increasing α. Interestingly, direct numerical simulations
show that in this case the value of v can have a more profound effect on the dynamics beyond
the point of instability. For large values of v an unstable solution collapses to a homogeneous
steady state, whereas lower values of v lead to the shedding of a pair of left and right traveling
pulses. This is illustrated in Figure 5.7.

Figure 5.7. h = 0.025, α = 1.1, and the bump width is 5.88. Left: v = 8; the bump destabilizes and dies.
Right: v = 1; as the bump dies, it sheds a pair of pulse waves. Clicking on the above images displays the
associated movies (60595 04.mov and 60595 05.mov)

6. Discussion. In this paper we have shown how to calculate the Evans function for
integral neural field equations with a Heaviside firing rate function. Our work generalizes
that of Zhang [41] on a certain integro-differential equation model in a number of ways.
These include (i) studying exponential wave stability in an integral framework rather than an
integro-differential framework, (ii) avoiding the need to resort to the study of some singularly
perturbed system, and (iii) including the effects of space-dependent delays arising from axonal
communication. For the three main models that we have considered, i.e., a scalar integral
neural field, a model with linear recovery, and a model with nonlinear recovery, we have
presented the explicit form for the Evans function for traveling fronts and pulses. Moreover,
through a variety of examples we have shown that this is a powerful tool for the stability

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60595_04.mov
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60595_05.mov
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analysis of nonlinear waves and localized patterns in integral neural field models. In all cases
the Evans function E(λ) is a complex analytic function of λ ∈ C, with all the usual properties
expected of such a function (although we have not presented a rigorous proof of that here).
Namely, E(λ) = 0 if and only if λ is an eigenvalue, the order of the roots is equal to the
multiplicity of eigenvalues, and for Re λ > 0, lim|λ|→∞ E(λ) = 1. This means that there is a
positive constant M such that E(λ) �= 0 for all |λ| ≥M . Since E(λ) is complex analytic, there
are at most finitely many eigenvalues within the disc |λ| = M . One could, of course, resort
to the computation of E ′(λ)/E(λ) along the imaginary axis and use the argument principle
to determine the number of zeros in the right half plane. Alternatively we could construct
a Nyquist plot (the image of the Evans function along the imaginary axis) and count the
number of times the graph winds around the origin. However, in this paper we have chosen
simply to graphically find the intersection of the zero contours of Re E(λ) and Im E(λ) in the
complex plane.

There are a number of natural ways in which to extend the work presented in this paper.
Perhaps the most natural extension is to consider the issue of a forced neural field where
waves may lock to a moving stimulus. Another is to consider the use of averaging and ho-
mogenization theory to uncover the role of the periodic microstructure of cortex in front and
pulse propagation and its failure, along the lines developed in [5, 7]. This is especially im-
portant when one recalls that the traveling front and pulse solutions considered in this paper
are not structurally stable so that the introduction of even small inhomogeneities in the con-
nectivity pattern may lead to propagation failure. Apart from recent work by Taylor [37],
Werner and Richter [38], Laing and Troy [29], and Folias and Bressloff [18], planar studies
have also received relatively little attention. Many of the techniques in this paper will carry
over to the case of radially symmetric solutions, although the study of, say, spiral stability
would first require the explicit construction of such solutions. However, the most obvious and
major challenge is to extend this work to cover smooth sigmoidal firing rate functions. Even
the numerical construction of the Evans function in this case is likely to be highly nontrivial,
although there is some hope that recent Magnus methods developed by Aparicio, Malham,
and Oliver may be suited to this task [3]. These and other topics are ongoing areas of current
research and will be reported on elsewhere.
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Disease Induced Oscillations between Two Competing Species∗
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Abstract. The interaction of disease and competition dynamics is investigated in a system of two competing
species in which only one species is susceptible to disease. The model is kept as simple as possible,
combining Lotka–Volterra competition between the species with disease dynamics of susceptible and
infective individuals within one of the species. It is assumed that pure vertical disease transmis-
sion (from parent to offspring) dominates horizontal transmission (by contact between infective and
susceptible individuals) and that infective individuals have the same competition strength as sus-
ceptibles but a lower intrinsic growth rate. These assumptions yield three-dimensional competitive
Lotka–Volterra dynamics modeling the disease-competition interaction. It is proved that if in the
absence of disease there is competitive exclusion between the two species, then the presence of dis-
ease can lead to stable or oscillatory coexistence of both species. The case of oscillatory coexistence
can be viewed either as disease induced oscillations between competing species or as competition
induced oscillations in an endemic disease. By contrast, conditions are found under which, if the two
species coexist in the absence of disease, then the introduction of disease does not induce oscillations,
and the long-term dynamics are determined by the basic reproduction number.
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1. Introduction. We investigate how disease and competition dynamics interact in a sys-
tem of two competing species, in which only species 1 is susceptible to disease. We keep the
model as simple as possible, combining disease within species 1 with Lotka–Volterra competi-
tion between the species. This yields a three-dimensional competitive Lotka–Volterra system
modeling the disease-competition interaction. We prove that if species 1 can drive species 2
to extinction in the absence of disease, then the introduction of disease can weaken species 1
sufficiently to permit stable or oscillatory coexistence of both species.

The case of oscillatory coexistence can be viewed in two ways: as disease induced oscilla-
tions in competing populations or as competition induced oscillations in an endemic disease.
Oscillations are observed in the incidence data of several diseases. Factors such as periodic
coefficients, nonlinear incidence, time delays, and stochasticity can give rise to oscillations
in diseases models; see, for example, Hethcote and Levin [10]. However, in the model ana-
lyzed here, oscillations arise purely as a result of interaction between competition and disease,
without the inclusion of other factors.
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Our emphasis is on proving global results about the qualitative behavior of the model.
Most similar models considered in the literature rely on linear analysis coupled with numeri-
cal simulation. In a seminal paper on invasions by infectious diseases, Anderson and May [1]
considered a similar model (equation (26), p. 557, and Table 5) in which a pathogen invades
and infects only one competing host. They predicted, without proof, disease induced stable
coexistence of the competing species but did not predict any oscillatory behavior. They also
cited several ecological examples of disease-competition interactions—for example, native and
introduced bird species in Hawaii, native and introduced squirrels in Britain, the influence of
myxoma virus on hares and rabbits in Europe, and a sporozoan parasite in competing species of
flour beetle. In all cases, the disease is significantly more pathogenic in one of the species than
the other. More recently Venturino [22] considered another similar three-dimensional model,
proved that locally stable disease induced coexistence is possible, and presented numerical
evidence of disease induced oscillations in populations. Some host-host-pathogen models were
summarized by Begon and Bowers [2]. One early such model was by Holt and Pickering [14],
but they assumed no direct competition either within or between species. The introduction
of density dependence in the Holt–Pickering model was found by Greenman and Hudson [8]
to lead to a variety of outcomes, including oscillatory behavior. Both competitive and in-
fective interactions for a directly transmitted disease were considered by Bowers and Turner
[3, equations (1)–(4)]. Using feasibility and linear stability arguments, they discussed condi-
tions for infected coexistence. A two-host susceptible-infective (SI) model with competition
was considered by Greenman and Hudson [9]. They used a geometric approach to construct
bifurcation maps and found the possibility of both coexistence and single-host equilibria (the
outcome being initial-condition–dependent).

To introduce our model, we recall two-dimensional competitive Lotka–Volterra system
dynamics (section 2) and then include a disease with susceptible and infective individuals
within species 1, leading to a three-dimensional competitive Lotka–Volterra model (section 3,
system (3) with inequalities (4)). In section 4, we introduce a basic reproduction number
R01 for disease in species 1 in the absence of species 2. Using a geometric approach based on
nullcline analysis and the monotonicity results of Hirsch [11], three-dimensional competitive
Lotka–Volterra systems have been classified by Zeeman [24] into 33 equivalence classes (see
Figure 3 in section 5). Geometric ideas from [11, 18] and [24] are central to our analysis and
are summarized for our model in section 5.

In sections 6 and 7, we prove that if in the absence of disease species 1 drives species 2 to
extinction, or there is initial-condition–dependent competitive exclusion between the species,
then the introduction of disease can weaken species 1 sufficiently to give rise to stable or
oscillatory coexistence of the two species. By contrast, in section 8 we find an inequality (20)
under which, if the two species coexist in the absence of disease, then the introduction of
disease does not induce oscillations. In sections 6 and 7, the persistence of endemic disease in
the full model (either stable or oscillatory) depends only on the value of the basic reproduction
number, R01, for the disease in species 1 in the absence of species 2. In section 8, where the
two species coexist in the absence of disease, the basic reproduction number for the full
system, R0, is needed to characterize persistence of the disease. We show that if R0 < 1, then
the equilibrium representing disease-free coexistence of the species is globally asymptotically
stable. When R0 > 1 and inequality (20) is satisfied, there is a globally asymptotically stable
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N1 N1N1N1

N2 N2N2N2

A DCB

Figure 1. Qualitative dynamics of Cases A–D. An attracting equilibrium is denoted by a closed bullet, a
repelling equilibrium by an open bullet, and a saddle equilibrium by the intersection of its stable and unstable
manifolds.

equilibrium representing coexistence of the species, with endemic disease in species 1. In
section 9 we prove that, as expected, the introduction of disease does not change the long-
term demographics if species 2 drives species 1 to extinction in the absence of disease.

2. Disease-free competition. We assume that in the absence of disease, the competition
between the two species is modeled by the competitive Lotka–Volterra system:

N ′
1 = N1(r1 − a11N1 − a12N2),

N ′
2 = N2(r2 − a21N1 − a22N2).

(1)

Here Ni denotes the population size of species i, and the prime denotes differentiation with
respect to time. For each i, j, the constant ri represents the combined intrinsic birth and
death rates of species Ni, and the coefficient aij represents the competitive impact of species j
on the growth of species i. We assume throughout that ri and aij are strictly positive. We
define the ith nullcline of system (1) to be the line

∑2
j=1 aijNj = ri on which N ′

i = 0. The
determinant of the coefficient matrix ( a11 a12

a21 a22 ) is denoted by

∆ = a11a22 − a12a21.(2)

The long-term dynamics of system (1) are well understood; see, for example, [12, sec-
tion 3.3]. There are four qualitatively different, nondegenerate phase portraits, denoted
throughout as Cases A–D, as shown in Figure 1. Table 1 characterizes each case by the
global dynamics, by the geometric configuration of the nullclines, and by the algebraic in-
equalities among the parameters. One way to translate between the algebraic inequalities and
the nullcline configuration is to interpret each inequality as an ordering of the intersections
of the two nullclines with a particular coordinate axis. See [12, section 3.3], [19, section 3.5],
or [24] for more detail. It is easy to see from the algebraic inequalities that ∆ is negative in
Case B, positive in Case C, and can take any sign in Cases A and D. In sections 6–9 we discuss
the consequences of introducing disease to species 1 for each of Cases A–D, respectively. The
examples given in Table 1 are used to develop Examples A–C in sections 6–8.

3. Competition with disease in species 1. We model disease in species 1 by dividing the
population N1 into two compartments: susceptibles S and infectives I. Figure 2 illustrates
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Table 1
Table of Cases A–D.

Case Nullclines in R2
+ Inequalities Example

A. N1 drives N2 Nullclines disjoint: r2a11 < r1a21 N ′
1 = N1(25 − 10N1 − 10N2)

to extinction N1 entirely above N2 r2a12 < r1a22 N ′
2 = N2(20 − 9N1 − 8.5N2)

B. Initial cond. Nullclines intersect:
dependent comp. N1 above N2 on N1-axis r2a11 < r1a21 N ′

1 = N1(25 − 10N1 − 17N2)
exclusion N2 above N1 on N2-axis r1a22 < r2a12 N ′

2 = N2(20 − 8.5N1 − 12N2)

C. Stable Nullclines intersect:
coexistence N2 above N1 on N1-axis r1a21 < r2a11 N ′

1 = N1(20 − 15N1 − 10N2)
N1 above N2 on N2-axis r2a12 < r1a22 N ′

2 = N2(15 − 10N1 − 20N2)

D. N2 drives N1 Nullclines disjoint: r1a21 < r2a11 N ′
1 = N1(20 − 9N1 − 8.5N2)

to extinction N2 entirely above N1 r1a22 < r2a12 N ′
2 = N2(25 − 10N1 − 10N2)

S

bS S bI I

dS S dI I

λSI

a11S
a11SI
a12SN2

a11I
a11SI

a12IN2

N

b2N2

d2N2 a21IN2

a21SN2

a22N2
2

I
2

2

2

Figure 2. Compartmental diagram of disease-competition interaction.

the mechanisms for growth and decline of the S and I populations over many generations,
under the influence of the disease and competition with species 2.

We assume there is horizontal transmission of the disease with simple mass action incidence
with λ as the mass action coefficient. This incidence assumes that the contact rate increases
linearly with each population size; see, for example, [10, p. 201]. Also we assume that there
is pure vertical transmission, in the sense that all births to infective individuals are infective;
see [4] for a comprehensive description of models that include vertical transmission. The
susceptible and infective populations have intrinsic birth rates bS and bI and intrinsic death
rates dS and dI , respectively. The intrinsic birth and death rates of susceptible individuals into
and out of the susceptible class are assumed to be the same as for the disease-free situation,
so rS = bS − dS = r1. By contrast, we assume there may be disease induced death (dS < dI),
or disease induced infertility (bI < bS), but not enough for deaths to outweigh births. So
0 < bI − dI = rI < rS . In fact, we strengthen this assumption to (a11 + λ)rI < a11rS , so
that the unrealistic case of 100% disease is ruled out; this is further explained in section 4.
Increasing either of the disease parameters λ or rI has the effect of strengthening the disease,
thereby weakening species 1.

Combining the disease and competition models, we assume that the disease does not
weaken infective individuals for competition. Thus the competitive impact of the susceptible
and infective populations on the growth rate of each other has coefficient a11, while their com-
petitive impact on species 2 has coefficient a21. Similarly, the competitive impact of species 2
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on each of the susceptible and infective populations has coefficient a12. Finally, horizontal
disease transmission is assumed to have a weaker impact than intraspecific competition so
that λ < a11.

The assumptions listed above yield the ordinary differential equations

S′ = S(rS − a11S − (a11 + λ)I − a12N2),

I ′ = I(rI − (a11 − λ)S − a11I − a12N2),

N ′
2 = N2(r2 − a21S − a21I − a22N2)

(3)

and ensure that

0 < (a11 + λ)rI < a11rS , 0 < r2, 0 < λ < a11, and 0 < aij for each i, j = 1, 2.(4)

Hence system (3) is a three-dimensional competitive Lotka–Volterra system. In particular,
the positive orthant is invariant, and there is a compact attracting region. Solutions having
nonnegative initial values remain nonnegative for all further time, are asymptotic to solu-
tions on the carrying simplex (see section 5), and thus eventually satisfy 0 ≤ S ≤ rS/a11,
0 ≤ I ≤ rI/a11, 0 ≤ N2 ≤ r2/a22. Note that in the absence of disease (setting I = 0, S = N1),
system (3) reduces to system (1) since rS = r1.

4. SI dynamics in the absence of species 2. In the absence of species 2, system (3) with
inequalities (4) reduces to an SI disease model with horizontal and pure vertical transmission
that includes density-dependent death,

S′ = S(rS − a11S − (a11 + λ)I),

I ′ = I(rI − (a11 − λ)S − a11I),
(5)

where

0 < (a11 + λ)rI < a11rS and 0 < λ < a11.(6)

System (5) with inequalities (6) is also a two-dimensional competitive Lotka–Volterra
system, so the global dynamics are easily understood, as in section 2. It is helpful for us to
reinterpret those dynamics here, from the point of view of disease.

The disease-free equilibrium (DFE) for system (5) is given by S = rS/a11, I = 0. The
basic reproduction number for the disease in species 1, determined from the next generation
matrix of system (5) at the DFE (see, for example, [21]), is defined by

R01 =
λS + bI
a11S + dI

=
λ(rS/a11) + bI

rS + dI
.(7)

Here, R01 is the average number of new infections (from horizontal and vertical transmission)
caused by one infective during its average infectious period when introduced into a fully
susceptible population of species 1. The term involving λ gives the contribution from the
horizontal transmission, whereas the term involving bI comes from vertical transmission, and
1/(rS + dI) is the average time in I when the population is fully susceptible. Models with
vertical transmission and density-dependent demographics are considered by Busenberg and
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Cooke [4, section 2.11] and Gao and Hethcote [7, section 7], where they derive nondimensional
parameters similar to R01.

Note that since rI = bI − dI ,

R01 < 1 ⇔ a11rI < rS(a11 − λ).(8)

Lemma 4.1. For system (5) with inequalities (6), if R01 < 1, then the DFE on the S axis,
namely, (S, I) = (rS/a11, 0), is globally asymptotically stable in intR2

+.
Proof. The I and S nullclines intersect the S axis at rI/(a11−λ) and rS/a11, respectively.

By (8)

R01 < 1 ⇒ rI
a11 − λ

<
rS
a11

,

so the S nullcline meets the S axis above the I nullcline. The I and S nullclines intersect the
I axis at rI/a11 and rS/(a11 + λ), respectively. So, by the assumption that (a11+λ)rI < a11rS
from (6), the S nullcline meets the I axis above the I nullcline. Thus the S nullcline lies entirely
above the I nullcline in R2

+. So there is no equilibrium in intR2
+, and the DFE on the S axis

is globally asymptotically stable in intR2
+ (see Table 1).

Lemma 4.2. For system (5) with inequalities (6), if R01 > 1, then the endemic equilibrium,
namely, (S, I) = (1/λ2)(rSa11 − rI(a11 + λ), rIa11 − rS(a11 − λ)), is globally asymptotically
stable in intR2

+.
Proof. The assumption that (a11 + λ)rI < a11rS ensures that the I nullcline intersects

the I axis below the S nullcline, so the equilibrium on the I axis is not locally attracting
[24, p. 199], thereby ruling out the possibility of 100% infectives. Thus, when R01 > 1 in
system (5) with inequalities (6), there is a globally attracting equilibrium in the interior of
the positive quadrant, representing stable endemic disease in species 1.

Note that decreasing either of the disease parameters λ or rI = bI − dI decreases R01.
Indeed, a straightforward computation shows that either of the disease parameters can be
used to control the disease by reducing R01 to below 1.

5. Geometric preliminaries.

The carrying simplex. The origin is a repelling equilibrium of system (3). Following
[11] and [24], we define the carrying simplex, Σ, to be the boundary in R3

+ of the basin of
repulsion of the origin. Exploiting the backward time monotonicity of system (3), a theorem
of Hirsch [11, Theorem 1.7] shows that the carrying simplex is a globally attracting set, in the
sense that every trajectory in R3

+ \ 0 is asymptotic to one in Σ, and that Σ is geometrically
and topologically simple, in the sense that it is a two-dimensional Lipschitz submanifold
homeomorphic to the standard unit simplex (S + I + N2 = 1) in R3

+ by radial projection.
Thus the long-term behavior of system (3) is determined by the dynamics on Σ, and the
nonzero forward limit sets in R3

+ all lie on Σ. The Poincaré–Bendixson theorem holds for the
restriction of the system to Σ, so the only forward limit sets are equilibria and cycles. See
[11, 24] for more details.

In Figures 4–7, the dynamics on the carrying simplex, Σ, are visualized for a variety
of numerical examples of system (3). These figures were generated using the programs
CSimplex [15] and Geomview [16]. The carrying simplex is viewed from above—in other
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words, from a point in the positive cone with coordinates much larger than any of the coor-
dinates of points in Σ. In Figure 3, the dynamics on the carrying simplex are viewed from
above, after radial projection to the standard unit simplex in R3

+.

Equilibria. It is easy to see that there are three axial equilibria at the vertices of Σ:

VS = (rS/a11, 0, 0), VI = (0, rI/a11, 0), and VN2 = (0, 0, r2/a22).

There are also three equilibria in the coordinate planes:

QSI =
1

λ2
(rSa11 − rI(a11 + λ), rIa11 − rS(a11 − λ), 0),

QSN2 =
1

∆
(rSa22 − r2a12, 0, r2a11 − rSa21),

QIN2 =
1

∆
(0, rIa22 − r2a12, r2a11 − rIa21),

where ∆ = a11a22 − a12a21 as in (2). We say that QSI is biologically feasible if the S and I
components are strictly positive. In that case, QSI lies on an edge of Σ and represents an
endemic equilibrium for species 1. Recall, from section 4, that QSI is biologically feasible and
globally attracting in the SI plane if and only if R01 > 1. Similarly, when they are biologically
feasible, QSN2 represents disease-free coexistence between the species, and QIN2 represents
species coexistence with all species 1 being infective.

Let A be the coefficient matrix

A =

⎛
⎝ a11 a11 + λ a12

a11 − λ a11 a12

a21 a21 a22

⎞
⎠ .

Det(A) = λ2a22 > 0, and so system (3) has an equilibrium at P = (S∗, I∗, N∗
2 ) = A−1(rS , rI , r2)

T .
A straightforward computation shows that

S∗ =
1

a22λ2
(∆(rS − rI) − λ(a22rI − a12r2)),

I∗ =
1

a22λ2
(λ(a22rS − a12r2) − ∆(rS − rI)),

N∗
2 =

1

a22λ
(λr2 − a21(rS − rI)),

(9)

and S∗ + I∗ = (rS − rI)/λ. If S∗, I∗, N∗
2 > 0, then P ∈ intΣ ⊂ intR3

+, and we say P is
a biologically feasible coexisting endemic equilibrium. Note that by (a11 + λ)rI < a11rS of
inequalities (4), if N∗

2 > 0, then S∗ > 0.

Nullclines. As in section 2, we define the S nullcline of system (3) to be the plane rS =
a11S + (a11 + λ)I + a12N2, on which S′ = 0. The I and N2 nullclines are defined similarly.
The following lemma, from [18], shows that for any pair of species to coexist, their nullclines
must intersect in R3

+. If, for example, the S nullcline is disjoint from the I nullcline in R3
+

and lies in the unbounded component of R3
+ \ {I nullcline}, then we say the S nullcline lies

entirely above the I nullcline.
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Lemma 5.1 (see [18, Lemma 3.1]). For an n-dimensional competitive Lotka–Volterra sys-
tem

x′i = xi

⎛
⎝ri − n∑

j=1

aijxj

⎞
⎠ , with ri, aij > 0, i = 1, . . . , n,

if the xi nullcline lies entirely above the xj nullcline in Rn
+, then xi drives xj to extinction.

Nullcline classes and periodic orbits. Figure 3 shows the 33 nullcline equivalence classes
of three-dimensional competitive Lotka–Volterra systems defined by Zeeman [24]. The equiva-
lence classes are defined modulo permutation of the populations (S, I, and N2 in this context).
Figure 3 has been redrawn from [24] so that the vertices can be interpreted as S: bottom left,
I: bottom right, N2: top. There are no periodic orbits in classes 1–25, 32, or 33, so the global
dynamics are as shown [20, 24]. In class 33, there is stable coexistence of all the populations,
while in classes 1–25 and 32, at least one population is driven to extinction. Exactly six
classes, namely, 26–31, admit Hopf bifurcation to robust periodic orbits representing popu-
lation oscillations [6, 20, 24]. When there are no periodic orbits, the global dynamics are as
shown, except that the interior equilibrium in classes 26 and 27 may be either attracting or
repelling [24]. Classes 26–29 admit at least two isolated periodic orbits [13, 17], but an upper
bound on the number of isolated periodic orbits remains open [23]. We do not address the
question of how many isolated periodic orbits can occur in system (3) under assumptions (4).
However, in our simulations, no more than one periodic orbit has been observed. Not all of
the nullcline classes are realized by system (3) under assumptions (4). In sections 6–8, we see
examples from (at least) each of the classes 1, 5, 9, 12, 13, 14, 26, 29, and 33.

Using these geometric preliminaries, we now proceed to consider the introduction of disease
to species 1 in each of Cases A–D of Figure 1 and Table 1. We numerically illustrate and
interpret the dynamical behavior and prove that many of the qualitative features hold in
general.

6. Case A. For this section, assume that, in the absence of disease, species 1 drives
species 2 to extinction, as in Case A of Figure 1 and Table 1. Introduction of disease is then
modeled by system (3) with inequalities (4) and

r2a11 < rSa21 and r2a12 < rSa22(10)

from Table 1, Case A. We begin by describing a numerical example to illustrate the impact
of disease in species 1 on the competition between the species.

Example A. Consider the system

S′ = S(25 − 10S − 15I − 10N2),

I ′ = I(rI − 5S − 10I − 10N2),

N ′
2 = τN2(20 − 9S − 9I − 8.5N2), τ > 0.

(11)

The parameter rI is used to change the strength of the disease, while τ is used to change the
time scale of species 2 relative to species 1. The restriction of system (11) to the S,N2 plane
has a globally attracting fixed point at VS (Figure 1, Case A), and the disease dynamics in
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Figure 3. Carrying simplex dynamics (without periodic orbits) in the nullcline equivalence classes of three-
dimensional competitive Lotka–Volterra systems. Redrawn from [24]. An attracting equilibrium is denoted by a
closed bullet, a repelling equilibrium by an open bullet, and a saddle equilibrium by the intersection of its stable
and unstable manifolds.

the S, I plane are governed by the basic reproduction number R01 ((7) and (8)). In Figure 4,
we fix τ = 1 and show numerically how the dynamics on the carrying simplex of system (11)
evolve as the disease is strengthened by increasing R01. Specifically, λ is held fixed at λ = 5,
and rI = 12, 13, 14, 15 in the four systems illustrated.

When rI = 12 (Figure 4, top left), then R01 < 1, and the DFE at VS is globally asymp-
totically stable in intR3

+. So with λ = 5 and rI = 12, the disease is not strong enough to
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Figure 4. Dynamics on the carrying simplex of system (11), viewed from above, with τ = 1, λ = 5. Top
left: rI = 12. Top right: rI = 13. Bottom left: rI = 14. Bottom right: rI = 15. The color coding of the axes is
S: red (left), I: green (right), and N2: blue (vertical). Equilibria are indicated by solid dots and are color coded
according to their local dynamics on the carrying simplex by repelling: red, saddle: green, attracting: blue.

affect the long-term demographics. This system lies in class 1 of Figure 3. When rI = 12.5,
R01 = 1, and there is a bifurcation in which VS loses stability to the endemic equilibrium,
QSI , as it becomes biologically feasible. When rI is increased to 13 (Figure 4, top right),
R01 > 1, and QSI is globally asymptotically stable in intR3

+. This system lies in class 5 of
Figure 3. Thus with rI = 13, the disease is strong enough to be endemic in species 1, but
species 1 remains strong enough to drive species 2 to extinction. As rI is increased to 14, there
is another bifurcation, in which QSI loses stability to P as P becomes biologically feasible
(Figure 4, bottom left). Thus with rI = 14, the disease has weakened species 1 sufficiently for
species 2 to barely survive. As rI continues to increase to 15 (Figure 4, bottom left), species 1
continues to weaken, and the surviving population of species 2 grows.

Figure 5 shows the dynamics numerically when rI is increased to 16, and the time scale
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Figure 5. Dynamics on the carrying simplex of system (11), viewed from above, with λ = 5, rI = 16. Top
left: τ = 1. Top right: τ = 2. Bottom: τ = 3. The color coding of the axes is S: red (left), I: green (right), and
N2: blue (vertical). Equilibria are indicated by solid dots and are color coded according to their local dynamics
on the carrying simplex by repelling: red, saddle: green, attracting: blue.

of the N2 equation is changed by increasing τ , representing a faster response by N2 to its
environment. The systems with rI = 14, 15, 16 all lie in class 29 of Figure 3. When τ = 1
(Figure 5, top left), trajectories spiral into P . When τ is increased to 2 (Figure 5, top
right), the trajectories spiral more slowly into P , as a pair of eigenvalues of the linearization
at P approach the imaginary axis from the left half plane. When τ is further increased
to 3 (Figure 5, bottom), this pair of eigenvalues has crossed the imaginary axis, and a Hopf
bifurcation has occurred, giving rise to oscillatory endemic coexistence of the species.

Intuitively, if initially the population consists mainly of susceptible individuals of species 1,
then the trajectory is drawn toward the endemic equilibrium QSI , and the number of infectives
increases. But species 2 can successfully invade infectives, so species 2 increases and the
number of infectives decreases. This leads to a mixed population of mainly species 2 and
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susceptibles, in which the susceptibles dominate the competition, completing the cycle. Note
that by [25, Theorem 4.1], periodic orbits in system (3) with inequalities (4) always have the
orientation described here, i.e., counterclockwise as viewed in Figure 5.

In the rest of this section, we prove that much of the behavior illustrated by Example A
is true for a general system (3) in Case A. The following theorem shows that if R01 < 1, then
the disease has no impact on the long-term demographics: species 1 survives without disease
and drives species 2 to extinction (as in Figure 4, top left).

Theorem 6.1. For system (3) with inequalities (4) and (10), if R01 < 1, then the DFE,
VS, is globally asymptotically stable in intR3

+.
Proof. The I nullcline intersects the S and I axes below the S nullcline, as in the proof of

Lemma 4.1. The I and S nullclines intersect the N2 axis at rI/a12 and rS/a12, respectively,
and rI/a12 < rS/a12 since rI < rS . Thus the I nullcline lies entirely below the S nullcline. By
Lemma 5.1, the susceptible population drives the infective population to extinction, and all
trajectories in intR3

+ are asymptotic to those in the S,N2 plane. The dynamics in the S,N2

plane are simply those of Case A, by inequalities (10). Hence species 2 is driven to extinction,
and VS is globally asymptotically stable.

Note that when R01 > 1, system (3) with inequalities (4) and (10) has no local attractors
in the plane I = 0, and so the disease persists. Theorem 6.2 shows that as R01 passes
through 1, there is a bifurcation at VS , giving rise to the globally attracting equilibrium QSI ,
as in Figure 4, top right.

Theorem 6.2. Given system (3) with inequalities (4) and (10), ∃ ε > 0 such that if R01 ∈
(1, 1 + ε), then QSI is globally asymptotically stable in intR3

+.
Proof. Recall from section 5 that system (3) has an equilibrium at P = (S∗, I∗, N∗

2 ). If
R01 = 1, then since rI = bI − dI , it follows from (7) and (10) that

λrS = a11(rS − rI) > λr2
a11

a21
.(12)

From (9) this implies that N∗
2 < 0. Thus, by continuity of R01 in each parameter, ∃ ε > 0

such that for R01 ∈ [1, 1 + ε), N∗
2 < 0, and so P /∈ intR3

+.
The linear stability of system (3) about QSI is determined by the eigenvalues of the

Jacobian matrix

J =

⎛
⎝ −a11S −(a11 + λ)S −a12S
−(a11 − λ)I −a11I −a12I

0 0 r2 − a21S − a21I

⎞
⎠ .

Consider the upper left 2×2 submatrix Ĵ of J . Since a11 > λ, the entries of Ĵ are all negative.
Thus, by the Perron–Frobenius theorem [12, p. 182], Ĵ has a negative eigenvalue, and hence
both the eigenvalues of Ĵ are negative, since the determinant (λ2SI) is positive. The third
eigenvalue of J is µ = r2 − a21S − a21I. Substituting the values of S and I at QSI gives
µ = a22N

∗
2 < 0. Thus QSI is a local attractor.

We now verify that QSI is the only local attractor, so this system lies in class 5 or 9 of
Figure 3, and hence QSI is globally attracting. By inequalities (10), there is no equilibrium
QSN2 , and VS is globally attracting in the S,N2 plane. Thus VN2 is not a local attractor.
Since R01 > 1, QSI is globally attracting in the S, I plane (by Lemma 4.2), and so VS and VI
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are not local attractors. Finally, if QIN2 is biologically feasible, then it lies on the I nullcline,
below the S nullcline (as in the proof of Theorem 6.1), and hence is not locally attracting (see
[24, p. 199]).

The following theorem shows that as R01 continues to increase andN∗
2 passes from negative

to positive, P passes through QSI , becoming biologically feasible, and QSI loses stability; see
Figure 4, bottom and Figure 5. Theorems 6.4 and 6.5 show how the local behavior at P
depends on the sign of ∆ (see (2)). When ∆ < 0, Hopf bifurcations can occur (giving rise
to isolated periodic orbits since rI �= rS [6]), whereas when ∆ > 0, Hopf bifurcations do not
occur. Note that ∆ < 0 in Example A.

Theorem 6.3. Given system (3) with inequalities (4) and (10), QSI is unstable and P is
biologically feasible if and only if N∗

2 > 0.
Proof. By the proof of Theorem 6.2, the Jacobian matrix J at QSI has a positive eigenvalue

(so that QSI is unstable) if and only if N∗
2 > 0. As remarked in section 5, if N∗

2 > 0, then
S∗ > 0. If ∆ ≤ 0, then I∗ > 0 by using the second inequality of (10). If ∆ > 0, then the first
inequality of (10) and N∗

2 > 0 imply that I∗ > 0. Thus P is biologically feasible.
Theorem 6.4. Given system (3) with inequalities (4) and (10), if P is biologically feasible

and ∆ > 0, then P is locally asymptotically stable.
Proof. Linearizing system (3) about P gives a Jacobian matrix with characteristic equation

z3 + z2(a11(S
∗ + I∗) + a22N

∗
2 ) + z(∆(S∗ + I∗)N∗

2 + λ2S∗I∗) + λ2a22S
∗I∗N∗

2 = 0.

By the Routh–Hurwitz conditions [19, Appendix 2], all roots have negative real parts, and
thus P is linearly stable.

For a given system (3) satisfying inequalities (4) and (10), each system in the one-
parameter family defined below in (13) also satisfies (3), (4), and (10). Thus the Hopf
bifurcation described in Theorem 6.5 occurs within Case A of system (3).

Theorem 6.5. Given system (3) with inequalities (4) and (10), if P is biologically feasible
and ∆ < 0, then the family of systems

S′ = S(rS − a11S − (a11 + λ)I − a12N2),

I ′ = I(rI − (a11 − λ)S − a11I − a12N2),

N ′
2 = τN2(r2 − a21S − a21I − a22N2)

(13)

with τ ∈ (0,∞) admits a Hopf bifurcation.
Proof. Since P is biologically feasible, S∗, I∗, N∗

2 > 0. Consider the diagonal linear change
of coordinates (x1, x2, x3) = (S/S∗, I/I∗, N2/N

∗
2 ). Then, as in [24, Proposition 3.1], for each

τ > 0 the system

x′1 = x1(rS − a11S
∗x1 − (a11 + λ)I∗x2 − a12N

∗
2x3),

x′2 = x2(rI − (a11 − λ)S∗x1 − a11I
∗x2 − a12N

∗
2x3),

x′3 = τx3(r2 − a21S
∗x1 − a21I

∗x2 − a22N
∗
2x3)

(14)

is topologically equivalent to system (13) and has an equilibrium at (1, 1, 1) since P =
(S∗, I∗, N∗

2 ) is an equilibrium of system (3). The principal 2 × 2 minors Mjk of the coef-
ficient matrix of system (14) are given by

M12 = λ2S∗I∗ > 0, M23 = ∆τI∗N∗
2 < 0, M13 = ∆τS∗N∗

2 < 0.
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Since these minors are not all of the same sign, the result follows from [24, Theorem 3.14 and
proof].

7. Case B. For this section, assume that, in the absence of disease, there is initial-
condition–dependent competitive exclusion, as in Case B of Figure 1 and Table 1. Introduction
of disease is then modeled by system (3) with inequalities (4) and

r2a11 < rSa21 and rSa22 < r2a12.(15)

We begin with a numerical example.
Example B. Consider the system

S′ = S(25 − 10S − 15I − 17N2),

I ′ = I(rI − 5S − 10I − 17N2),

N ′
2 = τN2(20 − 8.5S − 8.5I − 12N2).

(16)

In Figure 6 we fix λ = 5, τ = 1 and strengthen the disease by increasing rI from 12 to 14.
For rI = 14, we then change the time scale τ of species 2 to 1.8. When rI = 12 (Figure 6,
top left), R01 < 1 and there is initial-condition–dependent competitive exclusion between
VS and VN2 (class 13 in Figure 3). At rI = 13 (Figure 6, top right), R01 > 1 and VS has lost
its stability to QSI . There is now initial-condition–dependent competitive exclusion between
the fixed points QSI and VN2 (class 14 in Figure 3). Increasing rI to 14 (Figure 6, bottom
left), P passes through QSI , becoming biologically feasible, and the disease weakens species 1
sufficiently for species 2 to survive. Endemic coexistence is now possible for some (but not all)
initial conditions (class 26 in Figure 3). Changing the time scale τ (Figure 6, bottom right),
P undergoes a Hopf bifurcation, and there is now initial-condition–dependent extinction of
species 1 or oscillatory endemic coexistence. Roughly speaking, in the region of the carrying
simplex in which N1 dominates when R01 < 1, the sequence of qualitative behavior as R01

increases is the same as that in Case A (section 6), while in the region in which N2 dominates
when R01 < 1, N2 dominates for all R01.

Now consider the general system (3) in Case B. The following theorem shows that, as in
Case A, if R01 < 1, then the disease has no impact on the long-term demographics.

Theorem 7.1. For system (3) with inequalities (4) and (15), if R01 < 1, then almost every
trajectory in intR3

+ is attracted to VS or VN2.
Proof. First note that if R01 < 1, then for system (3) with inequalities (4), the I nullcline

lies entirely below the S nullcline, as in the proof of Theorem 6.1. Therefore, by Lemma 5.1,
all trajectories in intR3

+ are asymptotic to those in the S,N2 plane, where there is initial-
condition–dependent competitive exclusion by inequalities (15). Thus, every trajectory, except
on the one- or two-dimensional stable manifolds of the other fixed points, is attracted to
VS or VN2 .

Theorem 7.2 shows that as R01 passes through 1 and QSI passes through VS , becoming
biologically feasible, VS transfers its local stability to QSI (as in Case A). Thus, for some
initial conditions, there is endemic disease in species 1.

Theorem 7.2. For system (3) with inequalities (4) and (15), there exists ε > 0 such that if
R01 ∈ (1, 1 + ε), then almost every trajectory in intR3

+ is attracted to QSI or VN2.
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Figure 6. Dynamics on the carrying simplex of system (16), viewed from above, with λ = 5. Top left:
rI = 12, τ = 1. Top right: rI = 13, τ = 1. Bottom left: rI = 14, τ = 1. Bottom right: rI = 14, τ = 1.8.
The color coding of the axes is S: red (left), I: green (right), and N2: blue (vertical). Equilibria are indicated
by solid dots and are color coded according to their local dynamics on the carrying simplex by repelling: red,
saddle: green, attracting: blue.

Proof. As in the proof of Theorem 6.2, N∗
2 < 0; thus P /∈ intR3

+. It is then easy to verify
that the only local attractors areQSI and VN2 , and this system lies in class 14 of Figure 3.

Theorem 7.3 shows that as R01 increases further, the qualitative behavior differs from
that in Case A, in the sense that every family of systems (13) in Case B that admits stable
endemic coexistence also admits oscillatory endemic coexistence. See Figure 6, bottom right.

Theorem 7.3. Consider system (3) with inequalities (4) and (15).

(i) QSI is unstable if and only if N∗
2 > 0.

(ii) There exists ε > 0 such that if N∗
2 ∈ (0, ε), then P is biologically feasible.

(iii) If P is biologically feasible, then every family of systems (13) admits a Hopf bifurca-
tion.
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Proof. Statement (i) is proved as in Theorem 6.3. If N∗
2 > 0, then S∗ > 0. If N∗

2 = 0,
then P = QSI , and so by continuity, there exists ε > 0 such that I∗ > 0 if N∗

2 ∈ [0, ε),
thereby proving statement (ii). Statement (iii) is proved as in Theorem 6.5, since ∆ < 0 by
inequalities (15).

8. Case C. For this section, assume that in the absence of disease, species 1 and 2 coexist,
as in Case C of Figure 1 and Table 1. Introduction of disease is then modeled by system (3)
with inequalities (4) and

rSa21 < r2a11 and r2a12 < rSa22.(17)

We begin with a numerical example.
Example C. Consider the system

S′ = S(20 − 15S − (15 + λ)I − 10N2),

I ′ = I(15 − (15 − λ)S − 15I − 10N2),

N ′
2 = N2(15 − 10S − 10I − 20N2),

(18)

in which we fix rI = 15 and strengthen the disease by increasing λ from 3.5 to 4.5.
When λ = 3.5 (Figure 7, top left), R01 < 1 and the DFE at QSN2 is globally attracting;

see class 9 of Figure 3. When λ = 3.5 (Figure 7, top right), R01 > 1, QSI passes through VS ,
becoming biologically feasible, but the DFE at QSN2 remains globally attracting; see class 12
of Figure 3. Thus, in this case, R01 = 1 is not a threshold for endemic disease. When λ = 4,
P passes through QSN2 , and so at λ = 4.1 and λ = 4.5 (Figure 7, bottom), P is biologically
feasible and globally attracting; see class 33 of Figure 3, and [20]. Thus species 1 and species 2
continue to stably coexist, but with endemic disease in species 1.

Now consider the general system (3) in Case C, and note that ∆ > 0 by inequalities (17).
By contrast to Cases A and B, a basic reproduction number R0 for the full model, rather than
R01, acts as a disease threshold. This is because, in the absence of disease, the two species
coexist. Hence QSN2 (rather than VS) is the DFE for Case C. Using the next generation
matrix [21] of system (3) at QSN2 , the basic reproduction number R0 is defined by

R0 =
λS + bI

a11S + a12N2 + dI
=

(λ/∆)(rSa22 − r2a12) + bI
rS + dI

.(19)

This parameter has the same interpretation as R01 (see section 4), except that species 2 is
now present (but is not infected by the disease). Note that in Example C, λ = 4 gives R0 = 1.

Theorem 8.1. For system (3) with inequalities (4) and (17), if R0 < 1, then the DFE,
QSN2, is globally asymptotically stable in intR3

+.
Proof. Recall that rI = bI − dI . Thus, by (9), if R0 < 1, then I∗ < 0, and so P /∈ intR3

+.
Also, since R0 < 1, the Jacobian matrix at QSN2 of system (3) with inequalities (17) has
all negative eigenvalues. Thus QSN2 is locally attracting. By inequalities (17), VS and VN2

are not locally attracting in the S,N2 plane and hence are not locally attracting in R3
+. The

I nullcline lies below the S nullcline on the I,N2 plane, by inequalities (4), and hence VI
and QIN2 (if biologically feasible) are not locally attracting [24, p. 199]. Finally, if QSI is
biologically feasible, then by inequalities (17) it lies on the S nullcline, below the N2 nullcline,
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Figure 7. Dynamics on the carrying simplex of system (18), viewed from above, with rI = 15. Top left:
λ = 3.5. Top right: λ = 3.9. Bottom left: λ = 4.1. Bottom right: λ = 4.5. The color coding of the axes is
S: red (left), I: green (right), and N2: blue (vertical). Equilibria are indicated by solid dots and are color coded
according to their local dynamics on the carrying simplex by repelling: red, saddle: green, attracting: blue.

and hence is not locally attracting [24, p. 199]. The system is therefore in class 6, 9, or 12 of
Figure 3, and hence QSN2 is globally attracting in intR3

+.

By inequalities (17), R0 < R01. Thus Theorem 8.1 also shows that if R01 < 1, then
QSN2 is globally asymptotically stable in intR3

+. If R0 > 1, then I∗ > 0, and by inequali-
ties (17), N∗

2 > 0 and S∗ > 0, since R01 > 1. In other words, as R0 increases through 1,
P passes through QSN2 , becoming biologically feasible. By the Routh–Hurwitz conditions,
P is then locally asymptotically stable. In [20] periodic orbits are ruled out using a generalized
Bendixson–Dulac criterion [5] on the carrying simplex. This result is now applied to find con-
ditions under which P is globally asymptotically stable. We conjecture that the hypotheses
of Theorem 8.2 can be weakened by dropping inequality (20).
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Theorem 8.2. For system (3) with inequalities (4) and (17), if R0 > 1 and

r2a12 < rIa22,(20)

then the coexisting endemic equilibrium P is globally asymptotically stable in intR3
+.

Proof. Since R0 > 1, P ∈ intR3
+. By [20, Corollary 1.4], it is sufficient to prove that

VS , VI , VN2 are all local repellors of the flow restricted to the carrying simplex, Σ. By inequality
rSa21 < r2a11 of (17) and R01 > 1, VS lies below the I and N2 nullclines on the S axis and
hence is locally repelling on Σ [24, p. 199]. Similarly, by (a11 + λ)rI < a11rS of (4) and
rSa21 < r2a11 of (17), VI is locally repelling on Σ. Finally, by r2a12 < rSa22 of (17) and (20),
VN2 is locally repelling on Σ.

9. Case D. For this section, assume that, in the absence of disease, species 2 drives
species 1 to extinction, as in Case D of Figure 1 and Table 1. Introduction of disease is then
modeled by system (3) with inequalities (4) and

rSa21 < r2a11 and rSa22 < r2a12(21)

from Table 1, Case D. Theorem 9.1 shows, not surprisingly, that weakening species 1 by the
introduction of disease does not change the long-term demographics in this case: species 1 is
always driven to extinction.

Theorem 9.1. For system (3) with inequalities (4) and (21), VN2 is globally asymptotically
stable.

Proof. By inequalities (21), the S nullcline lies entirely below the N2 nullcline in intR3
+.

So, by Lemma 5.1, species N2 drives the susceptible population to extinction, and all tra-
jectories in intR3

+ are asymptotic to those in the I,N2 plane. Now in the I,N2 plane, the
I nullcline lies entirely below the N2 nullcline (using inequalities (21) and rI < rS), and so by
Lemma 5.1 again, species 2 drives the infective population to extinction. Thus VN2 is globally
asymptotically stable.
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Abstract. We study in this article the bifurcation and stability of the solutions of the Ginzburg–Landau
equation, using a notion of bifurcation called attractor bifurcation. We obtain in particular a full
classification of the bifurcated attractor and the global attractor as λ crosses the first critical value of
the linear problem. Bifurcations from the rest of the eigenvalues of the linear problem are obtained
as well.
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1. Introduction. In this article, we consider the bifurcation of attractors and invariant
sets of the complex Ginzburg–Landau (GL) equation, which reads

∂u

∂t
− (α+ iβ)�u+ (σ + iρ)|u|2u− λu = 0,(1.1)

where the unknown function u : Ω × [0,∞) → C is a complex-valued function and Ω ⊂ R
n is

an open, bounded, and smooth domain in R
n (1 ≤ n ≤ 3). The parameters α, β, σ, ρ, and λ

are real numbers and

α > 0, σ > 0.(1.2)

The initial condition for (1.1) is given by

u(x, 0) = φ+ iψ.(1.3)

Also, (1.1) is supplemented with either the Dirichlet boundary condition,

u|∂Ω = 0,(1.4)

or the periodic boundary condition,

Ω = (0, 2π)n and u is Ω-periodic.(1.5)
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The GL equation is an important equation in a number of scientific fields. It is directly
related to the GL theory of superconductivity. In this context, the unknown function is the
order parameter, the constants β and ρ are usually zero, and the bifurcation parameter λ is
the GL parameter; see [11] and the references therein.

In fluid dynamics the GL equation is found, for example, in the study of Poiseuille flow,
the nonlinear growth of convection rolls in the Rayleigh–Beńard problem, and Taylor–Couette
flow. In this case, the bifurcation parameter λ plays the role of a Reynolds number. The
equation also arises in the study of chemical systems governed by reaction-diffusion equations.

There are extensive studies from the mathematical point of view for the GL equation, and
we refer in particular to [2, 3, 1, 5, 6, 7, 11] and the references therein for studies related to
the global attractors, inertial manifolds, and soft and hard turbulences described by the GL
equations.

We study in this article the bifurcation and stability of the solutions of the complex GL
equation. A nonlinear theory for this problem is established in this article using a notion of
bifurcation called attractor bifurcation and its corresponding theorem developed recently by
the authors in [9, 8]; see [10], a new book by two of the authors. The main objectives of this
theory include

(1) existence of bifurcation when the system parameter crosses some critical numbers,
(2) dynamic stability of bifurcated solutions, and
(3) the structure/patterns and their stability and transitions in the physical space.

More precisely, the main theorem associated with the attractor bifurcation states that as
the control parameter crosses a certain critical value when there are m+1 (m ≥ 0) eigenvalues
across the imaginary axis, the system bifurcates from a trivial steady state solution to an
attractor with dimension between m and m+ 1, provided the critical state is asymptotically
stable. There are a few important features of the attractor bifurcation. First, the bifurcation
attractor does not include the trivial steady state and is stable; hence it is physically important.
Second, the attractor contains a collection of solutions of the evolution equation, including
possibly steady states and periodic orbits as well as homoclinic and heteroclinic orbits. Third,
it provides a unified point of view on dynamic bifurcation and can be applied to many problems
in physics and mechanics. Fourth, from the application point of view, the Krasnoselskii–
Rabinowitz theorem requires the number of eigenvalues m + 1 crossing the imaginary axis
being an odd integer, and the Hopf bifurcation is for the case where m+ 1 = 2. However, the
new attractor bifurcation theorem obtained can be applied to cases for all m ≥ 0. In addition,
the bifurcated attractor, as mentioned earlier, is stable, which is another subtle issue for other
known bifurcation theorems.

For the GL equation, bifurcation is obtained with respect to the parameter λ, and the
main results obtained can be summarized as follows.

First, for the GL equation with the Dirichlet boundary condition, let λ1 be the first
eigenvalue of the elliptic operator −�. Our main results in this case include the following.

1. If λ ≤ αλ1, the trivial solution u = 0 is globally asymptotically stable. The global
attractor of the GL equation consists exactly of the trivial steady state solution u = 0.

2. As λ crosses αλ1, i.e., there exists an ε > 0 such that for any αλ1 < λ < αλ1 + ε, the
GL problem bifurcates from the trivial solution an attractor Σλ. The bifurcated attractor Σλ
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λαλ1 Σ λ

Figure 1. Bifurcation diagram for the GL equation with the Dirichlet boundary condition: (1) Bifurcation
appears at λ = αλ1; (2) bifurcated attractor Σλ = S1 is the boundary of the shaded region; and (3) the global
attractor Aλ is the 2D disk, shown as the shaded region. Here the dotted line stands for the unstable trivial
solution u = 0.

ΓΓ

Figure 2. Phase space structure in L2(Ω,C) × {λ} in the case where |β| + |ρ| �= 0. Here the bifurcated
attractor Σλ = S1 is a stable limiting cycle.

attracts the open set L2(Ω,C)/Γ, where Γ is the stable manifold of u = 0 having codimension
two in L2(Ω,C).
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More detailed structure of this bifurcated attractor can be classified as follows (see Figures
1 and 2).

(a) If |β| + |ρ| �= 0, then the bifurcated attractor consists of exactly one stable limiting
cycle, i.e., Σλ = S1, which is asymptotically stable. The global attractor Aλ is a two-
dimensional (2D) disk consisting of the stable limiting cycle Σλ = S1, the (unstable)
trivial steady state solution u = 0, and orbits connecting Σλ = S1 and u = 0.
In particular, if β �= 0, then the bifurcation is a Hopf bifurcation to a stable limiting
cycle.

(b) If β = ρ = 0, then the bifurcated attractor Σλ has dimension between 1 and 2 and is
a limit of a sequence of 2D annuli Mk with Mk+1 ⊂Mk, i.e., Σλ = ∩∞

k=1Mk.
Again in this case, the global attractor Aλ is 2D, consisting of Σλ, u = 0, and the
connecting orbits between them.1

Second, for the GL equations equipped with the periodic boundary condition, similar
results can be obtained as well. In particular, in the case where |β| + |ρ| �= 0, we prove that
the bifurcated attractor Σλ is S1, containing no steady state solutions, and the global attractor
Aλ is a 2D ball consisting of the trivial steady state u = 0, Σλ, and the orbits connecting
them.

Finally, bifurcation from any eigenvalue of the Laplacian can also be obtained as for the
first eigenvalue. It is worth mentioning that the complete structure of the global attractor for
the bifurcations from the first eigenvalue is obtained, while no such information is available
for bifurcations from the rest eigenvalues.

Important work on lower and upper bounds of the global attractor of the GL equation,
together with their physical mechanisms, was done in the 1980’s in [2, 3, 1]. As mentioned
earlier, the main objective of this article is to study bifurcation and transitions from the
trivial solution. Hence we focus only on the local attractor near the trivial solution, which
is part of the global attractor. Of course, near the first eigenvalue, complete information for
both the global attractor and the bifurcated attractor is obtained in this article. For λ near
other eigenvalues, the results here demonstrate only the transitions of the trivial solution and
provide some partial information on the low bounds of the global attractor. As far as the
dimension of the global attractor is concerned, our results are consistent with the work in
[2, 3, 1].

The paper is organized as follows. In section 2, we recall the attractor bifurcation theory.
Sections 3 and 4 study the bifurcation of the GL equations for the Dirichlet boundary condition
and for the periodic boundary condition, respectively. Section 5 deals with bifurcation from
the rest of the eigenvalues.

2. Abstract bifurcation theory.

2.1. Preliminary. We recall in this section a general theory on attractor bifurcation for
nonlinear evolution equations; see [9, 8].

Let H and H1 be two Hilbert spaces and H1 ↪→ H be a dense and compact inclusion. We

1Using a different method, we can in fact prove that Σλ is also homeomorphic to S1, which shall be reported
elsewhere.
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consider the nonlinear evolution equations

du

dt
= Lλu+G(u, λ),(2.1)

u(0) = u0,(2.2)

where u : [0,∞) → H is the unknown function, λ ∈ R is the system parameter, and Lλ :
H1 → H are parameterized linear completely continuous fields depending continuously on
λ ∈ R

1, which satisfy⎧⎪⎨
⎪⎩
Lλ = −A+Bλ is a sectorial operator,

A : H1 → H a linear homeomorphism,

Bλ : H1 → H the parameterized linear compact operators.

(2.3)

It is easy to see that Lλ generates an analytic semigroup {e−tLλ}t≥0. Then we can define
fractional power operators Lα

λ for any 0 ≤ α ≤ 1 with domain Hα = D(Lα
λ) such that

Hα1 ⊂ Hα2 if α1 > α2, and H0 = H.

Furthermore, we assume that the nonlinear terms G(·, λ) : Hα → H for some 1 > α ≥ 0
are a family of parameterized Cr bounded operators (r ≥ 1) continuously depending on the
parameter λ ∈ R

1, such that

G(u, λ) = o(‖u‖Hα) ∀ λ ∈ R
1.(2.4)

Actually, in this paper we need only the following conditions for the operator Lλ =
−A+Bλ, which ensure that Lλ is a sectorial operator.

Let there be a eigenvalue sequence {ρk} ⊂ C and an eigenvector sequence {ek, hk} ⊂ H1

of A: ⎧⎪⎨
⎪⎩
Azk = ρkzk, z = ek + ihk,

Re ρk → +∞ as k → ∞,

|Im ρk/(Re ρk + a)| ≤ C for some constants a,C > 0,

(2.5)

such that {ek, hk} is a basis of H.

Condition (2.5) implies that A is a sectorial operator. Hence we can define fractional
power operator Aα with domain Hα = D(Aα). Then for the operator Bλ : H1 −→ H, we
assume that there is a constant 0 ≤ θ < 1 such that

Bλ : Hθ −→ H bounded ∀ λ ∈ R.(2.6)

Let {Sλ(t)}t≥0 be an operator semigroup generated by (2.1) which enjoys the following
properties:

(i) For any t ≥ 0, Sλ(t) : H → H is a linear continuous operator.
(ii) Sλ(0) = I : H → H is the identity on H.
(iii) For any t, s ≥ 0, Sλ(t+ s) = Sλ(t) · Sλ(s).
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Then the solution of (2.1) and (2.2) can be expressed as

u(t) = Sλ(t)u0, t ≥ 0.

Definition 2.1. A set Σ ⊂ H is called an invariant set of (2.1) if S(t)Σ = Σ for any t ≥ 0.
An invariant set Σ ⊂ H of (2.1) is called an attractor if Σ is compact, and there exists a
neighborhood U ⊂ H of Σ such that for any ϕ ∈ U we have

lim
t→∞distH(u(t, ϕ),Σ) = 0.(2.7)

The largest open set U satisfying (2.7) is called the basin of attraction of Σ.

Definition 2.2.

1. We say that (2.1) bifurcates from (u, λ) = (0, λ0) an invariant set Ωλ if there exists a
sequence of invariant sets {Ωλn} of (2.1), 0 /∈ Ωλn, such that

lim
n→∞λn = λ0,

lim
n→∞ max

x∈Ωλn

|x| = 0.

2. If the invariant sets Ωλ are attractors of (2.1), then the bifurcation is called an at-
tractor bifurcation.

3. If Ωλ are attractors and are homotopy equivalent to an m-dimensional sphere Sm,
then the bifurcation is called an Sm-attractor bifurcation.

2.2. Center manifold theorems. We assume that the spaces H1 and H can be decom-
posed into {

H1 = Eλ
1 ⊕ Eλ

2 , dimEλ
1 <∞, near λ0 ∈ R

1,

H = Ẽλ
1 ⊕ Ẽλ

2 , Ẽλ
1 = Eλ

1 , Ẽλ
2 = closure of Eλ

2 in H,
(2.8)

where Eλ
1 and Eλ

2 are two invariant subspaces of Lλ; i.e., Lλ can be decomposed into Lλ =
Lλ

1 ⊕ Lλ
2 such that for any λ near λ0,

{
Lλ

1 = Lλ|Eλ
1

: Eλ
1 → Ẽλ

1 ,

Lλ
2 = Lλ|Eλ

2
: Eλ

2 → Ẽλ
2 ,

(2.9)

where all eigenvalues of Lλ
2 possess negative real parts, and all eigenvalues of Lλ

1 possess
nonnegative real parts at λ = λ0.

Thus, for λ near λ0, (2.1) can be rewritten as

⎧⎪⎨
⎪⎩
dx

dt
= Lλ

1x+G1(x, y, λ),

dy

dt
= Lλ

2y +G2(x, y, λ),

(2.10)
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where u = x+y ∈ H1, x ∈ Eλ
1 , y ∈ Eλ

2 , Gi(x, y, λ) = PiG(u, λ), and Pi : H → Ẽi are canonical
projections. Furthermore, we let

Eλ
2 (α) = Eλ

2 ∩Hα,

with α given by (2.4).

Theorem 2.3 (center manifold theorem, [4]). Assume (2.4)–(2.6), (2.8), and (2.9). Then
there exist a neighborhood of λ0 given by |λ−λ0| < δ for some δ > 0, a neighborhood Bλ ⊂ Eλ

1

of x = 0, and a C1 function h(·, λ) : Bλ → Eλ
2 (α), depending continuously on λ, such that

1. h(0, λ) = 0, Dxh(0, λ) = 0;
2. the set

Mλ =
{

(x, y) ∈ H1

∣∣∣ x ∈ Bλ, y = h(x, λ) ∈ Eλ
2 (α)

}
,

called center manifolds, is locally invariant for (2.1); i.e., for any u0 ∈Mλ,

uλ(t, u0) ∈Mλ ∀ 0 ≤ t < tu0 ,

for some tu0 > 0, where uλ(t, u0) is the solution of (2.1); and
3. if (xλ(t), yλ(t)) is a solution of (2.10), then there are a βλ > 0 and a kλ > 0 with
kλ depending on (xλ(0), yλ(0)) such that

‖yλ(t) − h(xλ(t), λ)‖H ≤ kλe
−βλt.

If we consider only the existence of the local center manifold, then conditions in (2.9) can
be modified in the following fashion. Let the operator Lλ = Lλ

1 ⊕ Lλ
2 and Lλ

2 be decomposed
into

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Lλ
2 = Lλ

21 ⊕ Lλ
22,

Eλ
2 = Eλ

21 ⊕ Eλ
22, Ẽ

λ
2 = Ẽ21 ⊕ Ẽλ

22,

dimEλ
21 = dim Ẽλ

21 <∞,

Lλ
2i : Eλ

2i → Ẽλ
2i are invariant (i = 1, 2),

(2.11)

such that at λ = λ0⎧⎪⎪⎨
⎪⎪⎩

eigenvalues of Lλ
1 : Eλ

1 → Ẽλ
1 have zero real parts,

eigenvalues of Lλ
21 : Eλ

21 → Ẽλ
21 have positive real parts,

eigenvalues of Lλ
22 : Eλ

22 → Ẽλ
22 have negative real parts.

(2.12)

Then we have the following center manifold theorem.

Theorem 2.4. Assume (2.4)–(2.6), (2.8), (2.11), and (2.12). Then the conclusions (1)
and (2) in Theorem 2.3 hold true.
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2.3. Attractor bifurcation. A complex number β = α1 + iα2 ∈ C is called an eigenvalue
of Lλ : H1 −→ H if there are x, y ∈ H1 such that

Lλz = βz, z = x+ iy,

or, equivalently,

Lλx = α1x− α2y,

Lλy = α2x+ α1y.

Now let the eigenvalues (counting the multiplicity) of Lλ be given by

β1(λ), β2(λ), . . . , βk(λ) ∈ C.

Suppose that

Reβi(λ) =

⎧⎪⎨
⎪⎩
< 0 if λ < λ0,

= 0 if λ = λ0

> 0 if λ > λ0,

(1 ≤ i ≤ m+ 1),(2.13)

Reβj(λ0) < 0 ∀ m+ 2 ≤ j.(2.14)

Let the eigenspace of Lλ at λ0 be

E0 =

m+1⋃
i=1

∞⋃
k=1

u ∈ H1|(Lλ0 − βi(λ0))
ku = 0.

It is known that dimE0 = m+ 1.
Let H1 = H = R

n. The following attractor bifurcation theorem was proved in [9].
Theorem 2.5 (attractor bifurcation theorem). Let H1 = H = R

n, the conditions (2.13) and
(2.14) hold true, and u = 0 be a locally asymptotically stable equilibrium point of (2.1) at
λ = λ0. Then the following assertions hold true.

1. Equation (2.1) bifurcates from (u, λ) = (0, λ0) an attractor Aλ for λ > λ0, with
m ≤ dimAλ ≤ m+ 1, which is connected as m > 0.

2. The attractor Aλ is a limit of a sequence of (m + 1)-dimensional annulus Mk with
Mk+1 ⊂ Mk. In particular, if Aλ is a finite simplicial complex, then Aλ has the
homotopy type of Sm.

3. For any uλ ∈ Aλ, uλ can be expressed as

uλ = vλ + o(‖vλ‖H1), vλ ∈ E0.

4. If G : H1 → H is compact and the equilibrium points of (2.1) in Aλ are finite, then
we have the index formula

∑
ui∈Aλ

ind [−(Lλ +G), ui] =

{
2 if m = even,

0 if m = odd.
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5. If u = 0 is globally stable for (2.1) at λ = λ0, then for any bounded open set U ⊂ H with
0 ∈ U there is an ε > 0 such that as λ0 < λ < λ0 + ε, the attractor Aλ bifurcated from
(0, λ0) attracts U/Γ in H, where Γ is the stable manifold of u = 0 with codimension
m+ 1. In particular, if (2.1) has a global attractor in H, then U = H.

Remark 2.6. As H1 and H are infinite-dimensional Hilbert spaces, if (2.1) satisfies the
conditions (2.4)–(2.6), (2.13), and (2.14) and u = 0 is a locally (global) asymptotically stable
equilibrium point of (2.1) at λ = λ0, then the assertions (1)–(5) of Theorem 2.5 hold; see
[9, 8].

3. Bifurcation of the GL equation with Dirichlet boundary condition. As mentioned
in the introduction, we study in this article attractor bifurcation of the GL equation under
either the Dirichlet or the periodic boundary conditions.

We start with the GL equation with the Dirichlet boundary condition. Let

Hk(Ω,C) = {u1 + iu2 | uj ∈ Hk(Ω), j = 1, 2},
H1

0 (Ω,C) = {u ∈ H1(Ω,C) | u|∂Ω = 0},

where Hk(Ω) is the usual real-valued Sobolev space.

Let λ1 be the first eigenvalue of −� with the Dirichlet boundary condition (1.4). Then we
have the following main bifurcation theorem for the GL equations with the Dirichlet boundary
condition.

Theorem 3.1.

1. If λ ≤ αλ1, u = 0 is a globally asymptotically stable equilibrium point of (1.1) with
(1.4).

2. As λ crosses αλ1, i.e., for any αλ1 < λ < αλ1 + ε for some ε > 0, the problem (1.1)
with (1.4) bifurcates from (u, λ) = (0, αλ1) an attractor Σλ.

3. The bifurcated attractor Σλ has dimension between 1 and 2 and is a limit of a sequence
of 2D annuli Mk with Mk+1 ⊂Mk; i.e., Σλ = ∩∞

k=1Mk.
4. If β �= 0, then the bifurcation is a Hopf bifurcation, i.e., Σλ = S1, which is asymptoti-

cally stable (limiting cycle).
5. If β = 0 and ρ �= 0, then the bifurcated attractor Σλ is a periodic orbit, which is a

limiting cycle.
6. Moreover, for each αλ1 < λ < αλ1 + ε, the bifurcated attractor Σλ attracts the open

set L2(Ω,C)/Γ, where Γ is the stable manifold of u = 0 having codimension two in
L2(Ω,C).

Proof. We proceed in several steps as follows.

Step 1. Let u = u1 + iu2. The GL problem (1.1) with (1.3) can be equivalently written as
follows: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u1

∂t
= α�u1 − β�u2 + λu1 − σ|u|2u1 + ρ|u|2u2,

∂u2

∂t
= β�u1 + α�u2 + λu2 − σ|u|2u2 − ρ|u|2u1,

u1(x, 0) = φ(x), u2(x, 0) = ψ(x).

(3.1)
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We shall apply Theorems 2.3 and 2.5 to prove this theorem. Let

H1 = H2(Ω,C) ∩H1
0 (Ω,C), H = L2(Ω,C).

The mappings Lλ = −A+Bλ and G : H1 → H are defined as

−Au =

(
α�u1 − β�u2

β�u1 + α�u2

)
,

Bλu = λ

(
u1

u2

)
,

Gu =

(
−σ|u|2u1 + ρ|u|2u2

−σ|u|2u2 − ρ|u|2u1

)
.

It is known that H1/2 = H1
0 (Ω,C). By the Sobolev embedding theorems and 1 ≤ n ≤ 3,

the mapping G : H1/2 → H is C∞. The condition (2.4) is fulfilled.
Let {λk} ⊂ R and {ek} ⊂ H2(Ω)∩H1

0 (Ω) be the eigenvalues and eigenvectors of −� with
the Dirichlet boundary condition (1.4){

−�ek = λkek,

ek|∂Ω = 0.

We know that

0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · · , λk → ∞ as k → ∞,

and {ek} is an orthogonal basis of L2(Ω).
It is easy to see that the eigenvalues of A are given by

αλk ± iβλk, k = 1, 2, . . . ,

with the corresponding eigenvectors

zk = ek + iek,

and {ek, iej | 1 ≤ k, j < ∞} is an orthogonal basis of H. Thus the conditions (2.5) and (2.6)
are valid for A and Bλ. The eigenvalues of Lλ = −A+Bλ are as follows:

(λ− αλk) ± iβλk, k = 1, 2, . . . .(3.2)

In addition, the spaces H and H1 can be decomposed into the form

H1 = E1 ⊕ E2 and H = E1 ⊕ Ẽ2,

E1 = {x1e1 + iy1e1 | x1, y1 ∈ R},

E2 =

{ ∞∑
k=2

(xk + iyk)ek

∣∣∣∣∣
∞∑
k=2

λ2
k(x

2
k + y2

k) <∞
}
,

Ẽ2 =

{ ∞∑
k=2

(xk + iyk)ek

∣∣∣∣∣
∞∑
k=2

(x2
k + y2

k) <∞
}
,
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and the operator Lλ is decomposed into{
Lλ = Lλ

1 ⊕ Lλ
2 ,

Lλ
1 = Lλ|E1 : E1 → E1, Lλ

2 = Lλ|E2 : E2 → Ẽ2.

Thus the conditions (2.8) and (2.9) are satisfied.
By the center manifold theorem, the attractor bifurcation of (1.1) with (1.4) is equivalent

to that of the bifurcation equations⎧⎪⎨
⎪⎩
dx

dt
= (λ− αλ1)x1 + βλ1y1 + P1G1(x1 + iy1 + h),

dy

dt
= −βλ1x1 + (λ− αλ1)y1 + P1G2(x1 + iy1 + h),

(3.3)

where h = h1 + ih2 is the center manifold function satisfying

h(x1, y1) = o(|x1| + |y1|),

and P1Gi(u) (i = 1, 2) are given by

P1G1(u) =

∫
Ω
[−σ|u|2u1 + ρ|u|2u2]e1dx,

P1G2(u) =

∫
Ω
[−σ|u|2u2 − ρ|u|2u1]e1dx,

u = u1 + iu2 =

∞∑
k=1

(xk + iyk)ek.

(3.4)

Step 2. Now we show that u = 0 is a globally asymptotically stable equilibrium of (2.1)
for λ ≤ αλ1. In fact, from (3.1) we can derive that

1

2

d

dt

∫
Ω
|u|2dx =

∫
Ω
(−α|∇u|2 + λ|u|2 − σ|u|4)dx

≤ −
∫

Ω
[(αλ1 − λ)|u|2 + σ|u|4]dx

which implies that u = 0 is globally stable.
Step 3. We know that (1.1) has a global attractor; see [12]. Obviously, for the eigenval-

ues (3.2) of Lλ, the conditions (2.13) and (2.14) for λ0 = αλ1 are satisfied. Therefore, by
Remark 2.6, (2.1) bifurcates from (u, λ) = (0, αλ1) an attractor Σλ which attracts H/Γ.

Step 4. We now prove that Σλ = S1.
Obviously, as β �= 0, the bifurcation is the typical Hopf bifurcation. Therefore, we have

to consider only the case where β = 0. In this case, the bifurcation equations (3.3) read⎧⎪⎨
⎪⎩
dx

dt
= εx+ P1G1(xe1 + h1 + iye1 + ih2),

dy

dt
= εy + P1G2(xe1 + h1 + iye1 + ih2),

(3.5)
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where ε = λ− αλ1 > 0 sufficiently small. By (3.4) we have

P1G1(x, y) =

∫
Ω
[−σu3

1 + ρu3
2 − σu2

2u1 + ρu2
1u2]e1dx

= (by h(x, y) = o(|x| + |y|))
= a(−σx3 + ρy3 − σy2x+ ρx2y) + o(|x|3 + |y|3),

P1G2(x, y) = a(−σy3 − ρx3 − σx2y − ρy2x) + o(|x|3 + |y|3),

where u1 = xe1 + h1(x, y), u2 = ye1 + h2(x, y), and

a =

∫
Ω
e41(x)dx > 0.

Thus, the bifurcation equations (3.5) lead to

⎧⎪⎨
⎪⎩
dx

dt
= εx− a(σx3 − ρy3 + σy2x− ρx2y) + o(|x|3 + |y|3),

dy

dt
= εy − a(σy3 + ρx3 + σx2y + ρy2x) + o(|x|3 + |y|3).

(3.6)

We can see that the attractor Σλ has no nonzero singular point; i.e., the singular point
u = 0 of (1.1) with (1.4) is unique provided |ρ| + |β| �= 0, because from (3.1) we have∫

Ω

[
u2
∂u1

∂t
− u1

∂u2

∂t

]
dx =

∫
Ω
[β|∇u|2 + ρ|u|4]dx.

By Theorem 2.5, Σλ has the homotopy type of S1; hence Σλ contains at least one periodic
orbit provided ρ �= 0.

Take the polar coordinate system

x = r cos θ, y = r sin θ.

Then (3.6) becomes ⎧⎪⎨
⎪⎩
dr

dθ
=
ε− aσr2 + o(r2)

aρr
,

r(0) = r0.

(3.7)

From (3.7) it follows that

aρ

2
(r2(2π) − r2(0)) =

∫ 2π

0
[ε− aσr2 + o(r2)]dθ.

Because r2 = r2(θ, r0) is C∞ on r0 ≥ 0, we have the Taylor expansion

r2(θ, r0) = r20 +R(θ) · o(|r0|2), R(0) = 0.
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Hence we get

aρ

2
(r2(2π) − r2(0)) = 2πε− 2πaσr20 + o(|r0|2).

Obviously the initial values r0 > 0 in (3.7) satisfying

2πε− 2πaσr20 + o(|r0|2) = 0(3.8)

are corresponding to the periodic orbits of (3.6). It is easy to see that the solution r20 > 0 of
(3.8) near r0 = 0 is unique. Thus we deduce that Σλ is a periodic orbit provided ρ �= 0.

The proof is complete.

4. Bifurcation of the GL equation with periodic boundary condition. For the GL equa-
tion with periodic boundary condition, the first eigenspace is larger than that in the Dirichlet
boundary condition case, and to proceed, we need the following function spaces:

Hk
per(Ω,C) = {u ∈ Hk(Ω,C) | u satisfy (1.5)}.

Then the main result in this section is the following theorem.
Theorem 4.1. For the GL equation (1.1) with the periodic boundary condition (1.5), we

have the following assertions.
1. (a) As λ > α, the problem (1.1) with (1.5) bifurcates from (u, λ) = (0, α) an invariant

state Σλ. The bifurcated attractor Σλ has dimension between 4n− 1 and 4n and
is a limit of a sequence of 4n annulus Mk with Mk+1 ⊂Mk; i.e., Σλ = ∩∞

k=1Mk.
(b) If |ρ| + |β| �= 0, then Σλ contains no steady state solutions of (1.1) with (1.5).

2. (a) As λ ≤ 0, u = 0 is globally asymptotically stable.
(b) As λ > 0, the problem (1.1) with (1.5) bifurcates from (u, λ) = (0, 0) an attractor

Σλ ⊂ L2(Ω,C). The bifurcated attractor Σλ has dimension between 1 and 2 and
is a limit of a sequence of 2D annuli Mk with Mk+1 ⊂Mk; i.e., Σλ = ∩∞

k=1Mk.
(c) If ρ �= 0, then Σλ is a periodic orbit.
(d) Σλ attracts L2(Ω,C)/Γ, where Γ is the stable manifold of u = 0 with codimension

two in L2(Ω,C).
Proof. Let H1 = H2

per(Ω,C), H = L2
per(Ω,C), and the mappings Lλ and G : H1 → H be

as defined in the previous section. Similar to the proof of Theorem 3.1, Lλ and G satisfy the
conditions in Theorem 2.3.

We know that the eigenvalue problem{
−�ek = λkek,

ek(x+ 2kπ) = ek(x)
(4.1)

has an eigenvalue sequence

λ0 = 0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · , λk → ∞ as k → ∞,

and an eigenvector sequence {ek} which constitutes a common orthogonal basis of H1 and
H. The second eigenvalue λ1 = 1 has multiplicity 2n, i.e., λ1 = · · · = λ2n, with the first
eigenvectors

sinxj , cosxj (x = (x1, . . . , xn) ∈ Ω = [0, 2π]n).
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Eigenvalues of Lλ are as in (3.2), and the second eigenvalue Λ1 = (λ − α) ± iβ has
multiplicity 4n. For simplicity, let

e2j−1 = sinxj , e2j = cosxj (j = 1, . . . , n).

Then the spaces H and H1 can be decomposed into the following form:

H = E1 ⊕ Ẽ2,

E1 =

{
2n∑
j=1

(z1j + iz2j)ej

∣∣∣∣∣ z1j , z2j ∈ R

}
,

Ẽ2 = E⊥
1 .

Then the bifurcation equations of (1.1) with (1.5) are given by

⎧⎪⎨
⎪⎩
dZ1

dt
= (λ− α)Z1 + βZ2 + PG1(u),

dZ2

dt
= −βZ1 + (λ− α)Z2 + PG2(u),

(4.2)

where u = u1 + iu2 and

(u1, u2) = (Z1 + h1(Z1, Z2), Z2 + h2(Z1, Z2)),

(Z1, Z2) =

2n∑
j=1

(z1j , z2j)ej .

Here h = h1 + ih2 : E1 → Ẽ2 is the center manifold function satisfying

h(Z1, Z2) = o(|Z1| + |Z2|)(4.3)

and

PG1(u) =

2n∑
j=1

ej

∫
Ω
[−σ|u|2u1 + ρ|u|2u2]ejdx,

PG2(u) =

2n∑
j=1

ej

∫
Ω
[−σ|u|2u1 − ρ|u|2u2]ejdx.

By Theorem 2.5, we infer from (4.3) that (1.1) and (1.5) bifurcate from (u, λ) = (0, α) an
invariant set Σλ.

The proof is complete.
Remark 4.2. In fact, the invariant set Σλ of (1.1) with (1.5) is a sphere S4n−1; namely,

Σλ is homeomorphic to a sphere S4n−1. The topological structure of an attractor of vector
fields should be stable provided some nondegenerate conditions hold. We shall discuss this
topic elsewhere.
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5. Bifurcation of invariant sphere Sm. More generally, for the GL equations we have
the bifurcation theorem of invariant sphere Sm (m ≥ 1) at any eigenvalue.

Theorem 5.1. Let λk be an eigenvalue of −� with the boundary condition (1.4), or (1.5),
which has multiplicity m ≥ 1. Then, as λ > αλk, the problem (1.1) with (1.4), or (1.1)
with (1.5), bifurcates from (u, λ) = (0, αλk) an invariant set Σλ. This invariant set Σλ has
dimension between 2m−1 and 2m and is a limit of a sequence of 2m-dimensional annuli Mk

with Mk+1 ⊂Mk; i.e., Σλ = ∩∞
k=1Mk. If |β|+ |ρ| �= 0, then there is no singular point in Σλ.

Proof. We denote the eigenvectors of −� corresponding to λk by

{e∗1, . . . , e∗m}.

Thus, the space H1 and H defined in Theorem 3.1 or Theorem 4.1 can be decomposed into

H1 = Em ⊕ E⊥
m, H = Ẽm ⊕ Ẽ⊥

m,

Em = span{e∗i + ie∗j | 1 ≤ i, j ≤ m},
E⊥

m = {u ∈ H1 | 〈u, v〉H1 = 0 ∀v ∈ Em},
Ẽm = Em, Ẽ⊥

m = {u ∈ H | 〈u, v〉H = 0 ∀v ∈ Ẽm}.

By the center manifold theorem, the bifurcation equations of (1.1) with (1.4), or (1.1)
with (1.5), at λ = λk are equivalent to

⎧⎪⎨
⎪⎩
∂v1
∂t

= α�v1 − β�v2 + λv1 + PG1(v + h(v)),

∂v2
∂t

= β�v1 + α�v2 + λv2 + PG2(v + h(v)),

(5.1)

where λ is near λk, v = v1 + iv2 ∈ Em, and h : Em → E⊥
m is the center manifold function,

G = (G1, G2) : H1 → H defined as in Theorem 3.1 or Theorem 4.1, and P : H → Ẽm is the
projection.

The equations (5.1) are a system of ordinary differential equations with order 2m:

⎧⎪⎨
⎪⎩
dZ1

dt
= (λ− α)Z1 + βZ2 + [−σ|Z|2Z1 + ρ|Z|2Z2] + o(|Z|3),

dZ2

dt
= −βZ1 + (λ− α)Z2 + [−σ|Z|2Z2 − ρ|Z|2Z1] + o(|Z|3),

(5.2)

where Z = Z1 + iZ2. The eigenvalues of the linear part are still (λ − αλk) ± iβλk, with
multiplicity 2m.

By Theorem 2.5 it suffices to prove that v = 0 is asymptotically stable for (5.2) at λ = αλk.
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For λ = αλk, we infer from (5.2) that

1

2

d

dt

∫
Ω
|v|2dx =

∫
Ω
G(v + h(v))vdx

= (by h(v) = o(|v|))

=

∫
Ω
G(v)vdx+ o(|v|4)

= −σ
∫

Ω
|v|4dx+ o(|v|4),

which implies that v = 0 is asymptotically stable for (5.2) at λ = αλk. The proof is
complete.
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Minimal Models of Bursting Neurons: How Multiple Currents, Conductances,
and Timescales Affect Bifurcation Diagrams∗
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Abstract. After reviewing the Hodgkin–Huxley ionic current formulation, we introduce a three-variable generic
model of a single-compartment neuron comprising a two-dimensional fast subsystem and a very slow
recovery variable. We study the effects of fast and slow currents on the existence and stability of
equilibria and periodic orbits for the fast subsystem, presenting a classification of currents and de-
veloping graphical tools that aid in the analysis and construction of models with specified properties.
We draw on these to propose a minimal model of a bursting neuron, identifying biophysical param-
eters that can shape and regulate key characteristics of the membrane voltage pattern: bursting
frequency, duty cycle, spike rate, and the number of action potentials per burst. We present ad-
ditional examples from the literature for comparison and illustration, and in a companion paper
[SIAM J. Appl. Dyn. Syst., 3 (2004), pp. 671–700], we construct a model of an insect central pattern
generator using these methods.

Key words. bursting neurons, motoneurons, fast-slow systems, bifurcation, stability
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1. Introduction. In this and a companion paper [1] we develop and analyze a generic
model of a bursting neuron and assemble a set of such models, suitably adapted to interneurons
and motoneurons, to model a central pattern generator (CPG) for insect locomotion. We
have two main goals: to integrate and extend a body of work, largely in theoretical and
mathematical neuroscience, that enables (semi-) analytical studies of bursting neurons, while
maintaining sufficient biophysical detail for comparisons with experimental data; and to use
this to derive a model of a CPG that reveals how key locomotive properties may be determined
by individual neurons and the network as a whole. In this first paper we show how complex
models can be reduced and develop the analytical methods; in [1] we construct the CPG
model.

The first dynamical neural model based on biophysical data was due to Hodgkin and Hux-
ley [2], and their description of the action potential (AP) and ionic currents in the giant axon
of the squid has been vastly extended and generalized in the half century since. Detailed ax-
onal and dendritic geometry can be included, for example, at the unicellular level. However,
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behaviors even as simple as scratching or breathing require networks of neurons, and the
resulting firing patterns depend on three levels of activity: intracellular, synaptic, and net-
work. Models ignoring any of these levels risk oversimplification [3], perhaps especially in
invertebrates, in which relatively few neurons may be responsible for such diverse behaviors
as searching, walking, and running [4, 5]. The wealth of neurophysiological data collected
since Hodgkin and Huxley’s paper has led to rather complicated models (e.g., [6, 7, 8]), some
multicompartmental and including seven or more ionic currents, that require on the order
of ten ODEs and fifty parameters per cell. These models are specific to particular animals
and even to in vitro preparations and, not being amenable to analytical comparative studies,
do not readily reveal general principles. In this paper and [1] we seek a balance between
such complexity and simpler phenomenological models employing phase oscillators [9, 10] or
connectionist circuits [11] that have been used to study network connectivity effects.

Bursting oscillations have been widely studied, mostly at the single-cell level, e.g., [12, 13,
14, 15, 16, 17]; general classifications have been proposed [18, 19, 20, 21, 22], and polynomial
reductions have been developed and thoroughly analyzed [23, 24, 25]. Some network studies
have also recently been done [17, 26]. When limited experimental data is available, as in [17]
and the CPG model of [1], generic models and broad parameter variations can still lead
to testable hypotheses and provide motivation to verify novel predictions [27]. However,
while asymptotic reductions and polynomial approximations aid mathematical analyses, they
often obscure biophysical effects that must be retained if one is to understand how internal
components and architecture, as well as proprioceptive sensing and commands from higher
centers, can influence a network [28].

Single-current effects on individual cells are qualitatively understood, but collective in-
fluences have not been fully explored. We therefore devote this first paper to analyzing how
multiple (fast and slow) currents conspire to affect the location and stability of equilibria and
limit cycles, with a view to determining how biophysical parameters can effect changes in
behavioral variables such as spike rate, bursting frequency, duty cycle, and number of APs
per burst. Our methods identify currents which are unessential to the bursting mechanism,
suggest dimensional reductions, and provide guidelines for “designing” bursters with desired
behaviors when intracellular biophysical data is lacking. Thus, while they are used in [1] to
model an insect CPG, these methods offer a more general set of tools for studying the neural
basis of rhythmogensis. Indeed, comparisons with several existing models are noted in pass-
ing, and a specific example is given in section 4.3. In developing these tools, we have profited
from many earlier studies, including those of Rose and Hindmarsh [29, 14, 16] (on I−v steady
state curves) and of FitzHugh [30] and Rose and Hindmarsh [14, 31] (on combining gating
variables). Here we treat only third order models with one very slow recovery variable; we
note that Smolen, Terman, and Rinzel [32] considered two slow variables. Specific references
to these and other relevant papers and models will be made in the course of the paper.

This paper is organized as follows. After reviewing basic ideas of single-compartment
ion-channel models and noting the role of disparate timescales in section 2, we describe a
three-variable generic model of a bursting neuron in section 3. We identify and analyze
the effects of individual current and conductance parameters on branches of equilibria and
periodic orbits and their bifurcations, and then in section 4 we lay out a “minimal” model
for a bursting neuron, of sufficient flexibility to represent both interneurons and motoneurons
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in the CPG application of [1]. We identify biophysical parameters that shape the bursting
pattern and hence will determine key behavioral characteristics, and we illustrate further by
showing how an example (the Sherman–Rinzel–Keizer (SRK) model [13]) can be modified to
produce different behaviors. We summarize in section 5.

2. Ion-channel models. Bursting, the clustering of spikes followed by a refractory period
of relative quiescence, can vary substantially in form and function [22, 33, 21]. The mechanism
can be described qualitatively as the interaction of two subsystems dynamically separated by
their intrinsic time scales: a faster one, typically governed by sodium and potassium channels,
which can either be at rest or exhibit (periodic) oscillations, and a slow subsystem driving the
first through its quiescent and oscillatory states in a quasi-static manner [34, 35]. The slower
mechanism can be attributed to the accumulation of intracellular calcium ions (referred to
as calcium dynamics [33]) or to other slow voltage-dependent processes (e.g., [17]). In many
cases, bursting models can therefore be framed as singularly perturbed systems [36]:

u̇ = f(u, c),(2.1a)

ċ = δg(u, c),(2.1b)

where the vector u = [v,w] ∈ R
N+1, v denotes the cell membrane voltage, w = [w1, . . . , wN ]T

represents a collection of N gating variables wi to be explained below, and δ � 1 is a small
parameter. The variable c may represent calcium concentration or, more generally, any (very)
slowly varying quantity responsible for bursting.

The subset of fast equations (2.1a) generally takes the Hodgkin–Huxley (HH) form [2] and
can be written as follows [37]:

Cv̇ = −Iion(v, w1, . . . , wn, c) + Iext(t),(2.2a)

ẇi = εi
wi∞(v) − wi

τi(v)
, i = 1, . . . , N.(2.2b)

The first equation (2.2a) describes the voltage dynamics, with C denoting the cell mem-
brane capacitance, Iion transmembrane ionic currents, and Iext(t) exogenous input currents,
including synaptic and external inputs. Equations (2.2b) describe the first order kinetics of
variables wi that gate the ionic currents (see below), with εi a positive temperature-like pa-
rameter (not necessarily small). At steady state, gating variables approach voltage-dependent
limits wi∞(v), usually described by sigmoidal functions:

wi∞(v; ki0 , vith) =
1

1 + e−ki0 (v−vith )
,(2.3)

where ki0 determines the steepness of the transition occurring at a threshold potential vith .
Gating variables can be either activating (ki0 > 0), with wi∞ ≈ 1 for depolarized voltages
v > vith and wi∞ ≈ 0 for hyperpolarized levels v < vith , or inactivating (ki0 < 0), with
wi∞ ≈ 1 when hyperpolarized and wi∞ ≈ 0 when depolarized.1 The voltage-dependent “time
constant” τi is generally described by

τi(v; ki0 , vith) = sech (ki0(v − vith)) ,(2.4)

1It is sometimes useful to retain ki0 > 0 in (2.3) and express inactivation via 1 − wi.
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and, as implied in (2.3)–(2.4), the constants ki0 , vith determining wi∞ and τi are often taken
to be the same for a given ion channel [38].

The term Iion in (2.2a) is the sum of all ionic currents Iα. Ions move across the membrane
via channels which are permeable to specific species (possibly more than one per channel), and
they can be thought of as being in either of two states: open or closed. The total conductance
associated with a given (sufficiently large) population of channels can be expressed as the
(constant) maximal conductance ḡα for all channels open, multiplied by the fraction of open
channels. Thus, each ionic current can generally be described as Ohmic and written in the
form

Iα(v,w, c) = ḡα · γα(v, w1, . . . , wN , c) · (v − Eα);(2.5)

more complicated “rectifying” conductances, such as those expressed by the Goldman–Hodg-
kin–Katz formula [39] can also be represented in this manner. Here Eα is the (Nernstian)
reversal potential, α denotes the ion type, typically α ∈ {Na,K,Ca,Cl,L}, L denoting the
leakage current, and γα(v,w, c) is a voltage-, gate-, and possibly c-dependent conductance
factor for channels selective to ion α. To describe this dependence, Hodgkin and Huxley [2]
introduced fictive gating particles and represented γα with one or two2 activating and inacti-
vating gating variables wi, wj ∈ [0, 1], raised to integral powers a and b:

γα(v,w, c) = ζ(v) ξ(c) wa
i w

b
j .(2.6)

The exponents a, b can be thought of as representing the number of subunits within a single
channel necessary to open it; see Figure 1b. Probabilistic models based on this approach
closely reproduce experimental data for large channel numbers [41].

A first possible simplification is to restrict the exponents a, b in (2.6) to unity. A rigorous
approach would require a change of variable z = wa

i , etc., as in [14], but two observations
are pertinent. (i) Some models do have currents with exponent 1: e.g., Morris and Lécar [38]
and extensions thereof to bursting models [37], IT in Plant [42], IK in Sherman, Rinzel, and
Keizer [13], IK in Keizer and Smolen [43], and IK(M), IK(C), IK(AHP) in [39, pp. 200–203].
(ii) More importantly, this restriction is not as severe as it may seem; for the steady state
expression (2.3) at least, one can show that wa∞(v; k0, vth) can be approximated by another
sigmoidal function raised to the power 1 but with different coefficients w̄∞(v; k̄0, v̄th). Taylor-
expanding wa

0 , we can locally match the two functions to first order via the parameters k̄0, v̄th,
and we have checked that for sigmoidal functions the pointwise match is acceptable, with
maximum error of around 5% on the whole real line (results not shown).

In spite of the variety of ions and gating mechanisms, conductances come in two forms
[44, 3]: persistent and transitory (see Figure 1). The names refer to steady state properties
of wi∞ : persistent activating or inactivating conductances being active, respectively, above or
below a threshold, and transitory conductances being active only in a “window” of voltages.
The former are described by a single gating variable, whereas a combination of activating and
inactivating gating variables is used for transitory conductances. We will comment further on
the functions ζ(v) and ξ(c) in (2.6), but we anticipate that they can capture rectifying prop-
erties as described by the Goldman–Hodgkin–Katz equation [39], or “mixed” conductances,
to be defined subsequently.

2An exception with three gating variables appeared in the model of Beeler and Reuter [40].
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Figure 1. Conductances in the HH formalism. (a) Qualitative dependence of persistent (dashed) and tran-
sitory conductances (solid). (b) Caricature of mechanisms underlying the opening and closure of the channels,
with voltage increases to the right. Persistent conductances are represented by a voltage-dependent gating vari-
able which continually opens the channel, allowing ionic transport; transitory conductances have an additional
secondary mechanism that blocks the channel at voltages above the active range.

We note that the coupling in (2.2) occurs only in the first equation (2.2a); gating vari-
ables are not directly coupled. This structure enables simplified analyses, as we now indicate
(cf. [16]). A neuron may possess a dozen distinct ion channels [3], but if qualitative or semi-
quantitative characteristics are adequate, a reduced model having fewer variables may suffice
[30, 37]. If some ionic timescales τj in (2.2b) are significantly faster than others, we may (for-
mally) set the corresponding gating variables at their equilibrium values wj = wj∞(v). Like-
wise, functionally related variables with similar timescales may be lumped together (cf. [37]),
and this is not atypical; see the comment below on hypothesis H1. Those variables whose
channel dynamics have been equilibrated will henceforth be denoted by ni(v) = ni∞(v); the
(slower) gating variables wj whose evolution equations are retained will be denoted by mj . In
general several such variables may be retained, but we shall henceforth restrict our attention
to the case of a single slow variable, m, noting that in some cases this might represent a combi-
nation of two or more gating variables that move in step; see [30, 33] and the Rose–Hindmarsh
model [14] in Appendix A.

The above reduction process, which was pioneered in FitzHugh’s polynomial reduction of
the HH model [30] (cf. [23, 14, 24]) and may be justified via geometric singular perturbation
theory [36], considerably simplifies analyses but at the expense of obscuring some of the
biophysics. We will therefore develop a three-dimensional model in this spirit but retaining
the link to biophysical parameters. Pernarowski [24] and more recently De Vries [25] have
amply demonstrated the richness and relevance of three-dimensional models in describing
several distinct bursting behaviors.

3. A third order model. Most neurons have many more membrane conductances than
the two measured by Hodgkin and Huxley (e.g., Connor and Stevens [45], Plant [42], Chay
and Keizer [12], McCormick and Huguenard [46]); one or two sodium conductances, two or
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three different types of calcium conductances, and many different potassium conductances are
common [39]. In this section we will develop a framework to analyze the collective contribu-
tions of single ionic currents, with the goal of showing how biophysical parameters influence
the existence and stability of equilibria and periodic orbits in the fast subsystem (2.2), and
hence illuminating the global dynamics of the coupled fast-slow system (2.1).

We consider a class of models characterized by the following hypotheses:
H1. Existence of a single relatively slow (nonequilibrated) variable m in the fast subsystem.
H2. Multiplicative dependence of conductances on gating variables, voltage, and the very

slow variable c: γ(v,w, c) = ζ(v) ξ(c)
∏

i σαi(wi).
The first hypothesis could be rephrased as “homogeneous dependence on one slow variable.”
In fact m may describe more than one channel, pairs of the form ḡα1σα1(m)ζα1(v)(v−Eα1)+
ḡα1σα2(m)ζα2(v)(v−Eα2) being allowed. This is not as atypical as it may seem; see, e.g., the
reduced models of Rose and Hindmarsh [14] (Appendix A) and Butera, Rinzel, and Smith [17]
(Appendix C). The first hypothesis also implies that reduction to a three-dimensional system
is possible (cf. [23, 22, 37, 25, 24] and references therein), and it allows for a wealth of different
behaviors [35]. The second hypothesis formalizes a common assumption which holds for all
models of which we are aware.

Under these hypotheses, we can formulate a rather general model. We will not commit to
a particular choice of ionic currents until later, when we will be able to justify our choices for a
“minimal” model. The principle channels allow the passage of four ions: sodium, potassium,
chloride (or sometimes generic leakage ions), and calcium [3]. They are often highly selective,
each admitting only one ionic specie. Calling the relatively slow gating variable m and using
the above four ions, we can express the model as

Cv̇ = −
∑
i

Iαi + Iext,(3.1a)

ṁ =
ε

τm(v)
[m∞(v) −m] ,(3.1b)

ċ =
δ

τc(v)
[c∞(v) − c] ,(3.1c)

where δ � ε � 1/C = O(1) and the single currents Iα(v,w, c) are each of the type (2.6)
and α ∈ {Na,K,Ca,Cl,L,KCa}.3 As noted by Rinzel and Ermentrout [37], there are several
mechanisms which could provide the slow negative feedback required for bursting, in which
c cycles periodically, causing transitions between fixed points and limit cycles in the fast
(v,m) subsystem (see also [43]). For simplicity, we choose a very slow persistent potassium
current (essentially the IKS of Butera, Rinzel, and Smith [17]; see Model 2 in Appendix C
and cf. [14, 17, 32]), but the results adapt to other mechanisms as shown in the example of
section 4.3.

Given that the remaining gating variablem is slow relative to the voltage (spike) timescale,
while c evolves yet more slowly, (3.1) has three time scales: the “fast” gating variables implicit
in Iα, with wi = ni(v) where appropriate, evolve on scales of order 1, the slower variable m

3In the following an additional subscript ()f or ()s will be added, e.g., Kf or Ks, to distinguish between
fast and slow currents specific to a particular ion (here K).
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evolves on a scale of order ε, and the very slow c dynamics has order δ. Such singularly
perturbed systems have the appeal that the dynamic evolution can be separated according to
the disparate time scales [36]. In the present case, currents can be divided into three groups:
fast, instantaneously equilibrated currents, dynamic currents that evolve on the time scale of
interest, and very slow variables that may be regarded as pseudostationary. The resulting
simplification provides insight into the influence of single currents as part of a larger group.

3.1. The fast subsystem. We first analyze the fast subsystem (3.1a)–(3.1b). Since it
varies very slowly, c will initially be treated as fixed, its dynamical effects being addressed
subsequently. Hypothesis H1 implies that we can group the fast variables in (3.1a), write
them as Ifv(v), and separate them from the slow current of the form Is(v,m) = σsm(m)Isv(v)
(see, e.g., the Rose–Hindmarsh and Butera–Rinzel–Smith models [14, 17] given in Appendices
A and C). This factorization is always possible for a single slow current by hypothesis H2 and
extends to two (or more) provided that σα1(w) = σα2(w); cf. [14] and Appendix A. Thus we
can write (3.1a)–(3.1b) more explicitly as

Cv̇ = −[Ifv(v) + σsm(m)Isv(v)] + Iext,(3.2a)

ṁ =
ε

τm(v)
[m∞(v) −m].(3.2b)

In (3.2a) the subscripts sm and sv reflect functional dependence on the (slow) gating vari-
able m and voltage v; note that the former enters only via σsm(m). The voltage-dependent
fast and slow currents Ifv and Isv are given by

Ifv(v) =
∑
i

ḡαiσi(ni(v)) · ζi(v)(v − Eαi),(3.3)

Isv(v) = ḡαsζs(v)(v − Eαs).(3.4)

As argued in section 2, the slow current gating variable enters (3.2a) as

σP(m) = m or σT(m) = m(1 −m).(3.5)

We will call these cases dynamically persistent and dynamically transient, respectively, adding
the term “dynamically” because persistent and transitory usually refer to steady state prop-
erties (cf. Figure 1); we are concerned here with currents whose dynamical dependence on the
slow gating variable w makes them appear persistent or transitory.

The functions ζi(v) can often be assumed constant, but in some cases this does not suffice.
A common counterexample is a transitory conductance with one gating variable significantly
faster than the other, e.g., a fast activating and slowly inactivating sodium current INaP-h [17]
(Model 1 in Appendix C). In this case, setting the fast ni at steady state, the conductance
can be expressed in the form (3.4), with ζ(v) = n1∞(v). Such currents should properly be
called “mixed,” since they are dynamically persistent, having the form σsmIsv in (3.2a), but
appear transitory at steady state, due to the product of two gating variables.

3.1.1. Fixed points: One current. We now analyze the effect of the ionic currents in
(3.2) on the location of fixed points of the fast subsystem. We begin with single currents.
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We start by noting that separation into fast and slow currents (cf. (3.2)) has no influence
on the location and number of fixed points because at such points all gating variables and
currents are in equilibrium and can be expressed in terms of the voltage-dependent functions
ni∞(v) and m∞(v).4 The fixed points are therefore completely determined by the zeros of the
right-hand side of (3.2a), called the Iss− v curve, sometimes written I(v); this is the function
measured in a voltage-clamp experiment. Moreover, we need only consider the case ζ(v) = 1.
Indeed, when this does not hold, the results are similar to the transitory current case, because
the nonlinearity in ζ(v) acts as an additional linear or exponential multiplicative term, which
does not change the qualitative form of I(v).

Generic currents are described by

I(v) = ḡ · σ(v; k0, vth) · (v − E)(3.6)

and depend upon four parameters: ḡ, k0, vth, and E. Figure 2 shows typical examples of the
dependence on these. In [47] we show how all known currents fall into one of the four classes
above. Here σ is of either form in (3.5), and the gating variable w is set to equilibrium, i.e.,
w = w∞(v) (cf. (2.3)). We note the following.
The maximal conductance ḡ acts as a scaling factor, affecting the values of critical points

and their locations.
The Nernst potential E fixes the unique value of voltage v = E for which the current vanishes.

For transitory conductances, the current asymptotically approaches zero as v → ±∞,
but only as v → −∞ for persistent conductances. E also affects locations and values
of the extrema.

The threshold voltage vth affects locations and values of extrema. For transitory conductances
they approximately coincide with the voltage that globally minimizes (maximizes)
the current for vth < E (vth > E). When vth > E, the current is “essentially”
monotonically increasing for physiological values of k0. For persistent currents, the
relative location of the threshold voltage vth with respect to the reversal potential E
can substantially influence the shape of I(v). When vth < E (subreversal threshold),
I has a distinct shape with a pronounced minimum (Figure 2a), e.g., INa in the HH
equations [2]. If vth > E (superreversal threshold), the minimum is negligible, e.g.,
the potassium current IK in the HH equations [2] (Figures 2c, d).

The slope k0 determines the extent of the transition region from the inactive state I ≈ 0
to the active state. For very small values of k0, the currents tend to be linear over
a wide range. In the limit k0 → ∞ the currents approach piecewise linear functions,
and transitory currents are nonzero over only a very narrow range.

The substantial dips evident in Figures 2a, b are of particular importance in practice,
since they imply regions of negative resistance characteristic (NRC) in the steady state Iss−v
curves. As recognized experimentally by Wilson and Wachtel [48] in 1974, this is a necessary
condition for bursting. We may anticipate that it is also necessary for Hopf (H) bifurcations. It
is appreciable only when the threshold voltage is less than the Nernst potential, i.e., vth < E.
Since persistent currents play an important role, we conclude by noting that in the subreversal
case and for slopes higher than a critical value k0 > kcr = 2

E−vth
that is usually exceeded in

4For clarity, we drop the subscript α but recall that each current comes with its own set of four parameters.
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Figure 2. Persistent (left) and transitory (right) ionic currents for different values of the slope parameter
k0 = 0.02, 0.2, and 2 (a typical value is 0.1, e.g., [2, 38]). We illustrate with a calcium current of the form
(3.6), with maximal conductance ḡCa = 4.4mS/cm2 and reversal potential ECa = 120mV and show the Iss − v
curves (3.6) for the two conductance cases of (3.5). Dotted and dash-dotted vertical lines show the threshold
voltage vth and reversal potential E. (a) Persistent subreversal vth = 0mV < E. (b) Transitory subreversal.
(c) Persistent superreversal vth = 160mV > E. (d) Transitory superreversal. Note that transitory currents
typically exhibit smaller ranges than persistent currents (≈ 20%; note differing scales on ordinate I).

physiological ranges, the minimum is bounded below by Imin ≥ ḡ · (vth − E). Finally, we
note that passive conductances or passive currents, like the leakage IL = gL · (v −EL) can be
described as a degenerate subclass of persistent currents with zero slope: k0 = 0.

The current Iext enters (3.2a) as a purely additive term, so for any voltage v = v̄, one
can find a current I such that the fixed point is at v̄. Hence only the general shape of the
Iss−v curve is relevant in determining the possible number of fixed points. We may therefore
conclude that existence of an NRC “dip” can introduce up to two new fixed points.
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3.1.2. Fixed points: Multiple currents.
Linear or passive currents. In the absence of leakage or other linear currents, the existence

of at least one fixed point, typically at low voltage values, is no longer guaranteed. Apart
from this, passive currents (with positive conductance) cannot generate, but only destroy,
fixed points (see discussion below).

Nonlinear currents. As described above, the most relevant feature is the creation of local
minima in the Iss − v curve, but if vth > E, the resulting dips are negligibly small (Figures
2c, d). We will therefore consider the subreversal case vth < E. For simplicity we discuss only
persistent currents, but one can also give bounds for transitory ones. For equilibrated gating
variables w = n∞(v) of the form (2.3) the persistent currents and their (voltage) derivatives
are

IP = ḡ · n∞ · (v − E),

I ′P = ḡ · n∞ · [k0(1 − n∞)(v − E) + 1] ,

I ′′P = ḡk0 · n∞ · (1 − n∞) [k0(1 − 2n∞)(v − E) + 2] ;(3.7)

hence the minimum occurs at

IPmin = ḡ

(
v̄ − E +

1

k0

)
,(3.8)

where v̄ is implicitly defined by (1 − n∞(v̄))(v̄ − E) = − 1
k0

. The addition of a current can
destroy the local “dip” of a pre-existing current. A sufficient condition for this is that the
derivative of the new current be larger in magnitude than the pre-existing one; if the added
current always increases more than the other decreases, no local minimum survives. It is
therefore useful to estimate the maximum slope of IP , which is obtained at its inflexion point
to the left of E:

I ′Pmin
=
ḡ

4
[k0(ṽ − E) + 2] .(3.9)

Here the voltage ṽ is implicitly defined by (1 − 2n∞(ṽ))(ṽ −E) = − 2
k0

. As anticipated, IPmin

is bounded below by ḡ(vth − E), achieved in the limit k0 → +∞. In the same limit, the
minimum derivative is unbounded and tends to −∞. Therefore, any nonlinear current can
create up to two new fixed points.

One can show this in general; in particular, consider the limit of high thresholds k0i → ∞
for all i, and let the individual voltages be ordered as vth1 < E1 < vth2 < E2 < · · · < vthN

<
EN . In this limit one can define “influence windows” Ui = [vthi

, Ei] such that nj(v) ≈ 0 or 1
for all j �= i; i.e., in the ith window only the current Iαi is “turning on or off”; the others are
all inactive or fully active. Suppose further that Ij = IPj = ḡαjnj(v) (v − Eαj ) is persistent.
Then, it follows that the total current and its derivative are

I =
∑
i�=j

ḡαi(v − Eαi) + IPj and I ′ =
∑
i�=j

ḡαi + I ′Pj
.(3.10)

(In (3.10) we set ḡαi = 0 for inactive currents.) From (3.9), I ′Pj
can be arbitrarily large and

negative, and analogous arguments hold for transitory currents. We note that, for increasing
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Figure 3. An example of four ionic currents: a slow potassium current IKs, two fast potassium and sodium
currents IKf and INa, and a leakage current IL. Parameters are as follows: ḡKs = 4.5, EK = −75, vthKs = −50,
k0Ks = 0.08; ḡKf = 2.5, vthKf = −70, k0Kf = 0.05; ḡNa = 3.4, ENa = 115, vthNa = −50, k0Na = 0.25; ḡL = 0.5,
EL = −60, with units as given in section 4. Leftmost panels (a) show the Iss − v curves for the individual
ionic currents. (b) The fast currents are collected in Ifv and are shown solid, the slow current Isv is shown
dash-dotted, and the sum ITot = Iion is shown bold. In (c) the derivatives of the single ionic currents are shown,
and (d) shows the derivative with respect to v of the collected fast currents (dashed), the derivative of the slow
current (dash-dotted), and their sum (bold), which gives the coefficient a = Iion

∂v
of section 3.1.3.

numbers of currents N ,
∑N

i ḡαi tends to increase since constant terms gαi are added which
activate in the sequence vth1 , . . . , vthN

. Therefore, the more currents there are, the less likely
it is that they produce new fixed points, unless their conductances or slopes are very large.

Figure 3 shows an example with four ionic currents: two fast, IKf and INa; one slow, IKs;
and a leakage current IL. The leftmost panels show the steady state Iss − v curves for the
individual currents, which are then collected in Ifv and Is and added to give the total current
Iion shown in Figure 3b.
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Conclusion. From the above analysis, we can summarize the major result as follows. Each
additional nonlinear current can, for suitable ḡ, k0, vth, E, create a new local “dip” and hence
two additional fixed points may arise; cf. [31]. Leakage currents guarantee one fixed point for
any value of the applied current.

Here we have emphasized the role of the Iss − v curve in determining fixed points, due
to its biophysical relevance. Indeed, this is the characteristic measured in voltage-clamp
experiments, and can therefore be directly related to data. Alternatively, fixed points may be
found at intersections of the v- and m-nullclines of (3.2) (e.g., [49, 22, 37, 33]).

3.1.3. Stability. In this section, we analyze the stability of fixed points. We concentrate
on slow dynamically persistent currents, which are more common in reduced models, but we
also discuss slow transitory currents. Rewriting (3.2) as

v̇ = − 1

C
[Ifv(v) + σsm(m)Isv(v) + Iext]

def
= f1(v,m),

ṁ =
ε

τm(v)
[m∞(v) −m]

def
= εf2(v,m)(3.11)

and linearizing yield a Jacobian of the form

Df =

[
− 1

C a − 1
C b

dε −eε

]
.(3.12)

If we define the total ionic current Iion = −(Ifv + σsmIsv), then the coefficients evaluated at
a fixed point p are given by

a =
∂Iion

∂v
|p, b =

∂Iion

∂m
|p, d =

m′∞
τm

− (m∞ −m)τ ′m
τ2
m

|p, e =
1

τm
|p .(3.13)

Here a represents the variation of the ionic current with respect to voltage, sometimes called
the instantaneous I−v curve [37] or the slope conductance curve [41]. The coefficient b reflects
the dependence of the ionic current on the slow variable, and d and e are entirely determined
by the gating dynamics. Observing that the sigmoid (2.3) has the property that its derivatives
can be expressed in terms of the function itself, e.g., w′∞ = k0w∞(1 − w∞), we may write

a = I ′fv + σsmI
′
sv, b =

∂σsm
∂m

Isv,

d = k0
m∞(1 −m∞)

τm
, e =

1

τm
,(3.14)

where (·)′ = ∂
∂v (·) and the derivatives of the conductance factors σsm are given by ∂σP

∂m = 1 and
∂σT
∂m = 1−2m for dynamically persistent and dynamically transitory conductances, respectively
(cf. (3.5)). In computing d we note that the second term in the general expression of (3.13)
vanishes at fixed points. Also note that d and e are always positive.

As noted above, the particular structure of (2.2) implies that at the fixed points all gating
variables are explicit functions of voltage. In addition, and importantly, as we noted at the
end of section 3.1.1, any voltage value v = v̄ can be made a fixed point by suitable choice
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of external current Iext. Therefore, the Jacobian entries a, b, d, e of (3.13) can all be reduced
to explicit functions of voltage at the fixed point v̄. This substantially simplifies the stability
analysis, reducing it to a characterization in terms of v̄ alone.

The eigenvalues of (3.12) are determined by the determinant DetDf and trace TrDf and
the necessary conditions for H and saddle-node (SN) bifurcations [50] may be written

aH = −εeC, ae+ bd > 0,(3.15a)

aSN = −bd
e
.(3.15b)

Using (3.14), we observe that the ratio −d
e appearing in (3.15b) is given by

−d
e

= −k0m∞(1 −m∞)(3.16)

and depends only on the (slow) gating dynamics; it is affected neither by the addition of fast
currents nor by whether the slow current is dynamically persistent or transitory, activating
or inactivating. In addition it depends neither on the maximal conductance ḡα nor on the
reversal potential Eα, but only on the slope k0α and threshold voltage vthα . It is a negative
bell-shaped function tending exponentially to 0− for v → ±∞; e.g., see Figure 5c. We can
therefore focus on the coefficients a and b.

Coefficient a. The slope conductance curve is composed of the terms I ′fv and σsmI
′
sv

(cf. (3.14)). It is often stressed [41, 39] that stability cannot be inferred from the slope
of the Iss − v curve. Indeed, I ′ss = ∂Iion

∂v would be equal to a if all currents were fast, but in
the presence of slow currents, this is no longer true. Gathering N fast currents, using (3.3),
we have

∂Iion

∂v
= I ′fv =

N∑
i=1

ḡαiσ
′
iζi(v)(v − Eαi) + ḡαiσiζ

′
i(v)(v − Eαi) + ḡαiσiζi(v),(3.17)

where σ′i = ∂σ(ni(v))
∂v . However, if one of the currents is slow, then we have

∂Iion

∂v
=

N−1∑
i=1

[
ḡαiσ

′
iζi(v)(v − Eαi) + ḡαiσiζ

′
i(v)(v − Eαi) + ḡαiσiζi(v)

]
+ ḡαjσjζ

′
j(v)(v − Eαj ) + ḡαjσjζj(v),(3.18)

and the analogue of the first term ḡαiσ
′
i(v − Eαi) in the summation does not appear for the

slow current j.
Figure 4 shows the case of ζi(v) = 1, in which (3.18) simpifies to

∂Iion

∂v
=

N−1∑
i=1

[
ḡαiσ

′
i(v − Eαi) + ḡαiσi

]
+ ḡαjσj .(3.19)

Since σ′P = k0n(1 − n) and σ′T = k0n(1 − n)(1 − 2n) (from (2.3) and (3.5); cf. (3.7)), the first
term in the sum is a hump or a “dipole” for dynamically persistent or transitory currents,
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Figure 4. Derivatives of persistent ionic currents (left) and transitory currents (right), showing how they
differ for fast (solid) and slow (dashed) currents. See Figure 2 for steady state Iss − v curves. This example
shows a calcium current of the form (3.6), with maximal conductance ḡCa = 4.4mS/cm2, and reversal potential
ECa = 120mV, with k0 = 0.2. Dotted vertical line shows the threshold voltage vth; dash-dotted vertical line
shows the reversal potential E. (a) Persistent subreversal vth < E, here vth = 0mV. (b) Transitory subreversal.
(c) Persistent superreversal vth > E, here vth = 160mV. (d) Transitory superreversal. Observe that slow
currents always give positive contributions to the derivative (coefficient a).

respectively. If current j is slow, then the derivative ∂Iα
∂v > 0 for both types of currents,

but if j is fast, then ∂Iα
∂v can change sign. In the persistent case, this will only happen

for subreversal currents (Figures 4a and 4c), whereas it always holds in the transitory case
(Figures 4b and 4d).

Reviewing the four-current example of Figure 3, we observe how the individual currents
contribute to determine a = ∂Iion

∂v depicted in Figure 3d. IKf is a typical example of a persistent
superreversal current whose derivative is shown in Figure 3c (second down). INa exemplifies a
fast subreversal persistent current whose derivative is shown in Figure 3c (third down); cf. INaP

in [17], Model 2 of Appendix C. The linear leak IL gives a constant contribution to a; see
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Figure 3c (bottom). IKs is a slow (dynamically and statically) persistent current; see Figure 3c
(top). Note the difference between the two potassium currents. The slow current IKs, also
present in the HH equations [2], yields a term aKs = ¯gKsm∞Ks (Figure 3c1), whereas the fast
current IKf yields the term aKf = ḡKf kKf n∞Kf

(1−n∞Kf
)(v−EK)+ ḡKfn∞Kf

(Figure 3c (second
down)). The difference is not very marked here, but, as shown in Figure 4a, it can be more
substantial and sufficient to change the stability of a fixed point. The single terms ∂Iα

∂v are
constant for v → ±∞.

Coefficient b. This coefficient describes the dependence of the ionic current upon the (rela-
tively) slow gating variable m. For dynamically persistent and transitory currents, one obtains

bP = Isv and bT = (1 − 2m∞)Isv.(3.20)

For dynamically persistent currents bP has the same sign as Isv; hence if, as usually, Isv =
v − Eαs is linear, then bP is strictly positive for all v > Eαs .

It is now relatively easy to analyze the behavior of fixed points. One computes the de-
pendence of a on v̄ at a fixed point; when a crosses one of the values aSN or aH defined
by (3.15), stability changes and a bifurcation occurs. An example is shown in Figure 5 for
a system with the currents of Figure 3. The condition Tr = 0, satisfaction of which with
Det > 0 results in an H bifurcation, is depicted in Figure 5a. Note that the term −eε is
small only in a relatively narrow range of voltages because e(v) = 1

τm(v) → +∞ for v → ±∞;
asymptotic analysis is therefore of little help for global understanding. Figure 5c shows the
term −d

e , which multiplied by bP or bT gives the condition Det = 0. For persistent currents,
the SN condition aSN is shown in Figure 5b. Since aSN is always positive for v < EKs, the
SN and the H bifurcations can never occur in that range, but only at more depolarized levels
than the reversal potential of the slow variable, here EKs. We note that since ε will only
change the shape of Tr = 0 (by flattening it), the above observation suggests that there is a
lower bound for these bifurcations and, as ε→ 0, the location of these points will not change
much. The determinant is positive for a > −bde , above the bold lines in Figures 5b and 5d
for dynamically persistent and transitory conductances, respectively. Finally, Figure 5e shows
the two boundaries with a superimposed for the example of Figure 3. This reveals a first
crossing of aH for v̄H1 ≈ −58mV giving rise to an H bifurcation, followed by two intersections
of aSN at v̄SN1 ≈ −57.8mV and v̄SN2 ≈ −44.3mV and finally a second H bifurcation at
v̄H2 = −43.8mV, giving the bifurcation sequence H, SN, SN, H. In the next section we will
exploit this approach to explore the effect of parameter variations.

3.2. Bifurcation diagrams for the fast subsystem. The collective effect of parameters
describing single currents are best exemplified in bifurcation diagrams. The discussion of
section 3.1.3 immediately translates to a bifurcation diagram with external current Iext as
the bifurcation parameter. The diagrams given below were computed numerically using a
Newton–Raphson algorithm to determine fixed points and a continuation algorithm to follow
their branches. However, the “constructive” single current analysis developed above more
clearly reveals the causes and parameter sensitivities responsible for changes in the structure
and sequence of bifurcations along branches of equilibria, so we also display this information
in the form of Iss − v and slope conductance curves. In the following we will assume ζ(v) = 1
for simplicity.
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given in Figure 3. Other parameters are C = 20, ε = 0.04. Note that voltage (v) scales differ.

3.2.1. Fast currents. We consider a simple case with three ionic currents: a slow persis-
tent potassium current IKs, a fast persistent calcium current ICa, and a leakage current IL,
similar to the original work of Hodgkin and Huxley [2].5 The term

b
d

e
= k0m∞(1 −m∞) · Isv ·

{
1, dynamically persistent,

(1 − 2m∞), dynamically transitory,

which gives the SN condition (3.15b), depends only on the slow gating parameters. The
bifurcation sets (3.15) are therefore affected neither by adding fast currents nor by changes

5Sodium and calcium currents differ in their reversal potentials ENa = 50mV and ECa = 120mV and in the
fact that the sodium current in [2] is transitory, whereas the calcium current considered here is persistent, as
in [38].
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Figure 6. Dependence of the total ionic current on variation of threshold voltage vth of a fast calcium
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vthCa = −38,−1.2,+15 from lower to upper curves in (a2) and (b), k0Ca = 0.11; ḡL = 0.5, EL = −60. Units
are as given in section 4.

in their parameters. For illustrative purposes, we show the effect of two such parameters: the
threshold voltage vth of a fast persistent inward current such as INa or ICa, and the slope of
its fast gating variable k0.

Threshold voltage vth. The effect of vth on the Iss − v curve is shown in Figure 6, its
effect on the slope conductance curve (coefficient a) in Figure 7, and the resulting bifurcation
diagrams in Figure 8. Increasing values of vth shift the minimum of ∂ICa

∂v to the right. For
low thresholds, the corresponding bifurcation diagram has two SN points (see Figure 8c1).
Increasing vth, an H bifurcation emerges from the higher (more depolarized) SN bifurcation
point in a Takens–Bogdanov (TB) bifurcation [50] (see Figure 8c2). Further increase causes the
SN points to coalesce and disappear in a codimension two “cusp” bifurcation [50], leaving two
H bifurcations (see Figure 8c3 (cf. Rinzel and Ermentrout [37] and Koch [41] for discussions
of the latter)).
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calcium current. Parameters as in Figure 6.

Also note that the cases of Figures 8a2–c2 and a3–c3 can explain the smooth transition
from Class I to Class II spiking [20] without appealing to an extra current (e.g., an IA current)
as in Connor and Stevens [51], [41, pp. 159, 190]. Rinzel and Ermentrout [20] stated that this
was possible with a model similar to the one used here by changing vthK

; Figure 8 should
provide some further insight.

Slope k0. Despite the fact that a steeper transition in the sigmoid (2.3) has a negligible
effect on the steady state curves (Figures 9a1–a2), it can substantially change the bifurcation
structure via the increased slope that causes a substantial negative peak in ∂ICa

∂v (see Figures
9b1–b2). Moreover, due to global bifurcations in which limit cycles disappear (see [50] and
below), the topological difference between the two cases involves more than simply removing
one (local) H bifurcation point (see Figures 9c1–c2).

Maximal conductance of leakage current ḡL. Because of its relevance to the bursting dy-
namics in the following section, we end by noting that the effect of the (linear) leakage current
is simply a vertical shift of a. The resulting bifurcation diagram (not shown) goes from the
sequence SN, SN, H to SN, SN as ḡL increases.
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Tr = 0 ⇔ a = −eεC (dashed), and a = ∂Iion
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(bold). Right panels show the corresponding bifurcation diagrams.

3.2.2. Slow currents. Slow current parameters also affect the bifurcation sets (3.15).
Figure 10 shows the effect of threshold voltage changes on a slow outward current, such as IK.
Bifurcation points are shifted and the coefficient a changes its form via σsm(m∞(v)), which
appears in the second term in a = I ′fv + σsmI

′
sv. The resulting bifurcation diagrams show

transitions can occur from SN, SN to SN, SN, H and back to SN, SN as vth increases.
Conclusion. The introduction of each current with a nonoverlapping “window of influence”

can produce another pair of equilibria. Thus “snaking” branches with multiple SN bifurcations
can appear. Up to two H bifurcations can be introduced, associated with at least one SN pair.
H bifurcations may also occur in the absence of SN bifurcations when the branch does not
double back. Coincident H and SN (TB) bifurcations can be obtained by varying a second
parameter in addition to Iext.
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3.2.3. Bifurcations in terms of c. The bifurcation diagrams of Figures 8, 9, and 10 use
external current Iext as parameter. In the full system (3.1) the slow variable c drives the
fast subsystem from regime to regime; hence, we must recast the above results in terms of c,
which enters the fast equation (3.1a) via a current such as IKS = ḡKSc(v − EK). To do this
we consider a two-parameter bifurcation diagram of the original system (3.1) and then slice
it with an appropriate plane. For illustrative purposes, we will treat (3.1) with three internal
currents ICa, IKs, IL and an external current Iext, as in [38].

We compare the membrane voltage equations of (3.1a),

Cv̇ = − [ḡLcL(v − EL) + f1(v,m)] + Iext,(3.21)
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with an analogous system with an additional current IKS,

Cv̇ = − [ḡL(v − EL) + f1(v,m) + ḡKSc(v − EK)] ;(3.22)

here f1(v,m) = ḡCan∞(v)(v − ECa) + ḡKm(v − EK) denotes the unchanged fast currents.
Equations (3.21) and (3.22) are equivalent provided that we set the “leakage” factor cL and
the current Iext in (3.21), respectively, equal to

cL = 1 +
ḡKS

ḡL
c and Iext = ḡKS cEK + ḡL(1 − cL)EL.(3.23)

The desired bifurcation diagram of equilibrium voltage as a function of c is therefore a “slice”
of the two-parameter (v, ḡLcL) bifurcation surface above the line defined by eliminating c
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from (3.23):

Iext = ḡL(EL − EK)(1 − cL).(3.24)

Figure 11 shows an example. Note that the line (3.24) is almost perpendicular to the
Iext-axis on Figure 11a; this is due to the fact that the difference between the leakage reversal
potential EL and the potassium reversal potential EK is very small in this case; also note
that the signs of the terms in (3.23)–(3.24) imply that the c-bifurcation diagram is reversed in
comparison to the I-diagrams of Figures 8, 9, and 10, having the higher v branch extending
to the left (see Figure 11b). Finally, we note that the maximal conductance associated with
the very slow variable ḡKS does not influence the slice location (3.24). Rather, changes in ḡKS,



658 R. M. GHIGLIAZZA AND P. HOLMES

which enters the current IKS of (3.22) multiplicatively, horizontally compress or expand the
orbit projected on the (c, v) plane (Figure 11), a fact that will be useful in section 4.2.

3.3. The bursting mechanism. As anticipated at the beginning of this section, burst-
ing results from hysteretic transitions between a quasi-static quiescent state and a periodic
(spiking) state, driven by the slow variable c. Thus, given the bifurcation diagram in c, the
dynamics of the third order model can be elucidated in the limit of small δ. Here we discuss a
typical bifurcation diagram, with the sequence SN, SN, H as in Figure 11b (cf. Figure 10c2 or
Figure 8c2). The vectorfield of (3.1c) indicates that c ∈ [0, 1] will decrease when c > c∞(v) and
increase when c < c∞(v). As c slowly evolves, the fast subsystem (3.1a)–(3.1b) remains close
to its stable fixed point until the left-hand SN bifurcation on the lower branch is reached.
When c passes this point, the state quickly jumps to the coexisting stable limit cycle (see
Figure 11c). During this spiking oscillation, the average voltage is sufficiently high that c
increases, until the cycle is destroyed as the limit cycle collides with the saddle point (the
middle branch) in a saddle-loop (SL) or homoclinic bifurcation, or the right-hand SN occurs
on the cycle itself (SNLC) [50]. Figure 11c shows the former case. It may also happen that
the H bifurcation is subcritical [50] and the relevant stable limit cycle is born in an SN of
periodic orbits (SNPO).

4. A minimal bursting model. The bursting mechanism identified above includes a branch
of stable equilibria terminating in an SN and a branch of limit cycles terminating in a global
homoclinic bifurcation, or possibly destroyed by a second SN of fixed points occurring on
the limit cycle. A minimal model therefore requires only the “nose” or NRC on the lower
equilibrium branch, and an H bifurcation to create the periodic orbit on the upper branch.
This can be captured by a fast persistent (inward) current. In the model discussed in [20],
based on the two-variable Morris–Lécar equations [38], it is a calcium current; in Butera,
Rinzel, and Smith’s model 2 [17] (cf. Appendix C) it is a persistent sodium current INaP, with
almost the same functional expression, the only difference being the exponent of the gating
variable which is 1 in [38] and 3 in [17].

The following results were obtained for a persistent inward current with a reversal potential
of E = 120mV, consistent with calcium, which we called ICa. We believe that analogous results
could be obtained with a persistent sodium current with reversal potential around E = 50mV,
but specific biophysical data is unavailable for CPG neurons in the cockroach, so we cannot
identify a specific current, responsible for the fast spikes. In addition we have a slow (outward)
current IK and a leakage current IL. The bursting mechanism will be caused by an additional
very slow potassium current IKS (essentially the same as IKS in [17, Model 2]; see also [39])
that plays the same role of the calcium-activated potassium current IKCa in the Sherman–
Rinzel–Keizer (SRK) model: it hyperpolarizes (decreases) the membrane voltage when v is
highly depolarized (i.e., in the bursting regime). Our main results should carry over when a
calcium-dependent potassium current is used for the bursting mechanism as presented in the
example below using the SRK model [13]. Therefore, we consider the system

Cv̇ = −[ICa + IK + IL + IKS] + Iext,

ṁ =
ε

τm(v)
[m∞(v) −m] ,(4.1)
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ċ =
δ

τc(v)
[c∞(v) − c] .

The currents in (4.1) are specified by

ICa = ḡCan∞(v)(v − ECa), IK = ḡKm · (v − EK),

IL = ḡL(v − EK), IKS = ḡKSc · (v − EK).(4.2)

The steady state gating and timescale functions are of the types (2.3)–(2.4); in particular,

m∞(v) and c∞(v) are both sigmoidal functions
(
1 + e−k0(v−vth)

)−1
, where m∞(v) is defined

by k0K , vthK
and c∞(v) by k0KS , vthKS

. The parameters given in Table 1 were adopted for
the work described in this section. The maximal conductances are expressed in mS/cm2, the
reversal and threshold potentials in mV, the slope coefficients in mV/s, and the capacitance C
in µF/cm2. All parameters excepting C, ḡK, ε, δ are the same as in Morris and Lécar [38, 20],
ḡK = 9 being slightly higher than their value ḡK = 8. With the application to follow in [1]
in mind, the parameters C, ε, and δ, which independently determine the time scales of v, m,
and c, are set to match typical cockroach data.

Table 1
Parameter values for the bursting model.

ḡCa = 4.4 ECa = 120 vthCa = −1.2 k0Ca = 0.11
ḡK = 9.0 EK = −80 vthK = 2.0 k0K = 0.2
ḡKS = 0.25 vthKS = −27 k0KS = 0.8
ḡL = 2.0 EL = −60
C = 1.2 ε = 4.9 δ = 0.052 Iext = 35.6

4.1. Silence, bursting, and beating. The existence of a resting potential and a limit cycle
for the fast subsystem ensures that the cell can exhibit two states: silent or beating (persistent
spiking). As we saw in section 3.3, to obtain bursting, these states must coexist over some pa-
rameter range. Moderate increases in external current Iext leave the (v, c)-bifurcation diagram
almost unchanged in shape but shift it rightward, causing the intersection of the nullclines to
move from the lower, to the middle, and finally to the upper branch (Figures 12a1–a4). This
effects a continuous change from silence to bursting to beating (Figures 12b1–b4). Similar
results (not shown) can be obtained by changing the threshold voltage in the function c∞(v).

The bursting frequency can be changed by over an order of magnitude (0.8–19.6 Hz) via the
bias current Iext (Figures 12(a2,b2)–(a3,b3)). This agrees with Butera, Rinzel, and Smith [17],
in which variations from 0.05–1 Hz were found, but it is accompanied by an increase from five
to nine APs. Since fast motoneurons encode force in terms of AP numbers, the latter should
also be adjustable without substantial frequency change. This is possible in regimes with few
APs per burst (Figures 12(b3,b5)).

4.2. Shaping the bursts. In the following we will concentrate on five parameters and
show how they can affect the properties of the bursts. We anticipate that not all will be
plausibly adjustable in vivo; in particular, we will show how one can fix the parameters C,
ε, and δ to match timescales and key features in systems of interest, providing a “baseline”
model, and how the adjustable parameters (Iext, gKS) affect this model. While Iext cannot be
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Figure 12. Left panels (a1)–(a5) show bifurcation diagrams of the fast subsystem of (4.1) and projections of
the bursting trajectory (grey line) onto (c, v) plane. The ċ = 0 nullcline (solid) is also shown. Parameters are as
in Table 1, unless stated otherwise. Right panels (b1)–(b5) show the membrane voltage v versus time. (a1)–(b1)
Silence: the ċ = 0 nullcline intersects the stable branch of the bifurcation diagram and there is one (stable) fixed
point for (4.1); Iext = 34.5. (a2)–(b2) Low frequency bursting: f = 0.8 Hz; Iext = 35.346. Notice that each burst
has five spikes and note extended time scale in (b2). (a3)–(b3) High frequency bursting: f = 19.6 Hz; Iext = 38.
(a4)–(b4) Beating: the system has a stable limit cycle with c ≈ const; Iext = 40. (a5)–(b5) Changing ḡKS to 0.35
(in place of ḡKS = 0.19 in previous cases) contracts the bifurcation diagram, affecting the duty cycle; Iext = 37.

adjusted independently via, e.g., synapses from central nervous system (CNS) neurons, both
it and ḡKS can be modulated by synaptic inputs and by neurotransmitters, so both of these
control parameters are biophysically plausible in vivo.

(i) The capacitance C basically sets the frequency of the fast spiking. Here it was set
to 1.2 in order to obtain fast spikes on the order of 1ms.
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Figure 13. Regulating spiking frequency by changing input current Iext. Varying Iext from 36 (a) to 72 (b)
spans the frequency range from 90 to 465 Hz. The v̇ = 0 nullcline moves rightward as Iext increases (c), taking
the limit cycle further from the homoclinic bifurcation. (d) The resulting f−I curve. Parameters as in Table 1,
except ḡKS = 0.5, ε = 2.0, δ = 10−4.

(ii) The parameter ε can play a central role as also suggested in the next illustrative
example, at the end of section 4. Recalling Figure 5, we observe that the H condition
aH = −εeC is the only one depending on the parameter ε. A decrease in ε therefore
makes the curve aH = −εeC shallower, shifting the H bifurcation point to more
depolarized levels. This, in turn, “drags” the global homoclinic bifurcation to the left.
Assuming that the very slow dynamics is unchanged, this suggests that the number of
spikes in a burst should decrease, because the homoclinic bifurcation moves closer to
the SN bifurcation.

(iii) The parameter δ is responsible for the recovery variable time scale and therefore de-
termines a “baseline” bursting frequency.

(iv) The bias current Iext can have several effects. It can influence the bursting frequency,
especially when the nullcline ċ = 0 of the very slow variable is fairly close to the SN
bifurcation (Figure 12(a2)–(a3)).
Iext can affect the spiking frequency as shown in Figure 13, for which we set δ = 10−4

and bursting is so slow that behavior resembles a regular spiking neuron. (In the
companion paper [1] this will be used to model slow cockroach motoneurons which
spike in the range 90–400 Hz [52, 53].) A lower bound for maximum spiking frequency
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is given by ω0 =
√
ε(ae+ bd)/C at the H bifurcation, and since the cycle is destroyed

via a homoclinic bifurcation [50], there is no limit to minimum frequency in principle;
however, away from the H bifurcation the f − I curves for these neurons are rather
flat (see, e.g., discussion in [41]: 53–138 Hz in the HH model, 19–28 Hz in FitzHugh–
Nagumo, and 50–70 Hz in Morris–Lécar [38]). At least in the relaxation oscillator
limit, frequency is essentially fixed by the dynamics on the slow manifold, which does
not significantly change away from the H bifurcation (Figure 13d was obtained near
the homoclinic bifurcation).
Iext can also affect the number of APs per burst, but we note that the (percentage)
variation is minimal when the number of APs per burst is large and becomes increas-
ingly more important when there are few APs per burst (∼ 4-5).

(v) The conductance gKS is central in determining the duty cycle: the fraction of the period
occupied by the burst. Recalling that the slice of the bifurcation diagram does not de-
pend on ḡKS (3.24), and that this maximal conductance enters multiplicatively in IKS

(3.22), we see that increases (decreases) in its value respectively expand (contract) the
projected orbit in the c-direction, without changing the values of the corresponding
v̄SN and v̄H . The location of the homoclinic bifurcation responsible for disappearance
of the cycle shifts in this deformation process. The time spent in each regime varies
inversely with distance to the ċ = 0 nullcline; thus, in going from ḡKS = 0.19 to 0.35
(Figures 12a3 to 12a5), the quiescent fraction of the cycle increases since the lower
branch of the Iss − v curve moves closer to the nullcline. Figures 14(a,b) show how
bursting frequency and duty cycle can be independently changed by a suitable com-
bination of the parameters Iext and ḡKS. Iext primarily affects frequency, especially at
higher values of ḡKS; ḡKS affects both frequency and duty cycle.

Summary. The model parameters C, ε, and δ in (4.1) may be chosen to match timescales of
fast spikes (C), approximate number of APs per burst (ε), and baseline bursting frequency (δ).
Depending on the number of APs per burst, two regimes can be identified: high (∼ 15 APs)
or low (∼ 4 APs). In the high regime, bursting frequency is modulated by Iext; in the low
regime, Iext influences both bursting frequency and number of APs per burst. In the high
regime gKS primarily affects the duty cycle; in the low regime it affects both duty cycle and
number of APs per burst.

To satisfy changing behavioral demands CPGs must produce wide variations in cycle fre-
quency, relative timing, and activity levels in motoneurons and muscles. One might therefore
expect that the four key characteristics—bursting frequency, duty cycle, number of APs per
burst, and spiking frequency—should be independently adjustable, since they serve different
physiological functions (e.g., in locomotion, bursting sets the stepping frequency, and slow
motoneuron spike rates and fast motoneuron APs determine muscle force, via calcium release
dynamics). Such flexibility may seem impossible with only the two parameters Iext and gKS.
Moreover, since conductance changes are slower, adjustments might not be possible on com-
patible timescales, and as we have noted above, Iext is in any case not directly accessible in
vivo.

Here we anticipate a solution that evolution may have achieved via “division of labor”;
more details will be given in [1]. Insect CPGs comprise at least six bursting interneurons, each
of which drives fast (bursting) motoneurons Df and slow (spiking) motoneurons Ds. Stepping
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Figure 14. Bursting frequency (a) and duty cycle (b) dependence on Iext and ḡKS, showing that Iext
primarily affects frequency at higher values of ḡKS (see contour lines), but ḡKS simultaneously affects duty cycle
and frequency. (c), (d): Slices for constant ḡKS = 0.19 and constant Iext = 36.5; frequency shown solid and
duty cycle dashed.

frequency and duty cycle can be set at the network level by synaptic currents from CNS and
local reflexive feedback circuits, which effectively change CPG input currents Iext and conduc-
tances gKS. For reasons to be explained in [1], these two parameters together with external
currents to slow motoneurons completely define the operational regime of the latter. Fast mo-
toneurons, which grade force via the number of APs per burst, require more subtle treatment.
As noted above, they can be modulated by their input currents and conductances, but these
parameters also affect their bursting frequencies. Here network properties come to the res-
cue: unilaterally connected motoneurons “follow” CPG neurons provided that their bursting
frequencies are close enough, in which case they entrain to the CPG bursting frequency over
finite current and conductance ranges. This renders the Df bursting frequency independent
of these parameters, which therefore affect only the number of APs per burst. In summary,
independent controls can be obtained by synergy of individual and network properties using
(i) three different sets of bursters with five biophysical parameters and (ii) a network with
appropriate leader-follower connections.

4.3. An illustrative example. We now illustrate how the foregoing analysis can help one
to modify existing models to produce desired behaviors, perhaps when precise parameter
details, or even current types, are unavailable. Specifically, we show how the SRK model [13],
first introduced by Chay and Keizer [12], can be adapted to yield different duty cycles and
numbers of APs per burst.
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The SRK model may be written

Cmv̇ = −ḡKn(v − EK) − ICa(v) − gKCa(Ca) · (v − EK),

ṅ = λ
n∞(v) − n

τn(v)
,

Ċa = f(−αICa(v) − kCaCa)(4.3)

(cf. [37] and a slightly modified version in [33, p. 192]). Here,

ICa(v) = ḡCam∞(v)h∞(v)(v − ECa),

gKCa(Ca) = ḡKCa
Ca

Kd + Ca
,(4.4)

and n∞,m∞, h∞ are standard HH-type equilibrium functions (see Appendix B for functional
forms and parameters). The model has a potassium current IK = ḡKn(v − EK), a fast
transitory calcium current ICa, and a very slow calcium-dependent potassium current IKCa =
gKCa(Ca) · (v − EK). Intracellular calcium affecting the conductance via (4.4) has its own
dynamics given in the last equation of (4.3).

To compare (4.3) with (4.1) more directly, we first rewrite the system so that the calcium-
dependent potassium current IKCa = gKCa(Ca)(v − EK) is linear in a new very slow variable

c =
Ca

Kd + Ca
.(4.5)

Differentiating (4.5), we find ċ = Kd
(Kd+Ca)2

Ċa, and inverting (4.5) to obtain Ca = Kd
c

1−c ,

we have

Cmv̇ = −ḡKn(v − EK) − ICa(v) − ḡKCac(v − EK),

ṅ = λ
n∞(v) − n

τn(v)
,

ċ = f
(1 − c)2

Kd

(
−αICa(v) − kCaKd

c

1 − c

)
,(4.6)

with ICa as given above. The nullclines of the ċ equation are now

c = 1 and c =
αḡCam∞(v)h∞(v)(v − EK)

αḡCam∞(v)h∞(v)(v − EK) − kCaKd
.

For the parameters of [13] the nullcline ċ = 0 behaves as in our model, in the relevant region
of voltages (Figure 15a4).

The current ḡKCa enters (4.3) as does ḡKS in (4.1)–(4.2); we can therefore expect that
changing ḡKCa will primarily affect the duty cycle. Figures 15a1–b1 reveal that this is the
case, although the bursting frequency also changes. In fact, since Kd 	 Ca, the conductance
gKCa is essentially proportional to c, (4.5) is in its linear regime, and (4.3)–(4.4) is close to
(4.1)–(4.2).
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Figure 15. Bursts in the SRK model. Panels (a1), (b1) Duty cycle changes due to ḡKCa: ḡKCa = 30000,
left, and 41750, right. (a2), (b2) Effect of λ on numbers of APs: λ = 1.7, left, and 1.55, right. (a3), (b3) Effect
of added external currents on AP numbers and bursting frequency: Iext = 0, left, and −550, right.

To adjust the number of spikes per burst, we could change membrane capacitance C,
but this has very little effect on spike numbers and drastically reduces their magnitudes
(results not shown). Adding bias currents also has little effect, since the system is in a
high AP number/burst regime. However, decreasing the parameter λ (∼ ε in (4.1)) reduces
the number of APs from 22 to 2–3; this is accompanied by a moderate increase in bursting
frequency (Figure 15(a2–b2)). In this regime, an additional bias current has a much stronger
influence, permitting adjustment of AP numbers without drastically changing the bursting
frequency (Figure 15(a3–b3)).

5. Conclusions. This paper develops a minimal model for a bursting neuron. We retain
sufficient biophysical detail to permit appropriate parameter choices and variations to repro-
duce experimental data, while striving for generality and relative simplicity. Much current
research concerns subcellular details of ionic currents, channels, and molecular messengers
[43, 54, 17], but despite the ability of such detailed models to reproduce experimental data
(e.g., [6, 7, 8]), their complexity and sensitivity to parameter variations render them effec-
tively unanalyzable. We believe that massive simulations or experiments alone do not provide
global understanding, which profits more from the identification of a few key mechanisms. We
hope to extract these by judicious selection, rather than inclusion, of biological data, and in
doing so to provide a flexible and tractable mathematical framework within which biological
hypotheses can be investigated and novel experiments suggested.
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To this end, we review ion channel models of HH type and propose a generic three-
dimensional ODE (4.1)–(4.2) that exploits the presence of three disparate timescales and
obviates the detailed analysis of multiple currents, although we show how additional currents
can be classified and incorporated, and their influences investigated via steady state current-
voltage curves and their derivatives. We note that some currents increase complexity without
adding new qualitative behaviors, and thus can be neglected, at least in a first approximation.
Our procedure yields guidelines for creating models of specific behaviors, and we use it here
to select a minimal set of currents necessary to produce bursting, and to understand the role
of biophysical parameters such as conductances and bias currents in determining the bursting
frequency, duty cycle, spike rates, and numbers of APs per burst. We further illustrate by
showing how duty cycles and AP numbers can be adjusted in the SRK model.

Previous work of Bertram et al. [21], Rinzel and Lee [18], Rinzel [19], Izhikevich [35],
and others, summarized in [33], develops a topological classification of bursting mechanisms,
based on the types of bifurcations that the fast subsystem undergoes as c (or Iext) varies.
This illuminates the phase space geometry. The present treatment is more analytical in
nature and allows one to determine if specific currents with particular “influence windows”
Ui = [vthi

, Ei] can introduce new folds and hence SN bifurcations, or otherwise change stability
types of equilibria in the fast subsystem. Although our classification is in terms of steady state
properties of ionic currents and does not reveal all details of the periodic orbits, it nonetheless
allows one to adjust periodic orbit branches in the fast subsystem, via the reduced ċ = 0
nullcline and v̇ = 0 bifurcation set, and hence to tune burst properties.

In the paper [1] we will show how the bursting model (4.1)–(4.2), along with a single
equation describing synaptic dynamics, may be used as the basic subunit in building a model
of an insect CPG and motoneurons.

Appendix A. A Rose–Hindmarsh model. Rose and Hindmarsh [14, p. 273] considered
the following model for a repetitively firing neuron:

Cv̇ = −
[
ḡNam

3h(v − ENa) + gL(v − EL) + gKn
4(v − EK) − gAa

3b(v − EK)
]
+ I,(A.1)

where the five gating variablesm,h, n, a, b are described by the usual first order kinetics (2.2b).
From this they obtained the third order system

Cv̇ = −
[
−3ḡNam

3
∞q(v − ENa) + 3AḡNab∞m3

∞(v − ENa)
]

− [0.85ḡNam∞(v − ENa) + ḡL(v − EL) + ḡKq(v − EK)]

− [ḡss∞(v − Es) + ḡoutz(v − EK) − I],

q̇ =
q∞(v) − q

τq(v)
,

ż =
z∞(v) − z

τz(v)
.(A.2)

In reducing the six-dimensional model they employed a slow gating variable q that combines
both sodium and potassium channels, and, numerically confiming that τb(v) ≈ τn(v), they
replaced both τb and τn by the average value τq(v) = 1

2(τb(v) + τn(v)).
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Appendix B. The SRK model. The SRK model results of section 4.3 were obtained for
(4.3)–(4.4), where n∞, m∞, and h∞ are the standard HH equilibrium functions

n∞ =
1

1 + e
Vn−v
Sn

, m∞ =
1

1 + e
Vm−v
Sm

, h∞ =
1

1 + e
v−Vh
Sh

,(B.1)

and

τn(v) =
γ

e
v−V̄
a − e−

v−V̄
b

, α =
1

2VCellF
.(B.2)

The parameters used in section 4.3 are given in Table 2.

Table 2
Parameter values for the SRK model for bursting pancreatic β-cells.

ḡCa = 1400 pS ECa = 110 mV
ḡK = 2500 pS EK = −75 mV
ḡKCa = 30000 pS
Cm = 5310 f F VCell = 1150 µm3

F = 96.487 Coul/mMol Kd = 100 µMol
λ = 1.7 kCa = 0.03 m/s
Vn = −15 mV Sm = 5.6 mV
Vm = 4 mV Sm = 14 mV
Vh = −10 mV Sh = 10 mV
a = 65 mV b = 20 mV
γ = 60 ms V̄ = −75 mV
f = 0.001

Appendix C. Bursting pacemaker neurons in the pre-Bötzinger complex. Butera,
Rinzel, and Smith [17] considered two possible models for bursting pacemaker neurons in
the pre-Bötzinger complex. Model 1 takes the form

Cv̇ = −[INaP + INa + IK + IL + Itonic-e] + Iapp,

ṅ =
ε

τn(v)
[n∞(v) − n] ,(C.1)

ḣ =
δ

τh(v)
[h∞(v) − h] ,

with Itonic-e and Iapp fixed biases and the other currents specified by

INa = ḡNam
3∞(v)(1 − n) · (v − ENa), IK = ḡKn

4 · (v − EK),
IL = ḡL(v − EL), INaP = ḡNaPm∞(v)h · (v − ENa).

(C.2)

The time course of inactivation of the sodium gating channel (h in the original HH equa-
tions [2]) as stated in [17] is “assumed to be of similar dynamics as n and is approximated by
h = (1 − n)” [55, 56]. As in Appendix A, this is an instance of a single gating variable (n)
associated to two different ionic channels (INa and IK).
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Model 2 takes the form

Cv̇ = −[INaP + IKS + INa + IK + IL + Itonic-e] + Iapp,

ṅ =
ε

τn(v)
[n∞(v) − n] ,(C.3)

k̇ =
δ

τk(v)
[k∞(v) − k] .

In addition to a leakage current IL = ḡL(v − EL), the currents in (C.3) are

INa = ḡNam
3∞(v) · (v − ENa), IK = ḡKn

4 · (v − EK),
IKS = ḡKSk(v − EK), INaP = ḡNaPm∞(v) · (v − ENa).

(C.4)

Note that INaP does not inactivate as in model 1.
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biophysical parameter changes. We show that the model can encompass stepping frequency, duty
cycle, and motoneuron output variations observed in cockroaches, and we reduce it to an analyti-
cally tractable symmetric network of coupled phase oscillators from which general principles can be
extracted. The model’s modular form allows dynamical analyses of individual components and the
addition of other components, so we expect it to be more generally useful.

Key words. central pattern generators, bursting neurons, motoneurons, insect gaits, phase response curves,
averaging, bifurcation, stability

AMS subject classifications. 34C15, 34C25, 34C29, 37Gxx, 92B05, 92B20, 92C20

DOI. 10.1137/040607563

1. Introduction. Central pattern generators (CPGs) are networks of functionally distin-
guishable neurons, located in the vertebrate spinal cord or in invertebrate thoracic ganglia,
capable of generating and regulating the spatio-temporal activity of motoneurons in the ab-
sence of sensory input (e.g., [2, 3, 4]). Over forty years of in vitro and in vivo studies of network
architectures, intrinsic membrane properties, and neuromodulators (e.g., [5, 6, 7, 4, 8]) have
firmly established their importance in motor behavior. CPG dynamics depends on intra-
cellular, synaptic, and network level phenomena and can display remarkable richness and
flexibility.

In this paper, using the reduced bursting neuron ODEs derived and studied in the preced-
ing paper [1], we develop a model of the CPG and associated bursting motoneurons for insect
locomotion. We draw on data from the death’s head and American cockroaches Blaberus dis-
coidalis and Periplaneta americana and focus on rapid running, a regime in which preflexive
feedforward control [9, 10] appears to dominate and reflexive feedback plays a less important
role [11, 12, 13] than in, e.g., stick insects [14] that use more varied gaits and leg placement
strategies. We include enough ionic current and conductance detail to reveal how modulation
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of specific biophysical parameters can adjust CPG outputs that determine key locomotive
properties, while providing sufficient tractability to enable mathematical analysis. In par-
ticular, after reduction of the CPG “core” to phase equations, simple symmetry arguments
locate fixed points and describe gaits, and eigenvalue calculations determine their stability
properties. We also confirm that these phase reductions correctly represent the dynamics of
the full network.

While we emphasize the double-tripod gait employed by Blaberus over the speed range
10–60 cm sec−1 [15, 16] (and common to many insects), our model also describes other gait
patterns, and its modularity will permit the inclusion of additional inter- and motoneurons and
reflexive sensing. Indeed, our ultimate goal is to marry it to muscle and body-limb mechanical
models of the types developed in [17, 18, 19, 20] and to equip the whole with proprioceptive
feedback and goal-oriented direction.

This paper is organized as follows. In section 2 we recall the bursting neuron model of [1]
and summarize the effects of bias currents and conductances on its behavior. We then review
relevant data on CPG neurons, motoneurons, and network architectures in section 3 and use
it to assemble a hexapedal pattern generator in section 4. This comprises six synaptically
interconnected CPG bursters, each driving a fast and a slow bursting motoneuron. Finally, to
permit elementary analyses of network properties, in section 5 we reduce, via phase response
curves (PRCs) and averaging, to phase variables alone. We summarize and outline future
work in section 6.

2. A minimal bursting model. The analyses developed in the preceding paper [1] enable
us to propose a model sufficiently general to apply to both bursting CPG neurons and mo-
toneurons. It includes a branch of stable equilibria terminating in a saddle-node and one of
limit cycles terminating in a global homoclinic bifurcation, separated by a branch of unstable
(saddle-type) equilibria. (Index theory [21] implies that the periodic orbits must encircle un-
stable equilibria, so an upper equilibrium branch also must exist.) A minimal model requires
only the saddle-node on the lower equilibrium branch and a Hopf bifurcation to create the
periodic orbit on the upper branch. As shown in [1], this can be captured by a fast nonlinear
current, e.g., ICa, a leakage current IL, a slow potassium current IK, and an additional very
slow current, IKS, giving the system [1, equation (31)]

Cv̇ = −[ICa + IK + IL + IKS] + Iext,

ṁ =
ε

τm(v)
[m∞(v) −m] ,(2.1)

ċ =
δ

τc(v)
[c∞(v) − c] .

The currents appearing in (2.1) are

ICa = ḡCan∞(v)(v − ECa), IK = ḡKm · (v − EK),

IL = ḡL(v − EK), IKS = ḡKSc · (v − EK),(2.2)

where the steady state gating variablesm∞(v), n∞(v), c∞(v) and time “constants” τm(v), τc(v)
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take the forms

wi∞(v; ki0 , vith) =
1

1 + e−ki0 (v−vith )
,(2.3)

τi(v; ki0 , vith) = sech (ki0(v − vith)) ,(2.4)

with wi∞ = m∞(v), n∞(v), c∞(v). Parameters were generally fixed as specified in Table 1
of section 4; modifications will subsequently be made to accomodate other behaviors. All
parameters excepting C, ḡK, ε, δ are the same as in Morris and Lécar [22, 23], ḡK = 9 being
slightly higher than their value ḡK = 8. The parameters C, ε, and δ, which independently
determine the time scales of v, m, and c, are set to match typical cockroach data.

As shown in section 4 of [1], variations in three key characteristics of the bursting pattern
can be achieved quasi-independently by varying two biophysical parameters for each of the
different neuron types to be used in the model. Specifically, in the appropriate regimes, the
following hold:

1. The bursting frequency can be adjusted primarily by Iext.
2. The spiking frequency can be adjusted by Iext.
3. The number of action potentials (APs) can be adjusted by Iext and ḡKS.
4. The duty cycle can be adjusted by ḡKS, although this may also affect frequency.

As we shall see, the bursting frequency and duty cycles of CPG interneurons are primarily
responsible for speed adjustment (although leg extension, via stride lengths, is also important
at higher speeds [24]), while motoneuron spiking frequencies and AP numbers grade force
production. We remark that Iext can be modulated by excitatory and inhibitory synapses
from CNS neurons, and ḡKS by suitable neurotransmitters, so both of these are biophysically
plausible control parameters in vivo.

3. CPG neurons and motoneurons as bursters. Before proposing specific parameter
regimes for cockroach CPG and motoneuron models, we review relevant data on animals
and insects in general and cockroaches in particular. We start by briefly commenting on
spiking and nonspiking interneurons in CPGs, turn to motoneurons, and then discuss network
connectivity.

3.1. CPG neurons: Bursters and nonspikers. Working from direct recordings and deaf-
ferented (sensorless) preparations of the American cockroach Periplaneta americana [25, 26],
Pearson [27, 28] hypothesized a flexor burst generator for each leg that comprises several
interneurons, including a bursting interneuron that periodically excites the flexor (levator or
swing) motoneurons while inhibiting the extensor (depressor or stance) units. Subsequently,
interneurons that do not produce APs were found [29, 28, 30], and their importance in gener-
ating motor patterns was stressed. (In the locust they are responsible for coordinating subsets
of motoneurons, controlling their spiking frequencies, and altering reflex strengths and move-
ment magnitudes in a continuous and precise manner through graded potentials [31, 32].)
Despite this, there is no evidence that nonspiking interneurons exhibit pacemaking capabili-
ties; indeed, their quasi-sinusoidal membrane voltages could simply result from integration of
incoming bursts [33]. Thus, while they may be involved in CPG circuits and may contribute
in a graded manner to slow motoneuron outputs, we shall omit them from our model.
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Plateau potentials, slow voltage oscillations on which the fast spikes ride, do however
seem crucial to bursting [34]. These derive from bistability of the type illustrated in the
bifurcation diagrams of Figures 9 and 10 of [1] for the fast subsystem, which allows brief
inputs to trigger activities that outlast input duration; similarly, brief inhibitory stimuli can
terminate plateaus [35]. This nonlinear membrane property plays a pivotal role in structuring
bursts and producing cyclic behavior with appropriate time scales for stepping frequencies; it
also allows brief proprioceptive inputs to reset and regulate the rhythm. We shall therefore
represent each of the six “leg units” of an insect CPG by a single bursting (inter-) neuron of
the form (2.1)–(2.2), synapsing directly on motoneurons innervating the dominant depressor
muscles. Our model allows for subsequent addition of nonspiking interneurons between CPG
and motoneurons.

3.2. Motoneurons. Because of important constraints imposed by their physiology, we
discuss motoneurons and muscles in some detail.

The basic functional component of motor pathways is the motor unit, consisting of a
motoneuron and the muscle fibers innervated by it. A single AP in the motoneuron causes
a contractive twitch in the muscle fibers to which it is attached. Three types of motor units
can be distinguished by their motoneuron firing patterns and muscle fiber properties. Slow
twitch (S-type) units take about 50 msec to develop peak force and show little decline in
force over prolonged periods of repetitive stimulation; they can exert low forces for very long
periods. In contrast, fatigue resistant (FR) and fast fatigue (FF) units maximally contract in
5–10 msec. With repetitive stimuli, FR units can sustain moderate forces for ≈ 5 min before
steady decline sets in over many minutes. FF motor units can achieve the greatest force
of the three types, but with repetitive stimuli the force drops precipitously after 30 seconds
or so. Both FR and FF units produce rapid large forces and so are found preferentially in
muscles involved in executing fast movements. In the cockroach, slow and fast motoneuron
discharges are quite distinct; slow units spike continuously at rates from 100–400 Hz when
active [26, 36], while fast units typically produce 1–6 large spikes during a 50–100 msec stance
or swing phase [37].

Muscle contraction force is determined by the motor pool in two ways. Small force in-
creases are primarily met by greater motoneuron firing rates, but for larger contractions the
number of active motoneurons is increased in a process called recruitment. This occurs in an
orderly manner in the sequence S-FR-FF [38], determined jointly by the effect of cell body
size [39] on excitatory postsynaptic potentials and on graded inputs to S, FR, and FF units.
An incoming (tonic) stimulus sequentially excites the units as it passes their different thresh-
olds [40, 34]. Cockroach coxal depressor motoneurons are innervated by both fast and slow
motoneurons [41], and in Blaberus fast motoneuron recruitment begins at leg cycle rates of
≈ 6 Hz, corresponding to running speeds of 12 cm sec−1 [37]; fast motoneurons dominate at
high speeds, but there is a considerable “overlap range” [26].

Often only slow motoneurons are modeled. Since these exhibit continuous relationships
between firing frequency and force production, compact reductions of the whole neuromo-
tor complex are then possible (e.g., the neuromuscular transforms of [42]). However, since
we focus on rapid running, in which fast motoneurons are involved, and there is strong evi-
dence of plateau and bursting capabilities in cockroach motoneurons [35], spiking and bursting
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Figure 1. (a) Burst duration in levator (dashed, axons 5 and 6) and (b) slow depressor Ds axon (solid) as
a function of cycle time. The two thin dashed lines indicate duty cycles of 100% and 50%. Note that duty cycles
of both depressors and levators approach 50% as speed increases (cycle time decreases). Cycle frequency ranges
from 2 to 10 Hz. (c) Average spike rate of levator (dashed) and depressor (solid) axons. From Pearson [26].
(d) Approximate numbers of muscle action potentials (MAPs) per cycle in metathoracic (upper curve) and
mesothoracic muscle (lower curve): Regression equations MAPs = 0.051tcyc − 2.5, R2 = 0.52 for metathoracic
and MAPs = 0.048tcyc − 3.2, R2 = 0.42 for mesothoracic. From Full et al. [37].

behaviors cannot be ignored. Indeed, given the few large spikes typically seen during rapid
running, spike times and interspike intervals may be crucial in determining relative forces in
different legs of the stance tripod and in regulating episodes of negative and positive work [37].
These aspects are certainly as important as the analogous role of slow motoneuron spiking
frequency in low-speed walking. For this reason, and to allow continuous transition from
slow to fast speeds, we shall use the bursting model (2.1), with suitable parameter choices, to
represent both fast and slow motoneurons.

In Figures 1(a)–(c) we reproduce Periplaneta data from [26, 27] showing burst durations
and spiking rates of slow cockroach motoneurons as functions of cycle time or inverse stepping
frequency (cf. [43, 36] for analogous and more recent Blaberus data). In Figure 1(d) we
reproduce data from [37] showing the dependence of number of APs in fast motoneurons as
a function of cycle time. Phase relationships among leg muscles (not shown) indicate near
constant antiphase between motoneurons associated with the left and right tripods. This data
will guide our parameter choices.

3.3. Network configuration. Apart from anatomic identification and the acceptance of
some degree of hierarchy [44, 45, 34], the precise division of labor among the higher cen-
tral nervous system (CNS), the CPG-motoneuron complex, and proprioceptive sensing and
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Figure 2. (a) Ipsilateral CPG-motoneuron network connectivity and (b) individual leg depressor and le-
vator circuit showing fast and slow motoneurons Df , Ds as proposed by Pearson [27]. The CNS excites the
bursting interneurons (BI) as well as Df and Ds, which innervate the depressor muscles. Motoneurons 5 and 6
innervate the levator muscles and are not modeled here. Sensory feedback (dashed) affects the activity of all
motoneurons. Open circles indicate excitatory coupling, and closed circles indicate inhibitory coupling. (c) Net-
work connectivity of the hexapedal model. CPG neurons are coupled through mutually inhibiting synapses, and
fast and slow motoneurons are connected via an inhibitory synapse to their corresponding CPG neuron; they are
also tonically driven by the CNS. Sensory feedback is briefly discussed in the text but is not explicitly modeled.
For synaptic weights, see text. (d) Asymmetric coupling as considered in section 5.6; the network of (c) is
obtained with gF = 1

2
= gH.

feedback remains unclear, but following Wilson [5], Pearson and Iles [27] deduced some general
principles from the experiments noted in section 3.1. They found evidence of mutual inhibi-
tion between CPG interneurons belonging to the motor complexes of neighboring ipsilateral
legs; they also found that CPG (inter)neurons excite levator motoneurons (active during the
swing phase) but inhibit depressor motoneurons (active during stance), that sensory signals
from campaniform sensillae and hair plates [46] (force and positions in the legs) tend to excite
depressor motoneurons, and that tonic CNS signals generally excite both CPG neurons and
depressor motoneurons. Their proposed architecture is reproduced in Figures 2(a), (b). The
subsequent discovery of an interneuron (the lambda cell) involved in the escape response and
highly depolarized by inputs from the ipsilateral campaniform sensilla and the contralateral
trochanteral hair plate [46] supports this picture.

Henceforth we exclude levators, since our mechanical models neglect leg masses and the



AN INSECT CPG MODEL 677

swing phase is implicit [17, 12, 20]. In cockroaches there are two slow (177D and 177E)
and two fast (178 and 179) coxal depressor muscles, the former being innervated by the slow
motoneuron Ds and the latter by Df ; some fibers in 177D also receive inputs from Df [41].
With this and the discussion of section 3.2 in mind, we now develop our network model.

4. A hexapedal neuro-motor complex. Pearson did not address contralateral connectiv-
ity, but it is natural to extend his model to a network of six mutually inhibiting units, as
shown in Figure 2(c) (also cf. the stick-insect pattern generator proposed in [14, Fig. 4]). This
architecture promotes contra- and ipsilateral neighbors to burst in antiphase, leading units
1, 2, 3 and 4, 5, 6 to form two groups, internally in phase but mutually in antiphase, thus form-
ing the left and right (depressor) tripods. As noted above, we do not include interneurons,
so the output of each CPG neuron inhibits the slow and fast depressor motoneurons directly.
By inhibiting motoneuronal activity, the CPG selects both a stepping pattern and sets the leg
cycle frequency, but the CPG spiking frequency does not directly affect motoneuron spiking
frequencies, which are jointly adjusted by the local proprioceptive feedback and CNS drive;
see Figures 2(a), (b). CPG neurons and both slow and fast motoneurons will be modeled by
(2.1)–(2.2) with differing parameters as specified in Table 1.

Inhibitory coupling can be achieved via synapses that produce negative postsynaptic cur-
rents, or presynaptically by depressing a synapse. Lacking more precise information, we choose
the former mechanism. Following [47, p. 15], [48, p. 180], we adopt the first order dynamics

ṡ = αG(vpre) (1 − s) − βs, with G(vpre) =
Tmax

1 + e−kpre(vpre−Epre
syn)

,(4.1)

in which v denotes the potential of the presynaptic neuron and α, β and the parameters
Tmax, kpre, and Epost

syn defining the concentration of transmitter release G(vpre) set the timescale
of the synaptic rise and decay described by the nondimensional variable s. The variables s
enters the postsynaptic cell in the first equation of (2.1) as an additional term,

Cv̇ = −[ICa + IK + IL + IKS] + Iext − ḡsyn s · (v − Epost
syn ),(4.2)

where ḡsyn denotes synaptic strength and the current Isyn = −ḡsyn s ·(v−Epost
syn ) induced in the

postsynaptic cell is typically positive and hence depolarizing (resp., negative and hence hyper-
polarizing) for excitatory (resp., inhibitory) synapses [33]. A different form of the s-equation
(4.1) appears in [49]. We have checked that this produces similar results to those described
below.

Table 1 lists parameter values adopted for the CPG and motoneuron models and Table 2
lists those for the synapses (standard inhibitory GABAA; see [47]). All three types of neurons
have equal “fixed” parameter values except for C, ε, and Esyn. The physiologically adjustable
control parameters, ḡKS, Iext, and ḡsyn with nominal “standard” values indicated by asterisks
will be varied to match the data summarized in section 3. To obtain equal current injection
into all six CPG neurons under stationary conditions, we chose half weights for the synapses
from units 1 and 3 to 5, and 4 and 6 to 2 (i.e., ḡsyn = 0.005 in place of 0.01 as given in
Table 2), since the middle leg units receive input from three others, while other units have
inputs from only two (see Figure 2(c)). Contralateral CPG synapses are set at full strength,
since in-phase contralateral activity can occur with weak inhibition; cf. [5] and see sections
5.3 and 5.7 below.
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Table 1
Parameters for CPG and fast and slow motoneurons Df , Ds. Maximal conductances are expressed in

mS/cm2, the reversal and threshold potentials in mV, the slope coefficients in mV/s, and the capacitance C in
µF/cm2.

C ḡCa ḡK ḡKS ḡL ECa EK EL vthCa vthK vthc

CPG 1.2 4.4 9.0 0.19∗ 2.0 120 −80 −60 −1.2 2 −27

Df 1.39 4.4 9.0 0.25∗ 2.0 120 −80 −60 −1.2 2 −27

Ds 2.4 4.4 9.0 0.50 2.0 120 −80 −60 −1.2 2 −27

k0Ca k0K kc ε δ Iext

CPG 0.056 0.1 0.8 4.9 0.052 35.6∗

Df 0.056 0.1 0.8 4.18 0.044 36.3∗

Ds 0.056 0.1 0.8 2.0 0.0002 50∗

Table 2
Synapse parameters. Only the CPG neurons have “outgoing” synapses.

Epre
syn Epost

syn ksyn α β ḡsyn Tmax

CPG 2 −70 0.22 5000 0.180 0.01∗ 2 · 10−3

Df −70 0.22 5000 0.180 0.2∗

Ds −70 0.22 5000 0.180 0.9∗

4.1. Pairs of coupled bursting neurons. Before studying the full circuit of Figure 2(c),
we consider a pair of CPG neurons with mutually inhibitory and excitatory couplings and a
CPG neuron unidirectionally coupled to fast and slow motoneurons.

Depending on their intrinsic bursting frequencies and the strength of the coupling term ḡsyn

of (4.2), the units may entrain (frequency lock). Figures 3(a), (b) show pairs of identical CPG
neurons mutually coupled by inhibitory synapses (left column) and excitatory synapses (right
column). In the first case they antiphase lock within a cycle; in the second the bursts entrain,
although individual spikes may not. Unidirectionally driven fast motoneurons entrain to the
bursting frequency of CPG neurons in Figures 3(g), (h). Slow motoneurons are essentially
continual spikers, but with sufficiently strong inhibitory coupling, they can be made to burst in
alternation with the CPG inputs in agreement with animal recordings; see Figure 3(i). With
excitatory coupling, spiking persists throughout, but the rate increases during an incoming
CPG burst; see Figure 3(j). The intervening panels (c)–(f) show the synaptic variable s and
the resulting currents −Isyn. The s-dynamics is similar in both inhibitory and excitatory
cases; the major difference lies in postsynaptic currents.

4.2. A hexapedal CPG. We now move to the full circuit of Figure 2(c). Synaptic currents
and other relevant parameters will be distinguished for CPG, fast, and slow motoneurons by
adding appropriate subscripts. Each CPG neuron forms three types of synapses: to other
CPG neurons through Isyn,CPG and to fast and slow motoneurons through Isyn,Df

, Isyn,Ds ,
respectively. Figure 4 shows typical time histories of ipsilateral and contralateral CPG neurons
and motoneurons; note the alternating activity of the left (1, 2, 3) and right (4, 5, 6) tripods.
Also, burst durations of the slow motoneurons Ds are longer than those of CPG neurons, and
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Figure 3. Two coupled bursting neurons, with GABAA inhibitory synapses (left panels) and AMPA exci-
tatory synapses (right panels). Panels (a)–(b) show membrane voltages of mutually coupled CPG1 (dark grey)
and CPG2 (light grey) neurons, respectively; inhibitory coupling causes antiphase bursts (a) and excitatory
coupling causes in-phase bursts (b). Panels (c)–(d) show synaptic dynamics s(t) and (e)–(f) the resulting
synaptic currents −Isyn: Negative in the inhibitory case and positive in the excitatory case. Panels (g), (h)
show the membrane voltage of a CPG neuron (dark grey) superimposed on that of a unidirectionally coupled
fast motoneuron Df1 (light grey). With inhibitory coupling (g), Df1 bursts in antiphase with respect to CPG,
but in-phase with excitatory coupling (h). Panels (i)–(j) show the membrane voltage of a CPG neuron (dark
grey) superimposed on that of a unidirectionally coupled slow motoneuron Ds1 (light grey). With inhibitory
coupling (i), Ds1 bursts in antiphase with respect to CPG, but with excitatory coupling, it continues to spike,
with increased rate during CPG bursts (j). Parameters are as in Table 1 except for ICPG = 36.3, with coupling
strengths ḡCPG,CPG = 0.15, ḡCPG,Df = 0.25, and ḡCPG,Ds = 0.4 for both the inhibitory and excitatory cases.
The coefficients for AMPA synapses are as in Table 2, except for α = 1100, β = 0.190, Epost

syn = 0. Some
panels show effects of transients, and we note that while bursts are synchronized, individual spikes (and spike
numbers) need not be.

their spiking frequency is approximately constant, in agreement with experiments [26].

Via Iext = Iα and ḡKS,α, where α = {CPG,Df ,Ds}, we can adjust the stepping frequency,
the number of APs in Df , the spiking rate of Ds, and their duty cycles, as described in
[1] and section 2 above. We note that all three neuron types can have different duty cycles.
In the locomotion literature duty cycle normally refers to S-type (slow) muscle fibers or slow
motoneuron activity (in fast fibers it is not a relevant measure). In our network, the duty cycle
of the slow motoneurons can be indirectly controlled through that of the CPG neurons. Since
CPG neurons drive motoneurons through inhibitory synapses, and duty cycles of the former
are generally less than 0.5, motoneuron duty cycles typically exceed 0.5. Hence, by suitable
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Figure 4. Membrane voltages of CPG neurons and motoneurons in the hexapedal model during fictive
locomotion. Neurons are labeled as in Figure 2(c), and parameter values are as in Tables 1 and 2. The left
column shows ipsilateral CPG neurons, while the right column shows contralateral CPG neurons and fast and
slow motoneurons for units 1 and 4. Bursting frequency is 10.4 Hz, Df has 4 APs per burst, and Ds spikes at
a rate of ≈ 290 Hz with a duty cycle of 0.80; (fBurst, nAP, fSpike,∆Ds) = (10.4 Hz, 4, 287 Hz, 0.80). Parameters
are as in Tables 1 and 2.

parameter choices we can reproduce Pearson’s finding that motoneuron burst durations vary
from 0.4 to 0.9 of the full cycle period as the latter increases; see Figure 6(d). From now on,
unless otherwise stated, by duty cycle we mean the Ds duty cycle.

In the following we show how the network can be adjusted for different locomotive require-
ments, in comparison with the nominal case of Figures 4(b), (d), (f) in the insect’s preferred
speed range, in which the stepping frequency is 10.3 Hz, the Df have four APs per burst, and
the Ds spike at a rate of 279 Hz and have a duty cycle of 0.59. We write these four “outputs”
as (fBurst, nAP, fSpike,∆Ds). Figures 5(a1)–(a3) show slow walking (3.66 Hz, 1, 147 Hz, 0.88).
Figures 5(b1)–(b3) show how it is possible to vary the number of APs in fast motoneurons
and the spiking frequency of slow motoneurons independent of stepping frequency: still slow
walking but with increased force production, as required, e.g., for hill climbing (3.66 Hz, 7,
353 Hz, 0.95). Figures 5(c1)–(c3) show fast stepping, with an intermediate number of APs
and spiking rate (17.2 Hz, 4, 287 Hz, 0.44). Note that in this case the Ds duty cycle is slightly
less than 0.5 and there is no overlap.

To adjust to rapid external disturbances, flexibility is required in load as well as speed.
In the following we show how, in a multiparametric setting, the four main characteristics of
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Figure 5. Membrane voltages of CPG neurons and fast and slow motoneurons in the hexapedal model
during fictive locomotion, for comparison with “nominal” case of Figure 4 (right column). (a1)–(a3) Slow
stepping, low force: (fBurst, nAP, fSpike,∆Ds) = (3.66 Hz, 1, 147 Hz, 0.88); parameters are as in Figure 4
except for ICPG = 35.38, IDf = 35.7, IDs = 44, ḡKS,Df = 0.45, ḡCPG,Df = 0.5. (b1)–(b3) Slow stepping,
large force: (fBurst, nAP, fSpike,∆Ds) = (3.66 Hz, 7, 353 Hz, 0.95); parameters are as in Figure 4 except for
ICPG = 35.38, IDf = 35.8, IDs = 64, ḡKS,Df = 0.13, ḡCPG,Df = 0.5. (c1)–(c3) Fast stepping, medium force:
(fBurst, nAP, fSpike,∆Ds) = (17.2 Hz, 4, 287 Hz, 0.44). Parameters are as in Figure 4 except for ICPG = 38.4,
IDf = 37.4, IDs = 50.

the network can be adjusted over a wide range, with sufficient independence. Parameters not
explicitly noted are as in Tables 1–2. Figure 6(a) shows the variation of bursting frequency
with ICPG parametrized by the maximal conductance ḡKS,CPG. Together they span the range
5–26 Hz (although a lower frequency of 3.2 Hz was obtained with ICPG = 35.38, IDf

= 35.7),
encompassing the entire range over which Blaberus discoidalis uses the double-tripod gait.
Figure 6(c) shows how the duty cycle of slow motoneurons is affected by changes in ICPG

and ḡKS. Figure 6(b) shows the variation of the spiking frequency of the slow motoneurons
with IDs parametrized by ICPG. Variation of IDs in the range 38–64 provides frequencies
from 124 Hz to 389 Hz. Figure 6(c) shows duty cycle variation with ICPG parametrized by
ḡKS,CPG, indicating coverage of the range from 0.4 to 0.9, and Figure 6(d) shows this data
superimposed on measurements of Pearson [26].

Figure 6(e) shows the variation of the number of APs in fast motoneurons with IDf

parametrized by ICPG. In the first case the number of APs per burst changes only from 3
to 4, but this is significant in the 10 Hz frequency range; cf. [37]. A wider range is obtained
when ICPG = 38.4, corresponding to a stepping frequency of 17.0 Hz; here the number of APs
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Figure 6. (a) Network bursting frequency vs. ICPG for ḡKS,CPG = 0.35 (bold), 0.19 (dark), 0.18 (solid grey),
and 0.15 (dashed grey). (b) Slow motoneuron spiking frequency vs. IDs for low ICPG = 35.6 (solid, stepping
frequency 10.5 Hz), and 38.4 (bold, stepping frequency 17.0 Hz). (c) Duty cycle vs. ICPG, parametrized by
ḡKS,CPG, parameter values and curves as in panel (a). (d) Duty cycle vs. cycle time: Data from Pearson [26,
Fig. 6] (bold) and obtained by varying ICPG from 35.38 to 36.7 and keeping ḡKS fixed at the values indicated
(dashed and broken lines); dotted lines correspond to 50% and 100% duty cycle. (e) Number of fast motoneuron
APs per burst vs. IDf , for ICPG = 35.6 (solid, bursting frequency 10.5 Hz); ICPG = 38.4 (bold, bursting frequency
17.0 Hz). (f) Number of fast motoneuron APs per burst vs. gKS,Df for ICPG = 35.41, IDf = 35.7 (solid,
bursting frequency 6.4 Hz); ICPG = 35.6, IDf = 36.5 (bold, bursting frequency 10.5 Hz). (g) Fast motoneuron
APs vs. cycle time: Data from Full [37, Fig. 5] with mesothoracic (upper, bold) and metathoracic (lower, bold)
regression lines. Model results shown in circles and broken line; see text for explanation. (h) Slow motoneuron
spiking frequency vs. cycle time: Data from Pearson [26, Fig. 7] (bold) and model results on broken line; see
text.

ranges from 2 to 5. Figure 6(f) shows variation of the number of APs with ḡKS,Df
parametrized

by ICPG, indicating that from 1 to 7 APs can be delivered. Recalling that each spike causes
a muscle fiber twitch, the model can therefore achieve up to a sevenfold graded increase in
force production, covering the entire range described in [37]. Finally, Figures 6(g), (h) replot
the fast motoneuron AP numbers and slow motoneuron spike rates achieved by the model in
comparison with those measured by Full et al. [37] and Pearson [26], showing that the model
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can reproduce the data rather well. To match Full’s overall finding that slower stepping
(increased cycle time) results in more APs, we adjusted the network bursting frequency via
ICPG = 35.41, 35.6, 38.4 and concurrently adjusted the bias current IDf

= 35.7, 36.3, 36.4
to produce the broken line (for the rightmost data point gKS,Df

= 0.18 was slightly less than
for the others gKS,Df

= 0.19). The circles in panel (g) show network behaviors obtained for
a broader variation of ICPG, IDf

, and ḡKS,Df
that span the wide variability identified in [37,

Fig. 5]. The circles in (h) were obtained by concurrently changing ICPG from 35.38 to 35.6
and IDs from 40 to 44. We also found other cases in which the number of APs decreases with
increasing cycle time.

All results shown in this section correspond to tripod gaits, with 1:1 entrainment of CPG
and fast and slow motoneurons, as in Figure 5. The impossibility of extending some curves
beyond the ranges shown (e.g., Figure 6(d), solid line) is due to failure of “normal” network
properties: e.g., CPG neurons, fast and/or slow motoneurons cease to fire at all (typically
at low values of the current), or fire tonically (high bias currents); or 1:1 phase locking of
fast motoneurons and CPG neurons is lost. Nonetheless, these simulations show that the
tripod gait can be maintained over a wide range of speeds and duty cycles, and that in a
multiparameter setting, bursting frequency, spiking frequency, duty cycle, and the number of
APs can be almost independently changed.

5. Reduction to phase oscillators. In this section we review the phase reduction and
averaging methods and apply them to coupled bursting CPG neurons of the type (2.1) with
synaptic dynamics (4.1). We derive reduced sets of ODEs describing mutually coupled pairs
of neurons and the CPG network of Figure 2(c) in terms of relative phases, and analyze them
to find phase locked solutions and their stability properties.

5.1. The phase response curve. We write the ODE for a single cell in the compact form

ẋ = f(x) + αp(x, t, . . . ); x ∈ R
n,(5.1)

where p denotes the coupling function (of strength α) and (. . .) in the argument of p contains
state variables of all cells that synapse onto the one in question, as well as external inputs.
The phase reduction method originated in work of Malkin and Winfree [50, 51]; more details
can be found in [52, Chap. 9] and [53], and an application to the “standard” Hodgkin–Huxley
equations in [54].

We assume that, for α = 0, (5.1) has an attracting hyperbolic limit cycle Γ0, with period T0

and frequency ω0 = 2π
T0

(the bursting cycle). We define a scalar phase variable φ(x) ∈ [0, 2π)
for all x in some neighborhood U of Γ0 (within its domain of attraction), such that the phase
evolution has the simple form φ̇ = ω0 for all x ∈ U . The cycle Γ0 persists for small α �= 0 [21],
and, from the chain rule, we deduce that

φ̇ =
dφ

dt
=
∂φ

∂x
· [f(x) + αp(x, t, . . . )] = ω0 + α

∂φ

∂x
· p(x, t, . . . ).(5.2)

Equation (5.2) defines a first order PDE that the scalar field φ(x) and its inverse x = x(φ)
must satisfy; φ(x) is unique up to a translational constant which may be fixed by setting
φ(x) = 0 at a distinguished point of Γ0. For periodically spiking neurons, this is often the
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voltage peak; in the present application it will be the upward crossing of −30 mV preceding
the first spike in the burst. The theory of isochrons [55] implies that the phase space R

n

near Γ0 is foliated by (n− 1)-dimensional manifolds

Mφ̄ =
{
x ∈ B : lim

t→∞x(t) ∼ φ(t) = ω0t+ φ̄
}
,

from which solutions approach Γ0 with the same asymptotic phase.

Introducing the relative phase ψ = φ − ω0t and approximating the derivative in (5.2) by

its value on the uncoupled limit cycle Z(φ)
def
= ∂φ

∂x |Γ0(φ), (5.2) becomes

ψ̇ = αZ(φ) · p(φ).(5.3)

For mutual coupling among N identical units, defining the phase variables xi = xi(φi) and
ψi = φi − ω0t, this generalizes to

ψ̇i =

N∑
j �=i

αjiZ(φi) · pji(φi, φj).(5.4)

For weak coupling (|α| � 1), the phases φi evolve on a much faster time scale than ψi, so we
may appeal to averaging theory [21] (cf. [52, p. 259, Malkin’s theorem]) to integrate over the
unperturbed period and obtain

ψ̇i =

N∑
j �=i

αjiHji(ψi − ψj),(5.5)

where

Hji(ψi − ψj) =
1

T0

∫ T0

0
Z(ω0t+ ψi) · pji(Γ0(ω0t+ ψi),Γ0(ω0t+ ψj))dt.(5.6)

Note that only phase differences appear in the averaged coupling functions Hji due to peri-
odicity of the integrand in (5.6).

In the case that the perturbation or coupling functions pji only enter through the first
component of x, as in v̇ via Isyn in (4.2), we have

αjipji(xi,xj , t) =

⎡
⎢⎢⎣
ḡsyn,ji sj · (vi − Ei)

0
0
0

⎤
⎥⎥⎦,(5.7)

where sj denotes the synaptic variable associated with the jth cell and ḡsyn,ji the synaptic
strength from the jth to the ith cell. Here only the first component Z1(φ) of the 2π-periodic
function Z(φ) appears in (5.6); this is called the phase response curve (PRC), and it may be
approximated numerically by perturbing from the limit cycle at each phase φ with a voltage
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increment v �→ v + ∆v and allowing the solution to recover to its new asymptotic phase
φ �→ φ+ Z1(φ). The resulting infinitesimal PRC is valid in the combined limit

Z1(φ) = lim
∆v→0
t→∞

∆φ

∆v
.(5.8)

Z1(φ) may also be computed by use of adjoint theory [52], e.g., as implemented in the software
XPP [56]. For Z1(φ) > 0 (resp., < 0), positive voltage perturbations advance (resp., retard)
the phase.

5.2. PRCs and averaged coupling functions. Applying the theory sketched above to
(2.1), we obtain the infinitesimal PRC of Figure 7(a). Here Z1(φ) was computed numerically by
taking successively smaller voltage perturbations ∆v starting at ∆v = 31.6 mV and reducing
to 0.1 mV; the PRC stabilized in the form shown for |∆v| < 1 mV. If the linearity assumption
inherent in (5.8) holds, positive and negative perturbations should yield the same result, since
the infinitesimal PRC is a derivative. We verified that this is the case using perturbations
∆v = ±0.08 and finding good convergence over the whole range θ ∈ [0, 2π); see the solid and
dashed curves in Figure 7(a).

In Figure 7(b) we show how the estimate of Z at θ = 30.6o changes as perturbation
size increases. This indicates how weak the coupling should be for the theory to hold, i.e.,
the maximum size of α allowed in (5.2)–(5.3). As |∆v| increases, linearity is lost in three
different respects: (i) (for a given θ) the phase difference ∆φ is no longer proportional to |∆v|;
(ii) positive and negative perturbations give different contributions; (iii) strong nonlinear
effects appear in the perturbed limit cycle; spikes can be deleted, as in Figure 7(c) for ∆v =
−7.5 mV, and spikes or entire bursts can be added, as in Figure 7(d) for ∆v = +7.5 mV.
The threshold for “small” perturbations may depend on θ and on specific parameters (see
comment in section 5.4). In Figure 7(e) we show the estimate of Z at θ = 168.8o; for negative
perturbations, linearity is maintained up to h = −31.6 mV but is lost at around h = +7 mV
for positive perturbations. This could imply that antiphase solutions are more robust than
in-phase solutions; see the discussion in section 5.4.

We observe three distinct regions in the PRC. During the burst, sensitivity to each spike
is evident, with maximal sensitivity to the final one. After this, there is a period of relative
insensitivity, followed by a region dominated by a large smooth phase advance. This third
region is largely unaffected by changes in bursting frequency, duty cycle, or number of APs
in the burst, since the end of the cycle remains very similar; see also Figures 10(b1)–(b2) and
11(a1)–(a2), below. A PRC of similar form was derived experimentally by Delcomyn [57] for
the locust flight CPG.

The inability of the infinitesimal PRC to represent the loss or addition of spikes and
bursts follows from the tight coiling of the limit cycle of (2.1) in phase space. This implies
that the isochronic manifolds Mφ̄ are globally convoluted, and (moderate) perturbations exist
that can skip or repeat spikes by taking the perturbed voltage v + ∆v from one spike to a
point near another. Hence phase reduction must be used with care, although if the number
of spikes within a burst is large compared to the burst period, skipping or adding spikes will
not greatly affect the averaged coupling functions Hji of (5.5)–(5.6). In what follows synaptic
conductances are small enough to remain within the range of infinitesimal PRC validity.
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Figure 7. The infinitesimal PRC of (2.1) for the standard parameter set of Tables 1–2. (a) Z1(φ) com-
puted with a perturbation of ∆v = ±0.08 mV (solid and dashed, respectively). (b) Z1(30.6o) as a function
of perturbation size and sign: ∆v > 0 (solid), ∆v < 0 (dashed). (c) The unperturbed (solid) and perturbed
(dashed) cycles with ∆v = −7.5 mV applied at θ = 30.6o (arrow): Spikes can be removed. (d) The unperturbed
(solid) and perturbed (dashed) cycles for ∆v = +7.5 mV applied at θ = 168.8o (arrow): Spikes or entire bursts,
as here, can be added. (e) Z1(168.8o) as a function of perturbation size and sign: ∆v > 0 (solid), ∆v < 0
(dashed).



AN INSECT CPG MODEL 687

0 1 2 3 4 5 6
-0.2

-0.15

-0.1

0.05

0

H(θ)

H(θ)
H(- θ)

0 1 2 3 4 5 6

-0.1

0

0.1

G(θ) = H(θ) - H(-θ)

0 1 2 3 4 5 6

0

0.2

0.4

θ

G
asym

(θ) = 2ρH(θ) - 2(1- ρ)H(- θ)

-

a)

b)

c)
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5.3. Coupled bursting neurons. We now return to study coupled bursters in a phase-
reduced setting. From Figures 2(c), (d), two types of coupling appear: motoneurons are
unilaterally driven by the CPG neurons, whereas CPG neurons are bi- or trilaterally coupled.

Fast motoneurons, unilateral coupling. Allowing for different intrinsic frequencies ω0 + εj ,
the PRC and averaging theory of section 5.1 lead to phase-reduced dynamics for a CPG
neuron ψ1 and a fast motoneuron ψ2 of the form

ψ̇1 = ε1, ψ̇2 = ε2 + αH(ψ2 − ψ1).(5.9)

Phase locking occurs when θ̇ = ψ̇1 − ψ̇2 = 0:

ε1 − ε2 = αH(ψ2 − ψ1).(5.10)

As shown in Figure 8(a) H is almost always negative for the nominal case. Phase reduction
therefore predicts that locking can only occur if ε1 < ε2, i.e., when the intrinsic CPG bursting
frequency is lower than that of the motoneurons. This is illustrated in Figures 14(a), (b)
below, where fCPG = 10.5 Hz < fDf

= 15.4 Hz. On the contrary, phase locking does not
occur when fCPG = 18.1 Hz > fDf

= 15.4 Hz; see Figures 14(c), (d). Indeed, inhibitory
coupling delays the bursts; therefore, it is natural to expect that for unilateral coupling the
driving neuron should be slower than the follower. If that were not the case, the already slower
“follower” would be further slowed, preventing 1:1 phase locking. In fact, for the simulations
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reported here, 2:1 locking occurs; see Figure 14(d). This could explain the phenomenon of
“double bursting” described in [58].

Thus, provided their bursting frequencies are chosen appropriately, fast motoneurons fol-
low CPG neurons and so need not be explicitly included in the reduced analysis of locomotion
rhythms to follow. Similarly, slow motoneurons need not be included in a reduced phase
description, since they also phase lock via synaptic depression and their duty cycles are de-
termined by those of the CPG neurons (cf. Figures 3(i), 6(c)).

CPG neurons, mutual coupling. For mutual coupling between two identical CPG neurons
the reduced phase equations (5.5) become

ψ̇1 = αH(ψ1 − ψ2), ψ̇2 = αH(ψ2 − ψ1)(5.11)

(since α12H12 = α21H21, here we may drop the subscripts), and subtracting these we may
further reduce to a single scalar ODE for the phase difference θ = ψ1 − ψ2:

θ̇ = α[H(θ) −H(−θ)] def
= G(θ).(5.12)

Fixed points of (5.12) occur at H(θ) = H(−θ), and since H is 2π-periodic, we have G(π) =
α[H(π) − H(−π)] = α[H(π) − H(π)] = 0 as well as G(0) = 0, implying that, regardless of
the form of H, (exact) in-phase and antiphase solutions exist; see Figure 8(b). Note that, for
θ̄ = 0 and π, the equations in (5.11) become ψ̇1 = ψ̇2 = αH(θ̄), so that, unless H(0) = 0
and/or H(π) = 0, coupling does change the common frequency φ̇ = ω0 + ψ̇i of the units, even
when phase locking occurs.

The stability of fixed points θ̄ of (5.12) is determined by ∂G
∂θ |θ̄ = 2αH ′(θ̄). As expected,

for inhibitory coupling αH ′(0) > 0 > αH ′(π) (Figure 8(b)), so the in-phase solution θ̄ = 0
is unstable and the antiphase solution θ̄ = π is stable. Stability of the “full” two-phase
system (5.11) is determined by the eigenvalues of the 2 × 2 matrix obtained by linearizing at
ψ1 − ψ2 = θ̄:

α

[
H ′(θ̄) −H ′(θ̄)
−H ′(θ̄) H ′(θ̄)

]
;(5.13)

these are 0 and 2αH ′(θ̄) with eigenvectors (1, 1)T and (1,−1)T, respectively. Hence the
dynamics is only neutrally stable to perturbations that advance or retard the phases of both
units equally, but the antiphase solution is asymptotically stable to perturbations that disrupt
the relative phase ψ1 − ψ2, as indicated by Figure 3.

Finally we consider asymmetric coupling of the type shown in Figure 2(d), which will be
discussed further in the context of phase lags. The phase equations for two identical neurons
become

ψ̇1 = 2ραH(ψ1 − ψ2),

ψ̇2 = 2(1 − ρ)αH(ψ2 − ψ1),(5.14)

where ρ measures the degree of asymmetry, ρ = 1
2 being the symmetric case (5.11). The phase

difference is then governed by

θ̇ = α[2ρH(θ) − 2(1 − ρ)H(−θ)] def
= Gasym(θ).(5.15)
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Figure 9. Dependence of the PRC Z(θ), the averaged coupling function H(θ), and the “difference” function
G(θ) on synaptic parameters. Panels (a1)–(a4) show dependence on synapse type: Inhibitory GABAA (solid)
and excitatory AMPA (dashed). Panels (b1)–(b4) show dependence on synapse timescale: Regular inhibitory
GABAA (solid) and slower inhibitory GABAA (dashed) with α = 500, β = 0.018.

Plots of Gasym(θ) for different values of ρ ∈ [0, 0.5] are shown in Figure 8(c). Note that the
interior zero occurs at increasing values of θ̄ > π, representative of a shifted “antiphase”
solution. In this case the in-phase solution remains at θ = 0, but this is a special property of
the averaged functions H, which vanish at θ = 0.

5.4. Parameter dependence of the PRC and averaged coupling functions. We will
now investigate the effect of certain parameters on the shapes of the functions Z, H, and G.
From (5.6), we see that the only parameter that can be factored out is the coupling strength
αji = ḡsyn,ji, which scales Z, H, and G; the other parameters change their forms more
generally.

Changing from inhibitory GABAA to excitatory AMPA synapses implies changing α, β,
and Epre

syn in (4.1) (cf. caption to Figure 3). As a result, H becomes almost always positive
(Figure 9(a3)), but more importantly G′(π) becomes positive and G′(0) negative, making
the antiphase solution unstable and the in-phase solution stable; see Figure 9(a4). Note
that Z(θ) is unaffected by this change. Even more interesting is the effect of a slower time
scale on inhibitory synapses. Under a ten-fold increase (α = 500, β = 0.018) the in-phase
solution becomes stable and two new unstable solutions appear in a pitchfork bifurcation; see
Figure 9(b4).
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Figure 10. Dependence of the PRC Z(θ), the averaged coupling function H(θ), and the function G(θ) on
ḡKS and Iext. Panels (a1)–(a4) show dependence on the maximal conductance ḡKS: Nominal case of Tables 1
and 2 (solid) and decreased value: ḡKS = 0.16 (dashed). Panels (b1)–(b4) show dependence on the external
current: Nominal case (solid) and increased current Iext = 36.5 (dashed).

Changing the maximal conductance ḡKS can affect the bursting frequency, the duty cy-
cle, and the number of APs per burst. In this case, even though bursting frequency and
AP numbers are significantly modified (Figure 10(a1)), and accordingly Z(θ) and H(θ) (Fig-
ures 10(a2)–(a3)), the net effects on the function G(θ) largely average out. Results not shown
indicate that increasing the maximal conductance to ḡKS = 0.25 can introduce extra spikes, vi-
olating the infinitesimal PRC assumption; this case is discussed further as a finite perturbation
below. Changing Iext yields analogous results; e.g., in spite of a substantial change in bursting
frequency (Figure 10(b1)), the final form of G(θ) is not greatly modified (Figure 10(b4)).

Finally we show that, even in cases in which spikes are lost or added, the infinitesimal PRC
undergoes sharp transitions (Figures 10(b1)–(b2); cf. Figure 7(b)), and the averaged coupling
function also changes significantly; both it and the difference function G(θ) retain similar
forms near θ = π (Figures 11(b3), (b4)). Hence we may still deduce stability information
regarding antiphase solutions from the reduced description. Indeed, Figure 7(e) shows that
Z1(φ ≈ π) is insensitive to the negative perturbation magnitude up to ∆v ≈ 30 mV .

5.5. A phase-reduced model of the CPG. Extension of the above reduction of a mutually
coupled pair to the network of six CPG neurons in Figure 2(c) is immediate. We again assume
identical units, but as noted in section 4 below Table 1, employ different synaptic strengths
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(dashed), and large ∆v = −5 (dotted). Note that form of Z, H, and G near θ = π remains similar.

so that all units receive the same net input at steady state. Thus all contralateral connections
and ipsilateral connections from units 2 and 5 to 1, 3, 4, and 6 are set at ḡsyn, and ipsilateral
connections from 1, 3, 4, and 6 to 2 and 5 are set at ḡsyn/2. This leads to the following set of
six phase equations:

ψ̇1 = ḡsynH(ψ1 − ψ4) + ḡsynH(ψ1 − ψ5),

ψ̇2 =
ḡsyn

2
H(ψ2 − ψ4) + ḡsynH(ψ2 − ψ5) +

ḡsyn

2
H(ψ2 − ψ6),

ψ̇3 = ḡsynH(ψ3 − ψ5) + ḡsynH(ψ3 − ψ6),

ψ̇4 = ḡsynH(ψ4 − ψ1) + ḡsynH(ψ4 − ψ2),(5.16)

ψ̇5 =
ḡsyn

2
H(ψ5 − ψ1) + ḡsynH(ψ5 − ψ2) +

ḡsyn

2
H(ψ5 − ψ3),

ψ̇6 = ḡsynH(ψ6 − ψ2) + ḡsynH(ψ6 − ψ3).

We first observe that there exist solutions in which the tripods 1, 2, 3 and 4, 5, 6 remain
internally in-phase. Indeed, seeking (possibly time-dependent) solutions of the form ψ1 =
ψ2 = ψ3 ≡ ψL(t), ψ4 = ψ5 = ψ6 ≡ ψR(t), (5.16) collapses to the pair of equations

ψ̇L = 2ḡsynH(ψL − ψR) and ψ̇R = 2ḡsynH(ψR − ψL),(5.17)
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Figure 12. Some gaits produced by the hexapedal network of Figure 2(c). (a) Numbering convention for
CPG neurons; (b) tripod; (c) pronk; (d) pace; (e) gallop.

and the arguments used above may be applied to conclude that ψR = ψL + π and ψR = ψL

are fixed points of the ψL −ψR tripod phase difference equation, again regardless of the form
of H. Stability in the full six-dimensional (reduced) phase space is obtained from the 6 × 6
matrix obtained by linearizing (5.16),

ḡsyn

⎡
⎢⎢⎢⎢⎢⎢⎣

2H ′ 0 0 −H ′ −H ′ 0
0 2H ′ 0 −H ′/2 −H ′ −H ′/2
0 0 2H ′ 0 −H ′ −H ′

−H ′ −H ′ 0 2H ′ 0 0
−H ′/2 −H ′ −H ′/2 0 2H ′ 0

0 −H ′ −H ′ 0 0 2H ′

⎤
⎥⎥⎥⎥⎥⎥⎦
,(5.18)

where the derivatives H ′ are evaluated at the appropriate (constant) phase differences. The
antiphase tripod ψL − ψR = π gives one zero eigenvalue with “equal phase” eigenvector
(1, 1, 1, 1, 1, 1)T, and the remaining eigenvalues and eigenvectors are as follows:

λ = ḡsynH
′ : (1, 0,−1, 1, 0,−1)T,

λ = 2ḡsynH
′, m = 2 : (1,−1, 1, 0, 0, 0)T, and (0, 0, 0,−1, 1,−1)T,

λ = 3ḡsynH
′ : (1, 0,−1,−1, 0, 1)T,(5.19)

λ = 4ḡsynH
′ : (1, 1, 1,−1,−1,−1)T.

Since ḡsynH
′(π) < 0 for the nominal parameters, this again indicates asymptotic stability with

respect to perturbations that disrupt the tripod phase relationships; moreover, the system
recovers fastest from perturbations that disrupt the relative phasing of the tripods (λ =
4ḡsynH

′: last entry of (5.19)). Since ḡsynH
′(0) > 0 (Figure 8(a)), the in-phase “pronking”

gait with all legs in phase is unstable.
Other gaits may be found by appealing to discrete symmetries of the network, as in

extensive work by Golubitsky and colleagues (see, e.g., [59]). Although they are not directly
relevant to cockroach running, we give two examples, shown schematically in Figure 12 along
with the antiphase tripod and pronking gaits.

Pace. An appeal to bilateral symmetry ψ1 = ψ5 = ψ3 = ψL and ψ4 = ψ2 = ψ6 = ψR also
yields two equations of the type (5.11), but with an additional term H(0) in each. Since this
cancels in subtracting the equations, in- and antiphase solutions again exist.

Gallop. A slightly more complicated gait is obtained by a subgroup of the symmetry
group D6. Setting ψ1 = ψ4 = ψF , ψ5 = ψ2 = ψM , and ψ3 = ψ6 = ψH , (5.16) collapses to the
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three differential equations

ψ̇F = ḡsyn [H(0) +H(ψF − ψM )] ,

ψ̇M = ḡsyn

[
H(0) +

1

2
H(ψM − ψF ) +

1

2
H(ψM − ψH)

]
,(5.20)

ψ̇H = ḡsyn [H(0) +H(ψH − ψM )] .

This can be further simplified by seeking solutions ψF = ψFH = ψH to obtain

ψ̇FH = ḡsyn[H(0) +H(ψFH − ψM )] and ψ̇M = ḡsyn[H(0) +H(ψM − ψFH)],(5.21)

which is again an instance of (5.11), admitting in-phase and antiphase solutions. The former
is just the pronk noted above, but the antiphase “gallop” is new.

5.6. Phase lags and asymmetric coupling. Nominally identical neural oscillators can
display differing cycle periods when isolated [60]. Indeed, phase relationships among cou-
pled oscillators can arise from differences in periods as well as from intersegmental coupling
characteristics such as strength, projection span, and degree of symmetry [61, 62]. Sensory
inputs, moreover, can alter oscillation periods and coordinate mechanical coupling between
limbs or segments; they may even form sensory-central oscillatory loops [60]. For example,
experimental evidence indicates that the activation of the depressor muscles in Blaberus dis-
coidalis does not occur simultaneously even within the tripod gait regime [37]; activation lags
are distributed in a range of 0–60% of the cycle. In section 5.3, Figure 8(c), we saw how
asymmetric coupling can induce a phase lag, within an antiphase (stable) solution. Here, we
extend the two-oscillator analysis to the hexapedal network.

Keeping the left-right symmetry unbroken, we introduce asymmetric ipsilateral coupling
(1− ḡF) and 2ḡF between front and middle legs and (1− ḡH) and 2ḡH between hind and middle
legs, as shown in Figure 2(d). This leads to modified phase equations

ψ̇1 = H(ψ1 − ψ4) + 2ḡFH(ψ1 − ψ5),

ψ̇2 = (1 − ḡF)H(ψ2 − ψ4) +H(ψ2 − ψ5) + (1 − ḡH)H(ψ2 − ψ6),

ψ̇3 = 2ḡHH(ψ3 − ψ5) +H(ψ3 − ψ6),

ψ̇4 = H(ψ4 − ψ1) + 2ḡFH(ψ4 − ψ2),(5.22)

ψ̇5 = (1 − ḡF)H(ψ5 − ψ1) +H(ψ5 − ψ2) + (1 − ḡH)H(ψ5 − ψ3),

ψ̇6 = 2ḡHH(ψ6 − ψ2) +H(ψ6 − ψ3),

where we have included the overall scaling factor ḡsyn in H. We seek solutions which preserve
the alternating tripod gait but exhibit phase lags within it:

ψ4 = ψ1 + π, ψ5 = ψ2 + π, ψ6 = ψ3 + π,
ψ2 = ψ1 + ∆F, ψ5 = ψ4 + ∆F, ψ3 = ψ2 + ∆H.

(5.23)

(Note that this implies that ψ6 = ψ5+∆H, and it automatically ensures phase locking between
the tripods: ψ̇1 − ψ̇4 = ψ̇5 − ψ̇2 = ψ̇3 − ψ̇6 = 0.) Substituting (5.23) into (5.22) and setting
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all time derivatives to zero, we obtain two expressions relating the lags (∆F,∆H) to the
asymmetry parameters (ḡF, ḡH):

2ḡFHπ−∆F
− (1 − ḡF)Hπ+∆F

− (1 − ḡH)Hπ−∆H
= 0,

ḡFHπ−∆F
− ḡHHπ+∆H

= 0.(5.24)

In deriving these, we use 2π-periodicity of H, implying that H(−π + ∆) = H(π + ∆), and
we adopt the abbreviated notation H(π ± ∆) = Hπ±∆. Lacking explicit formulae for H, we
cannot solve (5.24) analytically, but rearranging the equations to extract ḡF, ḡH,

ḡF =
Hπ+∆F

+Hπ−∆H(
2 +

Hπ−∆H
Hπ+∆H

)
Hπ−∆F

+Hπ+∆F

, ḡH = ḡF
Hπ−∆F

Hπ+∆H

,(5.25)

we can find semiexplicit solutions numerically. Typical slices of the functions ḡF(∆F,∆H) and
ḡH(∆F,∆H) are shown in Figures 13(a), (b). Solutions of (5.25) yield the relative synaptic
strengths required to achieve given phase lags: for example, Figure 13(a) indicates that setting
ḡF ≈ 0.6865, ḡH ≈ 0.1255 will give ∆F ≈ 15o ∆H ≈ 35o. Figures 13(c), (d) show that for these
coupling strengths the equations in (5.22) indeed lock into a tripod gait with ∆F = 14.96o and
∆H = 35.06o. Finally, Figures 13(e), (f) show that the lags predicted by the phase-reduced
theory agree extremely well with those obtained from direct numerical simulations of the full
network of (2.1) and (4.1)–(4.2), over a range of biophysically relevant coupling strengths.

5.7. Comparison of phase-reduced and full CPG models. We have already noted (Fig-
ures 13(e), (f)) that the phase-reduced model (5.22) and the phase lag/coupling strength
relations (5.25) derived from it can predict lags observed in the full network model (2.1),
(4.1)–(4.2). We also noted that the symmetric phase-reduction (5.16) correctly captures the
stability of the antiphase and instability of of the in-phase solutions for the standard parameter
set.

We may go further and observe that the phase-reduced model predicts a timescale for
antiphase locking to occur between pairs of oscillators (or, indeed, between left and right
tripods). Specifically, linearizing (5.12) at θ = π and using the slope G′(π) ≈ −0.15/ms from
Figure 9(a4) (solid line), we expect locking to be accomplished within one bursting cycle,
and the data of Figures 3, 4, and 5 indicates that this is indeed correct. We also recall that
the simple two-oscillator analysis of section 5.3 ((5.9)–(5.10)) predict that pairs of unilaterally
coupled CPG and motoneurons should phase lock more readily when the uncoupled frequencies
of the former are lower that those of the latter. Figures 14(a)–(d) confirm this with direct
simulations of the full network (2.1), (4.1)–(4.2).

The averaged coupling functions obtained in phase reduction also suggest considerable
robustness of the (stable) antiphase solution. The multiparametric analyses of section 5.4,
illustrated in Figures 9 and 11, show that the slope of G near θ = π remains essentially un-
changed even when burst properties are significantly modified (existence of the antiphase fixed
point is ensured for any H for the symmetric network of Figure 2(c), as noted in section 5.3).
This robustness is implicit in Figure 6, which shows that antiphase tripod solutions of (2.1),
(4.1)–(4.2) were found over a substantial domain of a four-dimensional parameter space.
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Figure 13. Phase lagged tripod solutions for the hexapedal network of Figure 2(d). Top panels show ḡF
(solid) and ḡH (dashed) as functions of (a) ∆F for fixed ∆H = 35o, and (b) ∆H for fixed ∆F = 25o, computed
from (5.25). Values ḡ > 1 invert the synapse’s “sign” and are invalid, causing broken curves. Panels (c), (d)
show time histories and polar plots of the six phases with ḡF = 0.6865, ḡH = 0.1255, computed from phase-
reduced model (5.22). Phases start at t = 0 on the outer circle and end at t = 350 msec on the inner circle,
having attained the desired lags. Panels (e), (f) compare predictions of phase-reduced theory with direct network
simulations using (2.1), (4.1)–(4.2): Phase lags ∆F and ∆H from (5.25) are shown as solid and dashed lines,
and from (2.1), (4.1)–(4.2) as squares and diamonds, respectively. In panel (a), ḡF, ḡH are chosen to keep ∆H

fixed, and in (f), to keep ∆F fixed.

Predictions of in-phase solutions with inhibitory synapses are even more interesting and
potentially delicate. Recalling Figures 9(a4) and (b4), we expect stable in-phase solutions for
excitatory synapses but also for slow inhibitory synapses. That this indeed occurs in the full
network is shown in Figures 14(e)–(h): (e) and (f) show anti- and in-phase solutions with
excitatory coupling, (g) an in-phase solution which coexists with an antiphase solution, and
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Figure 14. Membrane voltages of CPG neurons in the hexapedal network of Figure 2(c). Panels (a), (c)
show uncoupled CPG (dark) and fast motonuerons Df (grey) with fCPG = 10.5 Hz < fDf = 15.4 Hz and
fCPG = 18.1 Hz > fDf = 15.4 Hz, respectively, and (b), (d) show that unidirectional coupling causes 1:1 phase
locking in the first case, but not the second, which yields 1:2 locking. Panels (e)–(h) show mutually coupled
contralateral CPG neurons 1 and 4, indicating antiphase locking with inhibitory coupling (e), in-phase locking
with excitatory coupling (f), and coexistence of in-phase (g) and antiphase (h) locking with slow inhibitory
coupling, as in Figure 9(b4); (g) and (h) are obtained for the same parameter values but different initial
conditions. Some panels show the effects of transients, and (in the case of (f) and (g)) the relatively slow
approach to in-phase solutions.

(h) for slow inhibitory coupling, the latter two solutions being found for identical parameter
values but different initial conditions. For such a network both the tripod and the pronk gaits
are stable.

6. Conclusions. This paper develops a minimal model for the CPG and representative
motoneurons responsible for insect locomotion. We incorporate sufficient biophysical detail
to permit appropriate parameter choices and variations to reproduce experimental data, fo-
cusing on the cockroaches Blaberus discoidalis and Periplaneta americana, but we strive for
generality and (relative) simplicity. Much current research concerns subcellular details of
ionic currents and channels and molecular messengers [63, 64, 65], but despite the ability of
“detailed” models to reproduce experimental data (e.g., [66, 7, 67]), their complexity and
sensitivity to parameter variations renders them effectively unanalyzable. We believe that
massive simulations or experiments alone do not provide global understanding, which profits
more from the identification of a few key mechanisms. Thus, our aim is to extract “princi-
ples for locomotion” by judicious selection, rather than inclusion, of biological data, and in
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doing so to provide a flexible and tractable mathematical framework within which biological
hypotheses can be investigated and novel experiments suggested.

The bursting model (2.1) developed in the preceding paper [1], along with a single equation
(4.1) describing synaptic dynamics, is used as the basic subunit to describe the neural archi-
tecture of cockroach locomotion. The overall model, which is a “cartoon” representing only
a single power stroke (depressor) output per leg, comprises six coupled CPG (inter)neurons,
six fast motoneurons, and six slow motoneurons. With appropriate parameter choices, all
18 neurons can be described by the same “minimal” ODE (2.1), and we show how a variety
of behaviors, encompassing the range observed in the animals, can be achieved by varying
two control parameters separately in the CPG and motoneurons. Since motoneurons are en-
trained, external currents to CPG interneurons (presumably deriving from higher brain areas
and proproceptive feedback) set the stepping frequency, and a CPG conductance primarily
determines the duty cycle. Numbers of APs of fast motoneurons and spike rates of slow mo-
toneurons can be separately adjusted by their external currents and conductances, thereby
determining muscle forces in coarse and fine manners.

Finally we show how to prove existence, and investigate stability and phase relationships,
of gait patterns through an additional reduction using PRCs and averaging theory. This
collapses some 60 ODEs of the hexapedal model to six equations for “leg phases” (5.16) and
shows that a single network architecture produces a variety of gaits, whose stability properties
are primarily determined by the magnitudes and signs of synaptic conductances. We show
that the phase-reduced models reproduce the behaviors of the full hexapedal model remarkably
well; in particular, Figures 13(e), (f) show phase lags predicted to better than 5% accuracy
over a substantial parameter range. It also suggests that further questions regarding how gaits
and their stability depend upon neuronal and synaptic parameters will be accessible via the
coupling functions Hji of (5.5)–(5.6).

This study, which builds upon earlier work on conservative mechanical and simple actuated
models [17, 18, 12, 19, 20], is another step toward integrated neuromechanical models for legged
locomotion. In future work we will couple the CPG model developed here to models of muscles
and body-limb mechanics and introduce reflexive feedback. In addition to questions on the
dynamics and stability of natural gaits such as the double tripod employed by Blaberus, and
the roles of intrinsic neural parameters and preflexive and reflexive feedback in the CPG, this
will allow investigation of questions such as how Periplaneta switches to high speed bipedal
locomotion [16] and how animals adjust their gaits to quadrupedal patterns within few steps
following middle leg amputation [68, pp. 95–99]. Our framework is sufficiently flexible to
allow for different numbers of legs and/or motoneurons, for proprioceptive reflexes and CNS
feedforward control, as well as for more detailed models of CPG circuitry, and we anticipate
that reduced-phase models, with appropriate modifications to PRCs and coupling functions,
will continue to provide analytical understanding of such generalized models. Indeed, they
hold promise that a CPG model can be coupled to a simple mechanical model to form an
integrated neuromechanical system, all in less than 10–15 ODEs.
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Abstract. The numerical realization of closed loop control for distributed parameter systems is still a significant
challenge and in fact infeasible unless specific structural techniques are employed. In this paper we
propose the combination of model reduction techniques based on proper orthogonal decomposition
(POD) with the numerical treatment of the Hamilton–Jacobi–Bellman (HJB) equation for infinite
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1. Introduction. In many applications the discretization of optimal control problems for
time dependent partial differential equations, e.g., for the unsteady Navier–Stokes equations,
require the solution of nonlinear systems with a large number of degrees of freedom. In par-
ticular, to compute closed loop controls in state feedback form we have to solve the Hamilton–
Jacobi–Bellman (HJB) equation, which has been numerically infeasible for parabolic differen-
tial equations on a standard workstation equipment until today, if classical approximations like
finite elements or finite differences are used. In this work model reduction is applied to reduce
the number of unknowns significantly. The obtained low-dimensional models should guaran-
tee a reasonable performance of the controlled plant while being computationally tractable.
Proper orthogonal decomposition (POD) provides a method for deriving appropriate low-
order models. It can be thought of as a Galerkin approximation in the spatial variable, built
from functions corresponding to the solution of the physical system at prespecified time in-
stances. These are called the snapshots. Due to possible linear dependence or almost linear
dependence a singular value decomposition of the snapshots is carried out and the leading
generalized eigenfunctions are chosen as a basis, referred to as the POD basis. Once a low-
order model of the dynamical system is available, feedback synthesis based on approximate
solutions to the stationary HJB equation becomes feasible.

We demonstrate the feasibility of the proposed approach by means of an optimal bound-
ary control problem for the Burgers equation. Open loop optimal control problems for the
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Burgers equation was studied by several authors; see, for instance, [7, 14, 17, 24]. Much less
attention has been paid to the important problem of closed loop control. We mention the work
by Byrnes, Gilliam, and Shubov [6], where a fixed feedback-operator is used and analyzed,
and Burns and Kang [?] where the feedback synthesis is based on Riccati operators for the
linearized equations. In [12] instantaneous control was applied to construct a feedback law
which matches a desired state, but at considerable control costs. In [15] the authors utilized
model reduction with POD to construct a suboptimal feedback synthesis, and an optimal
output feedback reduced-order control law was designed by POD discretization in [16].

The analysis and use of proper orthogonal decomposition for reduction purposes has a
long-lasting history (see [13] and the references given there). Its use in optimal control, while
rather recent, has already created a wide range of literature of which we can only mention a
few works. In [19] optimal open loop POD-based control of flow around a rotating cylinder
is investigated. Control of turbulent flow utilizing POD with the aim of drag reduction is
considered in [20], for example. POD-based control of thin film growth in a chemical vapor
deposition reactor is investigated in [3]. In [2] the dynamical system is linearized, which
allows the use of Riccati synthesis for feedback controller construction, which can favorably
be combined with POD-based model reduction. In [9] and [1] the issue of unmodeled dynamics
is addressed, i.e., the fact the snapshots for the POD-approximation are typically taken from
dynamics which may be different from the controlled dynamics.

The paper is organized in the following manner: In section 2 we review the dynamic
programming principle and the HJB equation. Section 3 is devoted to the reduced-order
approach based on POD for an abstract optimal control problem. The numerical strategy for
the feedback synthesis is explained in section 4. In section 5 we illustrate the efficiency of the
proposed method by considering an optimal boundary control problem for the viscous Burgers
equation. Conclusions are drawn in the last section. Some facts about the discretization to
the HJB equation that we employ are proven in the appendix.

2. Review of the dynamic programming principle. In this section we recall the dynamic
programming principle and its infinitesimal version, the Hamilton–Jacobi–Bellman equation.
This leads to the design of a feedback synthesis by utilizing the so-called value function. For
more details we refer the reader to, e.g., [4, Chapter I], [10].

For k, n ∈ N let U = R
k denote the control space and let Uad � U be a closed, bounded,

and convex set. Furthermore, y◦ ∈ R
n is a given initial condition. For a measurable control

function u : [0,∞) → U the state y : [0,∞) → R
n is governed by the initial value problem

ẏ(t) = F (y(t), u(t)) for t > 0,(2.1a)

y(0) = y◦.(2.1b)

To ensure the existence of a unique solution to (2.1) we make use of the following assump-
tion.

Assumption 1. The (nonlinear) mapping F : R
n × U → R

n is given in such a way that
for every choice of initial condition y◦ ∈ R

n and measurable control function u there exists a
unique state y = y(t) to the state equation (2.1).

At times we write y(t) = y(t; y◦, u) or y = y(y◦, u) to emphasize the dependence of the
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state y on y◦ and u. Associated with (2.1) is the cost functional

J(y, u) =

∫ ∞

0
L(y(t), u(t))e−λt dt,(2.2)

where L : R
n × R

k → [0,∞) is a continuous function and λ > 0 represents a discount rate.
The optimal control problem is expressed as

minJ(y, u) s.t. y solves (2.1) and u ∈ Uad.(2.3)

Here, Uad denotes the set of all measurable functions from [0,∞) to Uad. For u ∈ Uad and
y◦ ∈ R

n we introduce the reduced cost by

Ĵ(y◦, u) = J(y(y◦, u), u).(2.4)

This gives rise to the value function v : R
n → [0,∞), which is defined by

v(y◦) = inf
u∈Uad

Ĵ(y◦, u).

It satisfies the dynamic programming principle

v(y◦) = inf
u∈Uad

{∫ T

0
L(y(t; y◦, u), u(t))e−λt dt+ v(y(T ; y◦, u))e−λT

}
(DPP)

for all y◦ ∈ R
n and T > 0.

Remark 2.1.
(a) (DPP) holds under general conditions on the data. For example, the existence of

optimal control has not been assumed.
(b) When L and, consequently, v are bounded, then w ≡ v holds for every function

w = w(y◦) satisfying (DPP) for all y◦ ∈ R
n and T > 0.

Suppose that the value function v is differentiable. Dividing both sides in (DPP) by T
and letting T tend to zero, we arrive after a short calculation at the infinitesimal version of
the dynamic programming principle, the HJB equation:

λv(y◦) + sup
u∈Uad

{
−∇v(y◦)F (y◦, u) − L(y◦, u)

}
= 0.(HJB)

If v is only continuous, then (HJB) has to be interpreted in terms of viscosity solutions. The
solution to the HJB equation is utilized for the synthesis procedure. Due to the Bellman
optimality principle, the function

h(t) = v(y∗(t))e−λt +

∫ t

0
L(y∗(s), u∗(s))e−λs ds

is constant for t > 0 if and only if (y∗(y◦, u∗), u∗) is an optimal trajectory and control pair
for the initial condition y◦. Under the hypothesis that v is differentiable, we conclude that
h′ ≡ 0. In particular, we find

λv(y∗(t)) −∇v(y∗(t))F (y∗(t), u∗(t)) − L(y∗(t), u∗(t)) = 0(2.5)
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for almost all t > 0. Utilizing (2.5), it can be shown that under appropriate conditions the
control u∗ = u∗(t) is optimal if and only if

u∗(t) = S(y∗(t)) for almost all t > 0

for any choice S such that

S(y◦) ∈ argmax
u∈Uad

{
−∇v(y◦)F (y◦, u) − L(y◦, u)

}
,(2.6)

i.e., if and only if

sup
u∈Uad

{
−∇v(y∗(t))F (y∗(t), u) − L(y∗(t), u)

}
= −∇v(y∗(t))F (y∗(t), u∗(t)) − L(y∗(t), u∗(t)) for almost all t > 0.

If v was known then determining S would be a finite dimensional mathematical program-
ming problem at every y◦ ∈ R

n. S is called the optimal feedback map. Assuming that S is
known results in the closed loop system

ẏ(t) = F (y(t), S(y(t))) for t > 0,
y(0) = y◦.

(2.7)

Its solution y∗ and the optimal control u∗ are related by

u∗(t) = S(y∗(t)), t > 0.(2.8)

We refer to the literature for analogous results if v is only continuous.
For the numerical realization we next discretize (2.1) and (HJB). For the grid size h > 0,

set

tj = jh for j = 0, 1, . . . ,

and consider the discrete time system

yj+1 = yj + hF (yj , uj) for j ≥ 0,

y0 = y◦
(2.9)

and the associated cost

Jh(y◦, uh) =
h

2

⎛
⎝L(y◦, u0) +

∞∑
j=1

βj
(
L(yj , uj−1) + L(yj , uj)

)⎞⎠(2.10)

for uj ∈ Uad, which arises by applying the trapezoidal rule to (2.2) with the assumption
that the controls are constant on the subintervals [tj−1, tj ]. Here we set β = e−λh, and
yh = {y◦, y1, . . . } denotes the solution to (2.9) where uh = {u0, u1, . . . } . The approximate
minimal value function vh : R

n → [0,∞) is given by

vh(y◦) = inf
uh∈Uh

ad

Jh(y◦, uh),(2.11)
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where Uh
ad = {uh : uh = {u0, u1, . . . } with ui ∈ Uad}. In the appendix it is verified that vh is

the unique solution to the discrete HJB equation

vh(y◦) + sup
u∈Uad

{
−h

2

(
L(y◦, u) + βL(y◦ + hF (y◦, u), u)

)
− βv(y◦ + hF (y◦, u))

}
= 0.(HJBh)

Turning to the synthesis problem we define

Sh(y◦) ∈ argmax
u∈Uad

{
−h

2

(
L(y◦, u) + βL(y◦ + hF (y◦, u), u)

)
− βv(y◦ + hF (y◦, u))

}
.

Sufficient conditions, given in the appendix, guarantee that u∗j = Sh(y
∗
j ) gives an optimal

feedback control, i.e.,

vh(y◦) = Jh(y◦, u∗)

and

y∗j+1 = y∗j + hF (y∗j , Sh(y∗h)) for j ≥ 0,

y∗0 = y◦.
(2.12)

Solving (HJBh) is still a significant challenge and infeasible for high-dimensional discretizations
of distributed parametric systems. For this reason we turn to a model reduction technique in
the following section which will allow us to reduce the dimension of the state space y in R

n.
The discretization of the value function vh will be discussed in section 4. We do not address
dimension issues concerning the control space U . Certainly, if it is infinite dimensional, it
must be discretized for numerical purposes.

3. POD Galerkin approximations for optimal control problems governed by evolution
problems. In this section we propose a reduced-order approach for optimal control problems
governed by evolution problems. It is based on POD, which is a method of deriving basis
functions containing characteristics of the investigated evolution process. The optimal control
problem for an abstract evolution problem and the POD method are introduced in sections 3.1
and 3.2, respectively, and in section 3.3 the reduced-order modeling for the optimal control
problem is addressed.

3.1. The optimal control problem for an abstract dynamical system. Let V and H be
real separable Hilbert spaces, and suppose that V is dense in H with compact embedding. By
〈· , ·〉H we denote the inner product in H. The inner product in V is given by a symmetric
bounded, coercive, bilinear form a : V × V → R:

〈ϕ,ψ〉V = a(ϕ,ψ) for all ϕ,ψ ∈ V(3.1)

with associated norm given by ‖ · ‖V =
√
a(· , ·). We associate with a the linear operator A,

〈Aϕ,ψ〉V ′,V = a(ϕ,ψ) for all ϕ,ψ ∈ V,

where 〈· , ·〉V ′,V denotes the duality pairing between V and its dual. Then A is an isomor-

phism from V onto V ′. For 0 < T ≤ ∞ we denote by L2(0, T ;V ) the space of equivalence
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classes of measurable abstract functions ϕ : (0, T ) → V , which are square integrable, i.e.,∫ T
0 ‖ϕ(t)‖2

V dt < ∞. When t is fixed, the expression ϕ(t) stands for the function ϕ(t, ·) con-
sidered as a function in Ω only. The space W (0, T ) is defined as

W (0, T ) =
{
ϕ ∈ L2(0, T ;V ) : ϕt ∈ L2(0, T ;V ′)

}
,

which is a Hilbert space endowed with the common inner product (see, for example, [8, p. 473]),
and we set Wloc(0,∞) =

⋂
T>0W (0, T ). Let N : V → V ′ be a nonlinear continuous operator

map. Further, let U be a Hilbert space and Uad ⊂ U a closed and convex subset, and set
U = L2(0,∞;U) and let Uad be the subset of U containing all functions u : [0,∞) → Uad. For
y◦ ∈ H and u ∈ Uad we consider the nonlinear evolution problem on [0,∞)

d

dt
〈y(t), ϕ〉H + a(y(t), ϕ) + 〈N(y(t)), ϕ〉V ′,V = 〈B(u(t)), ϕ〉V ′,V(3.2a)

for all ϕ ∈ V and

y(0) = y◦ in H,(3.2b)

where B : U → V ′ is a continuous linear operator. We make use of the following assumption.

Assumption 2. For every u ∈ Uad and y◦ ∈ H there exists a unique solution y of (3.2) in
Wloc(0,∞).

This assumption is satisfied for many practical situations, including the controlled viscous
Burgers and two-dimensional incompressible Navier–Stokes equations.

Next we introduce the cost functional

J (y, u) =

∫ ∞

0
e−λtL̃(y(t), u(t)) dt,

where L̃ : V × U → R. The optimal control problem is given by

minJ (y, u) such that (y, u) ∈Wloc(0,∞;V ) × Uad solves (3.2).(P)

Its approximation is considered next.

3.2. The POD method. Throughout we assume that Assumption 2 holds and we denote
by y the unique solution to (3.2). For given n ∈ N let

0 = t1 < t2 < · · · < tn <∞(3.3)

denote a grid in the interval [0,∞) and set δtj = tj − tj−1, j = 1, . . . , n. Suppose that the
snapshots yj = y(tj) of (3.2) at the given time instances tj , j = 0, . . . , n, are known. We set

V = span {y0, . . . , yn}.

Notice that V ⊂ V by construction. Throughout the remainder of this section we let X denote
either the space V or the space H.
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Let {ψi}di=1 denote an orthonormal basis for V with d = dimV. Then each member of the
ensemble V can be expressed as

yj =
d∑

i=1

〈yj , ψi〉Xψi for j = 0, . . . , n.(3.4)

The method of POD consists in choosing an orthonormal basis such that for every � ∈
{1, . . . , d} the mean square error between the elements yj , 0 ≤ j ≤ n, and the corresponding
�th partial sum of (3.4) is minimized on average:

min J(ψ1, . . . , ψ�) =
n∑

j=0

αj

∥∥∥∥∥yj −
�∑

i=1

〈yj , ψi〉Xψi

∥∥∥∥∥
2

X

subject to 〈ψi, ψj〉X = δij for 1 ≤ i ≤ �, 1 ≤ j ≤ i.

(3.5)

Here {αj}nj=0 are positive weights, which for our purposes are chosen to be

α0 =
δt1
2
, αj =

δtj + δtj+1

2
for j = 1, . . . , n− 1, αn =

δtn
2
.

A solution {ψi}�i=1 to (3.5) is called POD basis of rank �. The subspace spanned by the first
� POD basis functions is denoted by V �, i.e.,

V � = span {ψ1, . . . , ψ�}.(3.6)

The solution of (3.5) is characterized by the necessary optimality condition, which can be
written as an eigenvalue problem. For that purpose we endow R

n+1 with the weighted inner
product

〈v, w〉
Rn+1 =

n∑
j=0

αjvjwj(3.7)

for v = (v0, . . . , vn)T , w = (w0, . . . , wn)T ∈ R
n+1, and the induced norm. Let us introduce the

bounded linear operator Yn : R
n+1 → X by

Ynv =
n∑

j=0

αjvjyj for v ∈ R
n+1.(3.8)

Then the adjoint Y∗
n : X → R

n+1 is given by

Y∗
nz = (〈z, y0〉X , . . . , 〈z, yn〉X)T for z ∈ X.(3.9)

It follows that Rn = YnY∗
n ∈ L(X) and Kn = Y∗

nYn ∈ R
(n+1)×(n+1) are given by

Rnz =
n∑

j=0

αj〈z, yj〉Xyj for z ∈ X,

(
Kn
)
ij

= αj 〈yj , yi〉X ,
(3.10)
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respectively. Here, L(X) denotes the Banach space of all bounded linear operators from X
into itself. The matrix Kn is often called a correlation matrix.

Using a Lagrangian framework, we can derive the following optimality conditions for the
optimization problem (3.5):

Rnψ = λψ(3.11)

(see, e.g., [13, pp. 88–91] and [23, section 2]). Note that Rn is a bounded, self-adjoint, and
nonnegative operator. Moreover, since the image of Rn is finite dimensional, Rn is also
compact. By Hilbert–Schmidt theory (see, e.g., [21, p. 203]) there exist an orthonormal basis
{ψi}∞i=1 for X and a sequence {λi}∞i=1 of nonnegative real numbers so that

Rnψi = λiψi, λ1 ≥ · · · ≥ λd > 0, and λi = 0 for i > d.(3.12)

Moreover, V = span {ψi}di=1. Note that {λi}∞i=0 as well as {ψi}∞i=0 depend on n. Contents
permitting the notation of this dependence is dropped.

Remark 3.1. Setting

vi =
1√
λi

Y∗
nψi for i = 1, . . . , d,

we find Knvi = λivi and 〈vi, vj〉Rn+1 = δij for 1 ≤ i, j ≤ d. Thus, {vi}di=1 is an orthonormal
basis of eigenvectors of Kn for the image of Kn. Conversely, if {vi}di=1 is a given orthonormal
basis for the image of Kn, then it follows that the first d eigenfunctions of Rn can be determined
by

ψi =
1√
λi

Ynvi for i = 1, . . . , d.

Hence, we can determine the POD basis by solving either the eigenvalue problem for Rn or
the one for Kn.

The sequence {ψi}�i=1 solves the optimization problem (3.5). This fact as well as the error
formula below were proved in [13, section 3], for example. Let λ1 ≥ · · · ≥ λd > 0 denote the
positive eigenvalues of Rn with the associated eigenvectors ψ1, . . . , ψd ∈ X. Then, {ψn

i }�i=1 is
a POD basis of rank � ≤ d, and we have the error formula

J(ψ1, . . . , ψ�) =
n∑

j=0

αj

∥∥∥∥∥yj −
�∑

i=1

〈yj , ψi〉Xψi

∥∥∥∥∥
2

X

=
d∑

i=�+1

λi.(3.13)

3.3. Reduced-order control. The reduced-order approach to optimal control problems
such as (P) is based on approximating the nonlinear dynamics by a Galerkin technique utilizing
basis functions that contain characteristics of the controlled dynamic.

To compute a POD solution of (P) we make the ansatz

y�(t, x) =
�∑

i=1

wi(t)ψi(x).(3.14)
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We introduce the mass and stiffness matrices by

M =
((

mij
))

∈ R
�×� with mij = 〈ψj , ψi〉H ,

S =
((

sij
))

∈ R
�×� with sij = a(ψj , ψi),

the nonlinear function N : R
� → R

� by

(w1, . . . ,w�) → N(w1, . . . ,w�) =
(
ni
)
∈ R

� with ni =

〈
N

⎛
⎝ �∑

j=1

wiψj

⎞
⎠ , ψi

〉
V ′,V

,

and the mapping of the control input b : U → R
� by

u → b(u) =
(
b(u)i

)
∈ R

� with b(u)i = 〈Bu,ψi〉H .

The modal coefficients of the initial condition y�(0) ∈ R
� are determined by wi(0) = (w◦)i =

〈y◦, ψi〉X , 1 ≤ i ≤ �, and the solution vector of the reduced dynamical system is denoted by
w�(t) ∈ R

�. Then the Galerkin approximation of the optimal control problem (P) is given by⎧⎪⎪⎨
⎪⎪⎩

minJ �(w�, u)

s.t. u ∈ Uad and

{
ẇ�(t) = F (w�(t), u(t)) for t > 0,
w�(0) = w◦,

(P�)

where the cost functional is defined as

J �(w�, u) =

∫ ∞

0
L̃(y�(t), u(t))e−λt dt

with w� and y� related by (3.14) and the nonlinear mapping F : R
� × U → R

� given by

F (w�, u) = M−1
(
−Sw� − N(w�) + b(u)

)
.

Of course, it is tacitly assumed that the dynamical system in (P�) admits a unique solution
for every u ∈ Uad. Let us mention that in case of X = H the mass matrix M is just the
identity matrix. On the other hand, S is the identity matrix for X = V .

The value function v�, defined for initial states w◦ ∈ R
�, is

v�(w◦) = inf
u∈Uad

Ĵ �(w◦, u),

where Ĵ �(w◦, u) = J �(w�, u) and w� solves the dynamical system in (P�) with control input u
and initial condition w◦.

4. Numerical strategy for the closed loop design. Here we briefly explain the numerical
realization of (HJBh). While (HJBh) is defined on R

n for practical purposes, we restrict
ourselves to a computational domain Υh which is a bounded subset of R

n. This is justified if
y+hF (y, u) ∈ Υh for all y ∈ Υh and u ∈ Uad. Here we choose Υh = [a1, b1]×[a2, b2]×· · ·×[a�, b�]
with a1 ≥ a2 ≥ · · · ≥ a� and b1 ≥ b2 ≥ · · · ≥ b�. Let {Sj}kj=1 denote the hypercubes of a
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rectilinear partition of Υh with N vertices {yj}. We consider the space W k of piecewise �-
linear functions wk : Υh → R which are continuous on Υh. We look for a solution wk ∈ W k

of

wk(yj) = inf
u∈Uad

{
h

2

(
L(yj , u) + βL(yj + hF (yj , u), u)

)
+ βwk(yj + hF (yj , u))

}
(HJBk

h)

for every vertex yj ∈ Υh. If vh is a solution to (HJBh), then it satisfies (HJBk
h) and the convex

interpolant

wk(y) =
N∑
j=1

λjv(yj) for y =
N∑
j=1

λjyj

belongs to W k. The intervals [aj , bj ] must be chosen such that they contain the components
of the expected controlled trajectories while simultaneously keeping them as small as possible
for computational purposes. Since the dynamic model is derived from POD, the magnitude
of the components in the solution representation of the trajectory in terms of the POD basis
functions are rapidly decreasing. We therefore choose the intervals [aj , bj ] such that their
lengths are rapidly decreasing. Moreover, the mesh sizes decrease as j increases, since we
expect the solution to be more sensitive to modes with lower index. The evaluation of the
right-hand side of (HJBk

h) requires us to solve a constrained nonlinear programming problem.
For this purpose we used fmincon from Matlab. It would certainly be worthwhile to investigate
possible speed-up by employing different techniques for this task. To solve (HJBk

h) on Υh, a
fixed point iteration with a multilevel acceleration strategy was used. Once (HJBk

h) is solved,
the optimal value function and corresponding optimal control at each grid point are available.

1. Multilevel method. The convergence rate of the fixed point iteration depends on h.
The HJB equation is first solved for h = 0.2; the result is taken as initial guess to solve the
HJB equation for h = 0.05. These two results are utilized to predict a new guess by means of
the secant method. Then the HJB equation is solved for h = 0.0125. This multilevel method
significantly accelerates the fixed point iteration.

2. Parallel computation. In solving the dynamic programming equation, the constrained
minimizing problem must be solved at each point of the polyhedron; these computations are
independent of each other and can therefore be performed in a fine-grained parallel strategy.
In this parallelism, the same set of codes runs simultaneously on different pieces of data on
various processors. The technique of massage passing interface (MPI) [11] was used in our
numerical tests. The mechanism used in MPI to distribute data (or information) is through
explicit sending and receiving of data among the processors. The newest MPI standard was
released in 1997. We refer to [18].

5. Application to the viscous Burgers equation. In this section we demonstrate the
efficiency of the proposed methodology by means of optimal boundary control of the viscous
Burgers equation.

5.1. The optimal control problem. Define the domains Ω = (0, 1) ⊂ R, Q = (0,∞) × Ω,
and Σ = (0,∞) × ∂Ω. In the context of section 3.1, we set H = L2(Ω), V = H1(Ω), and we
define

a(ϕ, φ) = ν

∫
Ω
ϕ′φ′ dx for ϕ, φ ∈ V,
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with ν > 0 and B ∈ L(R, V ′) by

〈Bu, φ〉V ′,V = uφ(0).

Let ua ≤ ub. We set Uad = {u ∈ R : ua ≤ u ≤ ub} and define the set of admissible controls

Uad = {u ∈ L2
loc(0,∞) : u(t) ∈ Uad for almost all t ∈ (0,∞)}.(5.1)

For a control u ∈ Uad we consider the viscous Burgers equation

yt − νyxx + yyx = 0 in Q,(5.2a)

νyx(·, 0) + σ0y(·, 0) = u in (0,∞),(5.2b)

νyx(·, 1) + σ1y(·, 1) = g in (0,∞),(5.2c)

y(0, ·) = y◦ in Ω,(5.2d)

where y◦ ∈ L2(Ω) is a given initial condition and σ0, σ1, and g are real numbers. Henceforth
we consider weak solutions y ∈Wloc(0,∞;V ) of (5.2) satisfying (5.2d) and

〈yt(t), ϕ〉V ′,V + σ1y(t, 1)ϕ(1) − σ0y(t, 0)ϕ(0)

a(y, ϕ) +

∫
Ω
y(t)y′(t)ϕdx = gϕ(1) − 〈Bu,ϕ〉V ′,V

(5.3)

for all ϕ ∈ H1(Ω) and t ∈ (0,∞) a.e. For the functional analytic treatment of (5.2) we refer
to [22, 24], for example. We shall consider the cost functional

J(y, u) =

∫ ∞

0

(
1

2

∫
Ω
|y(t, x) − z(x)|2 dx+

β

2
|u(t)|2

)
e−λt dt,

where z ∈ L2(Ω) is a given desired state and λ, β > 0 are positive constants.
The optimal control problem is given by

minJ(y, u) such that (y, u) ∈Wloc(0,∞) × Uad satisfies (5.2),(P̃)

as a weak solution. It is straightforward to argue the existence of an optimal control for (P̃).

5.2. Reduced-order control. Suppose that we have computed a POD basis utilizing, e.g.,
a finite element code for the viscous Burgers equation and determined the basis functions as
described in section 3.2. To compute a POD solution of (P̃) we make the ansatz (3.14) for
the state variable. In addition to the matrices and vectors defined in section 3.3 we introduce
the tensor

T =
(((

bijk

)))
∈ R

�×�×� with bijk =

∫
Ω
ψjψ

′
kψi dx,

and the vectors for the boundary conditions

d =
(
di
)
∈ R

� with di = ψi(0), e =
(
ei
)
∈ R

� with ei = ψi(1).
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Table 1
Construction of parallel computations.

Node Portion

master 12/18

slave1 3/18

slave2 2/18

slave3 1/18

Then the Galerkin approximation of the optimal control problem (P̃) is given by

⎧⎪⎪⎨
⎪⎪⎩

minJ �(w�, u)

s.t. u ∈ Uad and

{
ẇ�(t) = F (w�(t), u�(t)) for t > 0,
w�(0) = w◦,

(P̃�)

where the nonlinear mapping F : R
� × R → R

� is defined by

F (w�, u) = M−1
((

− S − (T : w�)
)
w� + d

(
dTσ0w

� − u
)
− e
(
eTσ1w

� − g
))
.

The value function v, defined for any initial state w◦ ∈ R
�, is

v(w◦) = inf
u∈Uad

Ĵ �(w◦, u),

where Ĵ �(w◦, u) = J �(w�, u) and w� solves the dynamical system in (P̃�) with initial condition
w◦ and control input u.

5.3. Numerical experiments. This subsection is devoted to demonstrate the efficiency of
the feedback synthesis proposed in section 4.

In practical implementations, three Matlab sessions are started on three slaves remotely
from the master. Then the required data are transferred to the slaves via MPI. On receiving
data, each slave can perform computations concurrently. The portion of the computational
work to be performed on each slave can be adjusted according to the performance of the slaves.
After all computations are done on the slaves, the data will be collected from the slaves. The
distribution of the parallel computation is shown in Table 1. The consumed time (in seconds)
are displayed in Table 2 for the parallel and serial computations to calculate one iteration of
the fixed point scheme. The specific numbers correspond to the example with discontinuous
initial data, given below. The last row shows the ratio of the parallel time cost to the serial
time cost. With the number of grid points increasing, the ratio is increasing, partly because
more time is consumed to transfer required data to and from the slaves.

Two computational tests will be presented, one with continuous initial condition and the
other with discontinuous initial condition. For the sake of comparison we also compute open
loop solutions. This can be done efficiently by means of SQP techniques applied to (P̃) [24],
where the constraint in the form of the Burgers equation is discretized by a finite element
technique. Moreover, the infinite time horizon was replaced by a finite horizon [0, T ], with T
chosen sufficiently large so that it has little effect on the numerical results. The parameter
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Table 2
Comparisons of parallel and serial computations: CPU times in seconds.

Grid points 625 5525 9945 17901

Parallel 20.94 194.43 438.86 814.90

Serial 35.09 344.60 643.37 1094.16

59.68% 56.42% 68.21% 74.75%

Table 3
Parameter settings.

Symbol Value Description

λ 2.0 discount rate

β 0.05 weighting coefficient for the control

T 5 time horizon

z 0 desired state

settings are listed in Table 3. Concerning the boundary conditions for the Burgers equation
(5.2), we set σ0 = σ1 = 0, g = 0. We took 251 equidistant snapshots from the uncontrolled
dynamics. For both examples four basis functions are used for the POD approximation. In
terms of the ratio r(�) =

∑�
1 λi/

∑d
i=�+1 λi this means that r(4) ≥ .985 for the first example

below, and r(4) ≥ .9999 for the second example. Unless specified otherwise, the grid size was
chosen to be 24 × 16 × 4 × 4. We also report on the effect of the choice of this grid. In our
numerical tests we frequently replaced the explicit Euler approximation y◦ +hF (y◦, u) of y(h)
by a semiimplicit approximation of y(h). This improved the performance without qualitatively
changing the results. Finally, let us comment on the choice of snapshots, which were taken
from the uncontrolled dynamics for the results to be presented below. We also carried out
tests with taking snapshots from the dynamics, controlled by the open loop optimal control,
and combination of the former and the latter. There was little effect on the value of the cost
J (evaluated for the closed loop optimal control and the associated trajectory). However, the
difference between this value for J and the value of the value-function obtained from the HJB
equation, which, as we explain below, is used for validation of our procedure, increases. This
comes as no surprise for the class of test problems under consideration. In fact, the controlled
states converge to the origin rather quickly and hence contain significantly less information
than the uncontrolled snapshots resulting in a decrease of the approximation property of the
HJB equation. This in turn could possibly be counteracted by taking nonuniformly spaced
snapshots, an issue that we do not want to pursue in this work.

Continuous initial condition. In this case the continuous initial condition is y(0) =
(1−x) sin(3π(x− 0.5)), and the viscosity coefficient is ν = 0.05. The state evolutions without
control and with feedback optimal control are displayed in Figure 1. As expected, the con-
trolled state decreases as time evolves. The feedback and open loop controls are compared in
Figure 2. In Table 4, we can see that the cost functional is decreased from 0.01818 to 0.00766
in the feedback design and from 0.01812 to 0.00681 in the open loop design. This minor dif-
ference is not unexpected since the feedback design is based on the reduced system obtained
by the POD technique, whereas the open loop optimal control is computed by means of an
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Figure 1. Uncontrolled state (left) and optimal state (right): Continuous initial condition.
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Figure 2. Comparisons of optimal controls from feedback and open-loop design: Continuous initial condition.

SQP technique for a high-resolution finite element discretization of a continuous system (5.2).
A further validation of the numerical results is obtained by comparing the values of the cost
function obtained from (i) the open loop control as in the second row of the right column of
Table 4 , (ii) inserting the controls and the controlled state into the cost as in the second row
of the left column, and (iii) from the numerical approximation to the HJB equation, shown
in the first column’s last row.

Discontinuous initial condition. In this test case, the initial condition is

y◦(x) =

{
1 if 0 ≤ x < 0.5,
0 if 0.5 < x ≤ 1,

(5.4)

and the viscosity coefficient is ν = 0.25.

First we carry out a grid convergence study using λ = 1 with all other specifications as in
Table 3. The results are shown in Table 5. Note, in particular, that the difference between
J and V decreases as the grid is refined. In the following tests, we will take the grid system
of 24 × 16 × 4 × 4 for the polyhedron, which was also taken for the case with the continuous
initial condition.
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Table 4
Comparisons of results from feedback and open loop design: Continuous initial condition.

Feedback Open loop

J w opt. control 0.00766 0.00681

J w/o control 0.01818 0.01812

Value function 0.00735

Table 5
Grid convergence study: The difference between optimal cost functional and value function decreases as the

grid of the polyhedron is fined.

4 × 4 × 4 × 4 16 × 12 × 4 × 4 24 × 16 × 4 × 4 32 × 16 × 5 × 5
J w opt. control 0.0320 0.0319 0.0319 0.0318

J w/o control 0.1267 0.1267 0.1267 0.1267

Value function 0.0272 0.0354 0.0336 0.0324

Comp. time (units) 0.08 1 2 6

Error: V and J -15% 11 % 5 % 2%

The evolutions of the state are depicted in Figure 3 for the uncontrolled and controlled
cases. Furthermore, as observed in the discussion of the results in Figure 4, the feedback con-
trol agrees well with the open loop design result. The computational results are summarized
in Table 6. Again we can claim good agreement between the optimal cost functional and the
value functional based on the reduced order calculations.

Let us turn to the effect of noise. First random noise is imposed on the initial condition.
The open loop design fails to drive the system to zero, if uniform noise in [−9, 9] is added to
the initial condition. The feedback design, however, can still generate an acceptable result, as
shown in Figure 5. Another test considered here is to impose random noise on the right-hand
side of the Burgers equation (5.2a). The controlled states with random uniform random noise
in [−0.25, 0.25] (constant w.r.t. t) are displayed in Figure 6, respectively, for feedback and
open loop design. Comparing the controlled states at t = 5 the feedback result is clearly
better than the open loop one. The reader will note a drift in the controlled solution, to a
value below 0, for the specific realization of the random numbers for this numerical run. Let
us point out here the behavior of the uncontrolled Burgers equation with Neumann boundary
conditions and random forcing with zero mean: the solution tends to be constant w.r.t. x
with the constant depending on the mean of the concrete realization of the set of random
numbers (which happens to be negative for the numerical example depicted in Figure 6).

These comparisons confirm that the reduced-order HJB-based closed loop control design
is effective in the presence of noise in the system dynamics.

6. Conclusion. This paper deals with nonlinear feedback design for evolution problems.
The feedback gain is obtained as the solution of the discrete HJB equation. Since the spatial
dimension for the HJB equation depends on the number of spatial grid points used in the
numerical scheme for the evolution problem, the size of the HJB equation is numerically in-
feasible if, e.g., finite element or finite difference approximations are used. Here reduced-order
modeling with POD is applied for the spatial discretization of the dynamical system resulting
in a low-dimensional HJB equation, which can be solved by a fixed-point–type algorithm. To
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Figure 3. Uncontrolled state (left) and optimal state (right): Discontinuous initial condition.
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Figure 4. Comparison of optimal control from feedback and open loop design: Discontinuous initial condition.

accelerate the method both nested iterations and parallelization are utilized. The numerical
strategy is illustrated numerically by taking an optimal boundary control problem for the
Burgers equation. It turns out that the closed loop control can be computed with reasonable
effort. Moreover, the feasibility of the proposed method and the superiority to open loop
control is demonstrated by examples including noise in the initial condition and in the forcing
function.

Appendix.

Here we verify the claims made in the second part of section 2. Throughout we assume
that h ∈ (0, 1] and that there exist constants M,L1, L2 such that

hL(y, u) ≤M for all (y, u) ∈ R
n × Uad,(A.1)

|F (y1, u) − F (y2, u)| ≤ L1 |y1 − y2| for all y1, y2 ∈ R
n, u ∈ Uad,(A.2)

|L(y1, u) − L(y2, u)| ≤ L2 |y1 − y2| for all y1, y2 ∈ R
n, u ∈ Uad.(A.3)

We note that (A.2) and (A.3) are not required for Proposition A.1. Recall that β = e−λh

for fixed λ > 0.
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Table 6
Comparisons of results from feedback and open loop design: Discontinuous initial condition.

Feedback Open-loop

J w. opt. control 0.0370 0.0353

J w/o control 0.1258 0.1258

Value function 0.0372
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Figure 5. Optimal state with random noise (9.0) in the initial condition: Feedback design (left) and open
loop design (right).

Proposition A.1. The discrete minimal value function vh is the unique solution of

vh(y◦) = inf
u∈Uad

{
h

2

(
L(y◦, u) + βL(y◦ + hF (y◦, u), u)

)
+ βvh(y◦ + hF (y◦, u))

}
.(A.4)

Moreover, |vh(y◦)| ≤M( 1
1−β − 1

2) for all y◦ ∈ R
n.

Proof. For uh = {u0, u1, . . . } ∈ Uh
ad, set ūh = {u1, u2, . . . }, and denote by yh = {yj(y◦, uh)}∞j=1

the corresponding solution to (2.9). Then

yj+1(y◦, uh) = yj(y1, ūh) for j ≥ 0,

where y1 = y◦ + hF (y◦, u0). It follows that

Jh(y◦, uh) =
h

2

(
L(y◦, u0) + βL(y1, u0)

)
+ βJh(y1, ūh),(A.5)

and consequently

vh(y◦) ≥ inf
u∈Uad

{
h

2

(
L(y◦, u) + βL(y◦ + hF (y◦, u), u)

)
+ βvh(y◦ + hF (y◦, u))

}
.

Conversely, let u ∈ Uh
ad and ε > 0 be arbitrary. Then there exists uεh ∈ Uad such that

vh(y◦ + hF (y◦, u)) ≥ Jh(y◦ + hF (y◦, u), uεh) − ε.

Using (A.5), we have

βvh(y◦ + hF (y◦, u)) ≥ J(y◦, ûεh) −
h

2

(
L(y◦, u) + βL(y◦ + hF (y◦, u), u)

)
− βε,
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Figure 6. Optimal state with random noise (0.25) in the RHS: Feedback design (left) and open loop design
(right).

where ûεh = {u, uε0, uε1, . . . }. This implies that

vh(y◦) ≤
h

2

(
L(y◦, u) + βL(y◦ + hF (y◦, u), u)

)
+ βvh(y◦ + hF (y◦, u)).(A.6)

Hence, vh satisfies (A.4).
Turning to uniqueness, assume that vh and wh are two solutions to (A.4) and choose ε > 0

arbitrarily. Then for every y ∈ R
n there exists uε = uε(y) ∈ Uad such that

vh(y) ≥
h

2

(
L(y, uε) + βL(y + hF (y, uε), uε)

)
+ βvh(y + hF (y, uε)) − ε,

and

wh(y) ≤
h

2

(
L(y, uε) + βL(y + hF (y, uε), uε)

)
+ βwh(y + hF (y, uε)).

Consequently,

sup
y∈Rn

(wh(y) − vh(y)) ≤ β sup
y∈Rn

(wh(y) − uh(y)) + ε.

This estimate also holds with the roles of vh and wh exchanged and hence vh = wh. Moreover
by definition of Jh(y◦, uh) and |β| < 1 we have

|vh(y◦)| ≤
M

2

⎛
⎝1 + 2

∞∑
j=1

βj

⎞
⎠ = M

(
1

1 − β
− 1

2

)
.

Next, continuity of the discrete minimal value functionals is addressed.
Proposition A.2. For every h ∈ (0, 1] the minimal value functional is uniformly continuous.

Proof. Choose ε arbitrarily and determine k such that 2M
∑∞

j=k+1 β
j < ε. For every

ȳ ∈ R
n there exists uε ∈ Uh

ad such that vh(ȳ) ≥ J(ȳ, uε) − ε. Consequently,

vh(y) − vh(ȳ) ≤ J(y, uε) − J(ȳ, uε) + ε for every y ∈ R
n,
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and by (A.1)

vh(y) − vh(ȳ) ≤
1

2

(
hL(y, uε0) − hL(ȳ, uε0)

)

+
h

2

k∑
j=1

βj |L(yj(y, u
ε), uεj−1) − L(yj(ȳ, u

ε), uεj−1)|

+
h

2

k∑
j=1

βj |L(yj(y, u
ε), uεj) − L(yj(ȳ, u

ε), uεj)|

+ 2M
∞∑

j=k+1

βj + ε.

By (A.2) and (A.3), therefore,

vh(y) − vh(ȳ) ≤ L2 |y − ȳ|
k∑

j=0

(1 + L1)
j + 2ε.

Interchanging the roles of y and ȳ the desired conclusion follows.
Proposition A.3. Every selection of controls

u∗j ∈ Sh(y
∗
j ) = argmax

u∈Uad

{
−h

2

(
L(y∗j , u) + βL(y∗j + hF (y∗j , u), u)

)
− βvh(y

∗
j + hF (y∗j , u))

}

with y∗0 = y◦ and {y∗j }∞j=1 defined by (2.9) is an optimal feedback control.
Proof. Since Uad is closed and bounded, the mapping Sh : R

n → R is well defined. By
(A.5) and the definitions of {u∗j}∞j=0 and {y∗j }∞j=0, we have

v(y∗j ) =
h

2

(
L(y∗j , u

∗
j ) + βL(y∗j+1, u

∗
j )
)
+ βv(y∗j+1)

for j = 0, 1, . . . . This implies

∞∑
j=0

βj(v(y∗j ) − v(y∗j+1))

=
h

2

∞∑
j=0

βj(L(y∗j , u
∗
j ) + βL(y∗j+1, u

∗
j ))

=
h

2

⎛
⎝L(y◦, u∗0) +

∞∑
j=1

β
(
L(y∗j , u

∗
j ) + L(y∗j , u

∗
j−1)

)⎞⎠ = Jh(y◦, u∗h),

(A.7)

and consequently v(y◦) = Jh(y◦, u∗h) with u∗h = {u∗0, u∗1, . . . } ∈ Uh
ad.

Proposition A.4. For every compact set K ⊂ Uad we have

lim
h→0+

sup
y◦∈K

|vh(y◦) − v(y◦)| = 0,

where v is the unique viscosity solution to (HJB).
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Proof. The existence of a unique viscosity solution is verified in [4, Theorem III.2.2.], for
example. For the convergence result we can proceed as in [4, Theorem VI.1.1.] provided that
we verify that vh(y◦) is uniformly bounded w.r.t. y◦ and h ∈ (0,min(1, 2/λ)); more precisely,
we show that

sup
{
|vh(y◦)| : y◦ ∈ R

n and h ∈ (0,min(1, λ)]
}
≤ 2M

λ
,(A.8)

and that the functions v and v̄ defined by

v(y) = lim inf
(x,h)→(y,0+)

vh(x), v̄(y) = lim sup
(x,h)→(y,0+)

vh(x)(A.9)

are a viscosity supersolution and a viscosity subsolution to (HJB), respectively. To verify
(A.8) note that 2M/λ is a supersolution to (HJBh); i.e., for every ε > 0 and y◦ ∈ R

n, there
exists uε = uε(yo) ∈ Uad such that

2M

λ
≥ h

2
(L(y◦, uε) + βL(y◦ + hF (y◦, uε), uε)) +

2βM

λ
− ε.(A.10)

To verify (A.10) we infer from (A.1) and β ≤ 1 that

h

2
(L(y◦, uε) + βL(y◦ + hF (y◦, uε), uε)) +

2βM

λ
≤ M

λ
(hλ+ 2β).(A.11)

Utilizing β = e−λh ≤ 1 − λh/2 for h ≤ 2/λ, we find

hλ+ 2β ≤ hλ+ 2

(
1 − hλ

2

)
= 2

so that (A.11) implies (A.10). Since vh is a solution to (HJB), we have

vh(y◦) ≤
h

2

(
L(y◦, uε) + βL(y◦ + hF (y◦, uε), uε)

)
+ βvh(y◦ + F (y◦, uε)).(A.12)

Combining (A.10) and (A.12), we conclude

sup
y◦∈Rn

(
vh(y◦) −

2M

λ

)
≤ β sup

y◦∈Rn

(
vh(y◦) −

2M

λ

)
+ ε

so that supy◦∈Rn(vh(y◦) − 2M/λ) ≤ 0. Similarly −2M/λ is a subsolution of (HJBh). This
implies that supy◦∈Rn(−vh(y◦) − 2M/λ) ≤ 0 and hence (A.8) follows.

To show that v is a viscosity supersolution of (HJB), choose φ ∈ C1(Rn) and let y1 be a
strict minimum of v−φ in the closed ball B̄(y1, r), r > 0. Then (see [4, Lemma V.1.9.]) there
exist sequences {yn}∞n=0 in B̄(y1, r) and hn → 0+ such that

(vhn − φ)(yn) = min
s∈B̄(y1,r)

(vhn − φ)(s), yn → y1, vhn(yn) → v(y1).(A.13)
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Since vh satisfies (HJBh) we have

(1 − β)vhn(yn) − hn
2

(
L(yn, un) + βL(yn + hnF (yn, un), un)

)
+β(vhn(yn) − φ(yn)) − β

(
vhn(yn + hnF (yn, un)) − φ(yn + hnF (yn, un))

)
+β

(
φ(yn) − φ(yn + hnF (yn, un))

)
= 0.

By (A.13) we have for all n sufficiently large that

(1 − β)vhn(yn) − hn
2

(
L(yn, un) + βL(yn + hnF (yn, un), un)

)
+ β

(
φ(yn) − φ(yn + hnF (yn, un))

)
≥ 0.

Dividing by hn and passing to the limit on a subsequence, we obtain

λv(y1) − L(y1, ū) −∇φ(y1) · F (y1, ū) ≥ 0

for some ū ∈ Uad. Hence v is a viscosity supersolution for (HJB). Similarly v̄ is a viscosity
subsolution. This concludes the proof.
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